Protein Transduction Domain-Mediated Delivery of Anticancer Proteins

  • Hiroshi Harada
  • Masahiro Hiraoka

Advances in molecular and cellular biological techniques and genomic information obtained through the human genome project have been accelerating the elucidation of the molecular mechanisms underlying cancer. Both genetic mutations and epigenetic alterations have been associated with cancer [1]. The former include deletions, point mutations, or amplification of genes, chromosomal translocations, and gain or loss of entire chromosomes. The latter are modifications of genomic DNA, such as methylation and acetylation. All of these alterations lead to a gain of function of oncogenes or loss of function of tumor suppressor genes and have been recognized as effective targets for cancer therapy. Not only small chemicals but also various high-molecular weight biomacromolecules, such as oligonucleotides, antisense nucleotides, antisense peptide nucleic acids, small interference RNA, DNA (cDNA), peptides, proteins, and antibodies, have proven useful for regulating the function of these target genes. However, the plasma membrane of the cell surface forms an effective barrier and limits the internalization of such macromolecules into cells; therefore, the application of these information-rich macromolecules to cancer therapy has long been restricted. Although various methods to internalize macromolecules into living cells in vivo have been proposed, most of them resulted in inefficient delivery. Additionally, other problems such as complex manipulation, toxicity, and immunogenicity have prevented the routine therapeutic use of macromolecules.


Renal Cell Carcinoma Cell Protein Transduction Domain Pseudomonas Exotoxin ErbB2 Protein Level Smac Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57–70.PubMedCrossRefGoogle Scholar
  2. 2.
    Wadia JS, Dowdy SF. Protein transduction technology. Curr Opin Biotechnol 2002; 13: 52–56.PubMedCrossRefGoogle Scholar
  3. 3.
    Wadia JS, Dowdy SF. Modulation of cellular function by TAT mediated transduction of full length proteins. Curr Protein Pept Sci 2003; 4: 97–104.PubMedCrossRefGoogle Scholar
  4. 4.
    Harada H, Hiraoka M, Kizaka-Kondoh S. Antitumor effect of TAT-oxygen-dependent degradation-caspase-3 fusion protein specifically stabilized and activated in hypoxic tumor cells. Cancer Res 2002; 62: 2013–2018.PubMedGoogle Scholar
  5. 5.
    Harada H, Kizaka-Kondoh S, Hiraoka M. Optical imaging of tumor hypoxia and evaluation of efficacy of a hypoxia-targeting drug in living animals. Mol Imaging 2005; 4: 182–193.PubMedGoogle Scholar
  6. 6.
    Harada H, Kizaka-Kondoh S, Li G, et al. Significance of HIF-1-active cells in angiogenesis and radioresistance. Oncogene 2007; 26: 7508–7516.PubMedCrossRefGoogle Scholar
  7. 7.
    Selivanova G, Iotsova V, Okan I, et al. Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nat Med 1997; 3: 632–638.PubMedCrossRefGoogle Scholar
  8. 8.
    Snyder EL, Meade BR, Saenz CC, Dowdy SF. Treatment of terminal peritoneal carcinomatosis by a transducible p53-activating peptide. PLoS Biol 2004; 2: E36.PubMedCrossRefGoogle Scholar
  9. 9.
    Harbour JW, Worley L, Ma D, Cohen M. Transducible peptide therapy for uveal melanoma and retinoblastoma. Arch Ophthalmol 2002; 120: 1341–1346.PubMedGoogle Scholar
  10. 10.
    Fulda S, Wick W, Weller M, Debatin KM. Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 2002; 8: 808–815.PubMedGoogle Scholar
  11. 11.
    Yang L, Mashima T, Sato S, et al. Predominant suppression of apoptosome by inhibitor of apoptosis protein in non-small cell lung cancer H460 cells: therapeutic effect of a novel polyarginine-conjugated Smac peptide. Cancer Res 2003; 63: 831–837.PubMedGoogle Scholar
  12. 12.
    Yan H, Thomas J, Liu T, et al. Induction of melanoma cell apoptosis and inhibition of tumor growth using a cell-permeable Survivin antagonist. Oncogene 2006; 25: 6968–6974.PubMedCrossRefGoogle Scholar
  13. 13.
    Holinger EP, Chittenden T, Lutz RJ. Bak BH3 peptides antagonize Bcl-xL function and induce apoptosis through cytochrome c-independent activation of caspases. J Biol Chem 1999; 274: 13298–13304.PubMedCrossRefGoogle Scholar
  14. 14.
    Kashiwagi H, McDunn JE, Goedegebuure PS, et al. TAT-Bim induces extensive apoptosis in cancer cells. Ann Surg Oncol 2007; 14: 1763–1771.PubMedCrossRefGoogle Scholar
  15. 15.
    Datta K, Sundberg C, Karumanchi SA, Mukhopadhyay D. The 104–123 amino acid sequence of the beta-domain of von Hippel-Lindau gene product is sufficient to inhibit renal tumor growth and invasion. Cancer Res 2001; 61: 1768–1775PubMedGoogle Scholar
  16. 16.
    Asada S, Choi Y, Yamada M, et al. External control of Her2 expression and cancer cell growth by targeting a Ras-linked coactivator. Proc Natl Acad Sci USA 2002; 99: 12747–12752.PubMedCrossRefGoogle Scholar
  17. 17.
    Shibagaki N, Udey MC. Dendritic cells transduced with protein antigens induce cytotoxic lymphocytes and elicit antitumor immunity. J Immunol 2002; 168: 2393–2401.PubMedGoogle Scholar
  18. 18.
    Green M, Loewenstein PM. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 1988; 55: 1179–1188.PubMedCrossRefGoogle Scholar
  19. 19.
    Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 1988; 55: 1189–1193.PubMedCrossRefGoogle Scholar
  20. 20.
    Fawell S, Seery J, Daikh Y, et al. Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci USA 1994; 91: 664–668.PubMedCrossRefGoogle Scholar
  21. 21.
    Mann DA, Frankel AD. Endocytosis and targeting of exogenous HIV-1 Tat protein. Embo J 1991; 10: 1733–1739.PubMedGoogle Scholar
  22. 22.
    Ezhevsky SA, Nagahara H, Vocero-Akbani AM, Gius DR, Wei MC, Dowdy SF. Hypo-phosphorylation of the retinoblastoma protein (pRb) by cyclin D:Cdk4/6 complexes results in active pRb. Proc Natl Acad Sci USA 1997; 94: 10699–10704.PubMedCrossRefGoogle Scholar
  23. 23.
    Vives E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 1997; 272: 16010–16017.PubMedCrossRefGoogle Scholar
  24. 24.
    Becker-Hapak M, McAllister SS, Dowdy SF. TAT-mediated protein transduction into mammalian cells. Methods 2001; 24: 247–256.PubMedCrossRefGoogle Scholar
  25. 25.
    Joliot A, Pernelle C, Deagostini-Bazin H, Prochiantz A. Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci USA 1991; 88: 1864–1868.PubMedCrossRefGoogle Scholar
  26. 26.
    Joliot AH, Triller A, Volovitch M, Pernelle C, Prochiantz A. alpha-2,8-Polysialic acid is the neuronal surface receptor of antennapedia homeobox peptide. New Biol 1991; 3: 1121–1134.PubMedGoogle Scholar
  27. 27.
    Le Roux I, Joliot AH, Bloch-Gallego E, Prochiantz A, Volovitch M. Neurotrophic activity of the Antennapedia homeodomain depends on its specific DNA-binding properties. Proc Natl Acad Sci USA 1993; 90: 9120–9124.PubMedCrossRefGoogle Scholar
  28. 28.
    Derossi D, Joliot AH, Chassaing G, Prochiantz A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 1994; 269: 10444–10450.PubMedGoogle Scholar
  29. 29.
    Elliott G, O'Hare P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 1997; 88: 223–233.PubMedCrossRefGoogle Scholar
  30. 30.
    Jarver P, Langel U. The use of cell-penetrating peptides as a tool for gene regulation. Drug Discov Today 2004; 9: 395–402.PubMedCrossRefGoogle Scholar
  31. 31.
    Astriab-Fisher A, Sergueev DS, Fisher M, Shaw BR, Juliano RL. Antisense inhibition of P-glycoprotein expression using peptide-oligonucleotide conjugates. Biochem Pharmacol 2000; 60: 83–90.PubMedCrossRefGoogle Scholar
  32. 32.
    Gallazzi F, Wang Y, Jia F, et al. Synthesis of radiometal-labeled and fluorescent cell-permeating peptide-PNA conjugates for targeting the bcl-2 proto-oncogene. Bioconjug Chem 2003; 14: 1083–1095.PubMedCrossRefGoogle Scholar
  33. 33.
    Ignatovich IA, Dizhe EB, Pavlotskaya AV, et al. Complexes of plasmid DNA with basic domain 47-57 of the HIV-1 Tat protein are transferred to mammalian cells by endocytosis-mediated pathways. J Biol Chem 2003; 278: 42625–42636.PubMedCrossRefGoogle Scholar
  34. 34.
    Lewin M, Carlesso N, Tung CH, et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 2000; 18: 410–414.PubMedCrossRefGoogle Scholar
  35. 35.
    Torchilin VP, Rammohan R, Weissig V, Levchenko TS. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci USA 2001; 98: 8786–8791.PubMedCrossRefGoogle Scholar
  36. 36.
    Eguchi A, Akuta T, Okuyama H, et al. Protein transduction domain of HIV-1 Tat protein promotes efficient delivery of DNA into mammalian cells. J Biol Chem 2001; 276: 26204–26210.PubMedCrossRefGoogle Scholar
  37. 37.
    Heng BC, Cao T. Making cell-permeable antibodies (Transbody) through fusion of protein transduction domains (PTD) with single chain variable fragment (scFv) antibodies: potential advantages over antibodies expressed within the intracellular environment (Intrabody). Med Hypotheses 2005; 64: 1105–1108.PubMedCrossRefGoogle Scholar
  38. 38.
    Troy CM, Stefanis L, Prochiantz A, Greene LA, Shelanski ML. The contrasting roles of ICE family proteases and interleukin-1beta in apoptosis induced by trophic factor withdrawal and by copper/zinc superoxide dismutase down-regulation. Proc Natl Acad Sci USA 1996; 93: 5635–5640.PubMedCrossRefGoogle Scholar
  39. 39.
    Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 1999; 285: 1569–1572.PubMedCrossRefGoogle Scholar
  40. 40.
    Lindgren M, Hallbrink M, Prochiantz A, Langel U. Cell-penetrating peptides. Trends Pharmacol Sci 2000; 21: 99–103.PubMedCrossRefGoogle Scholar
  41. 41.
    Zorko M, Langel U. Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev 2005; 57: 529–545.PubMedCrossRefGoogle Scholar
  42. 42.
    Elmquist A, Lindgren M, Bartfai T, Langel U. VE-cadherin-derived cell-penetrating peptide, pVEC, with carrier functions. Exp Cell Res 2001; 269: 237–244.PubMedCrossRefGoogle Scholar
  43. 43.
    Rojas M, Donahue JP, Tan Z, Lin YZ. Genetic engineering of proteins with cell membrane permeability. Nat Biotechnol 1998; 16: 370–375.PubMedCrossRefGoogle Scholar
  44. 44.
    Futaki S, Suzuki T, Ohashi W, et al. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 2001; 276: 5836–5840.PubMedCrossRefGoogle Scholar
  45. 45.
    Pooga M, Hallbrink M, Zorko M, Langel U. Cell penetration by transportan. Faseb J 1998; 12: 67–77.PubMedGoogle Scholar
  46. 46.
    Morris MC, Vidal P, Chaloin L, Heitz F, Divita G. A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res 1997; 25: 2730–2736.PubMedCrossRefGoogle Scholar
  47. 47.
    Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem 1996; 271: 18188–18193.PubMedCrossRefGoogle Scholar
  48. 48.
    Lundberg M, Wikstrom S, Johansson M. Cell surface adherence and endocytosis of protein transduction domains. Mol Ther 2003; 8: 143–150.PubMedCrossRefGoogle Scholar
  49. 49.
    Richard JP, Melikov K, Vives E, et al. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 2003; 278: 585–590.PubMedCrossRefGoogle Scholar
  50. 50.
    Liu Y, Jones M, Hingtgen CM, et al. Uptake of HIV-1 tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nat Med 2000; 6: 1380–1387.PubMedCrossRefGoogle Scholar
  51. 51.
    Tyagi M, Rusnati M, Presta M, Giacca M. Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J Biol Chem 2001; 276: 3254–3261.PubMedCrossRefGoogle Scholar
  52. 52.
    Sandgren S, Cheng F, Belting M. Nuclear targeting of macromolecular polyanions by an HIV-Tat derived peptide. Role for cell-surface proteoglycans. J Biol Chem 2002; 277: 38877–38883.PubMedCrossRefGoogle Scholar
  53. 53.
    Mai JC, Shen H, Watkins SC, Cheng T, Robbins PD. Efficiency of protein transduction is cell type-dependent and is enhanced by dextran sulfate. J Biol Chem 2002; 277: 30208–30218.PubMedCrossRefGoogle Scholar
  54. 54.
    Violini S, Sharma V, Prior JL, Dyszlewski M, Piwnica-Worms D. Evidence for a plasma membrane-mediated permeability barrier to Tat basic domain in well-differentiated epithelial cells: lack of correlation with heparan sulfate. Biochemistry 2002; 41: 12652–12661.PubMedCrossRefGoogle Scholar
  55. 55.
    Console S, Marty C, Garcia-Echeverria C, Schwendener R, Ballmer-Hofer K. Antennapedia and HIV transactivator of transcription (TAT) “protein transduction domains” promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans. J Biol Chem 2003; 278: 35109–35114.PubMedCrossRefGoogle Scholar
  56. 56.
    Anderson RG. The caveolae membrane system. Annu Rev Biochem 1998; 67: 199–225.PubMedCrossRefGoogle Scholar
  57. 57.
    Fittipaldi A, Ferrari A, Zoppe M, et al. Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J Biol Chem 2003; 278: 34141–34149.PubMedCrossRefGoogle Scholar
  58. 58.
    Wadia JS, Stan RV, Dowdy SF. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 2004; 10: 310–315.PubMedCrossRefGoogle Scholar
  59. 59.
    Kaplan IM, Wadia JS, Dowdy SF. Cationic TAT peptide transduction domain enters cells by macropinocytosis. J Control Release 2005; 102: 247–253.PubMedCrossRefGoogle Scholar
  60. 60.
    Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature 2003; 422: 37–44.PubMedCrossRefGoogle Scholar
  61. 61.
    Polyakov V, Sharma V, Dahlheimer JL, Pica CM, Luker GD, Piwnica-Worms D. Novel Tat-peptide chelates for direct transduction of technetium-99m and rhenium into human cells for imaging and radiotherapy. Bioconjug Chem 2000; 11: 762–771.PubMedCrossRefGoogle Scholar
  62. 62.
    Cai SR, Xu G, Becker-Hapak M, Ma M, Dowdy SF, McLeod HL. The kinetics and tissue distribution of protein transduction in mice. Eur J Pharm Sci 2006; 27: 311–319.PubMedCrossRefGoogle Scholar
  63. 63.
    Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 1989; 49: 6449–6465.PubMedGoogle Scholar
  64. 64.
    Dang CV, Semenza GL. Oncogenic alterations of metabolism. Trends Biochem Sci 1999; 24: 68–72.PubMedCrossRefGoogle Scholar
  65. 65.
    Forsythe JA, Jiang BH, Iyer NV, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996; 16: 4604–4613.PubMedGoogle Scholar
  66. 66.
    Semenza GL, Roth PH, Fang HM, Wang GL. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 1994; 269: 23757–23763.PubMedGoogle Scholar
  67. 67.
    Zhong H, De Marzo AM, Laughner E, et al. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 1999; 59: 5830–5835.PubMedGoogle Scholar
  68. 68.
    Brown JM. The hypoxic cell: a target for selective cancer therapy – eighteenth Bruce F. Cain Memorial Award lecture. Cancer Res 1999; 59: 5863–5870.PubMedGoogle Scholar
  69. 69.
    Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003; 3: 721–732.PubMedCrossRefGoogle Scholar
  70. 70.
    Birner P, Schindl M, Obermair A, Plank C, Breitenecker G, Oberhuber G. Overexpression of hypoxia-inducible factor 1alpha is a marker for an unfavorable prognosis in early-stage invasive cervical cancer. Cancer Res 2000; 60: 4693–4696.PubMedGoogle Scholar
  71. 71.
    Birner P, Gatterbauer B, Oberhuber G, et al. Expression of hypoxia-inducible factor-1 alpha in oligodendrogliomas: its impact on prognosis and on neoangiogenesis. Cancer 2001; 92: 165–171.PubMedCrossRefGoogle Scholar
  72. 72.
    Schindl M, Schoppmann SF, Samonigg H, et al. Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clin Cancer Res 2002; 8: 1831–1837.PubMedGoogle Scholar
  73. 73.
    Kizaka-Kondoh S, Inoue M, Harada H, Hiraoka M. Tumor hypoxia: a target for selective cancer therapy. Cancer Sci 2003; 94: 1021–1028.PubMedCrossRefGoogle Scholar
  74. 74.
    Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 1995; 92: 5510–5514.PubMedCrossRefGoogle Scholar
  75. 75.
    Hirota K, Semenza GL. Regulation of hypoxia-inducible factor 1 by prolyl and asparaginyl hydroxylases. Biochem Biophys Res Commun 2005; 338: 610–616.PubMedCrossRefGoogle Scholar
  76. 76.
    Iliopoulos O, Levy AP, Jiang C, Kaelin Jr WG, Goldberg MA. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl Acad Sci USA 1996; 93: 10595–10599.PubMedCrossRefGoogle Scholar
  77. 77.
    Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001; 292: 468–472.PubMedCrossRefGoogle Scholar
  78. 78.
    Harada H, Kizaka-Kondoh S, Hiraoka M. Mechanism of hypoxia-specific cytotoxicity of procaspase-3 fused with a VHL-mediated protein destruction motif of HIF-1alpha containing Pro564. FEBS Lett 2006; 580: 5718–5722.PubMedCrossRefGoogle Scholar
  79. 79.
    Harada H, Kizaka-Kondoh S, Itasaka S, et al. The combination of hypoxia-response enhancers and an oxygen-dependent proteolytic motif enables real-time imaging of absolute HIF-1 activity in tumor xenografts. Biochem Biophys Res Commun 2007; 360: 791–796.PubMedCrossRefGoogle Scholar
  80. 80.
    Inoue M, Mukai M, Hamanaka Y, Tatsuta M, Hiraoka M, Kizaka-Kondoh S. Targeting hypoxic cancer cells with a protein prodrug is effective in experimental malignant ascites. Int J Oncol 2004; 25: 713–720.PubMedGoogle Scholar
  81. 81.
    Vousden KH, Lu X. Live or let die: the cell's response to p53. Nat Rev Cancer 2002; 2: 594–604.PubMedCrossRefGoogle Scholar
  82. 82.
    Momand J, Zambetti GP, Olson DC, George D, Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992; 69: 1237–1245.PubMedCrossRefGoogle Scholar
  83. 83.
    Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 1990; 63: 1129–1136.PubMedCrossRefGoogle Scholar
  84. 84.
    Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci USA 1998; 95: 8292–8297.PubMedCrossRefGoogle Scholar
  85. 85.
    Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000; 408: 307–310.PubMedCrossRefGoogle Scholar
  86. 86.
    Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell 2002; 2: 103–112.PubMedCrossRefGoogle Scholar
  87. 87.
    Roth JA, Nguyen D, Lawrence DD, et al. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nat Med 1996; 2: 985–991.PubMedCrossRefGoogle Scholar
  88. 88.
    McCormick F. Cancer gene therapy: fringe or cutting edge? Nat Rev Cancer 2001; 1: 130–141.PubMedCrossRefGoogle Scholar
  89. 89.
    Wu X, Bayle JH, Olson D, Levine AJ. The p53-mdm-2 autoregulatory feedback loop. Genes Dev 1993; 7: 1126–1132.PubMedCrossRefGoogle Scholar
  90. 90.
    Polsky D, Melzer K, Hazan C, et al. HDM2 protein overexpression and prognosis in primary malignant melanoma. J Natl Cancer Inst 2002; 94: 1803–1806.PubMedCrossRefGoogle Scholar
  91. 91.
    Mori S, Ito G, Usami N, et al. p53 apoptotic pathway molecules are frequently and simultaneously altered in nonsmall cell lung carcinoma. Cancer 2004; 100: 1673–1682.PubMedCrossRefGoogle Scholar
  92. 92.
    Berger AJ, Camp RL, Divito KA, Kluger HM, Halaban R, Rimm DL. Automated quantitative analysis of HDM2 expression in malignant melanoma shows association with early-stage disease and improved outcome. Cancer Res 2004; 64: 8767–8772.PubMedCrossRefGoogle Scholar
  93. 93.
    Lowe SW, Lin AW. Apoptosis in cancer. Carcinogenesis 2000; 21: 485–495.PubMedCrossRefGoogle Scholar
  94. 94.
    Goyal L. Cell death inhibition: keeping caspases in check. Cell 2001; 104: 805–808.PubMedCrossRefGoogle Scholar
  95. 95.
    Deveraux QL, Reed JC. IAP family proteins – suppressors of apoptosis. Genes Dev 1999; 13: 239–252.PubMedCrossRefGoogle Scholar
  96. 96.
    Nachmias B, Ashhab Y, Ben-Yehuda D. The inhibitor of apoptosis protein family (IAPs): an emerging therapeutic target in cancer. Semin Cancer Biol 2004; 14: 231–243.PubMedCrossRefGoogle Scholar
  97. 97.
    Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000; 102: 33–42.PubMedCrossRefGoogle Scholar
  98. 98.
    Verhagen AM, Ekert PG, Pakusch M, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000; 102: 43–53.PubMedCrossRefGoogle Scholar
  99. 99.
    Altieri DC. Validating survivin as a cancer therapeutic target. Nat Rev Cancer 2003; 3: 46–54.PubMedCrossRefGoogle Scholar
  100. 100.
    Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 1999; 13: 1899–1911.PubMedCrossRefGoogle Scholar
  101. 101.
    Prager D, Li HL, Asa S, Melmed S. Dominant negative inhibition of tumorigenesis in vivo by human insulin-like growth factor I receptor mutant. Proc Natl Acad Sci USA 1994; 91: 2181–2185.PubMedCrossRefGoogle Scholar
  102. 102.
    Kalebic T, Tsokos M, Helman LJ. In vivo treatment with antibody against IGF-1 receptor suppresses growth of human rhabdomyosarcoma and down-regulates p34cdc2. Cancer Res 1994; 54: 5531–5534.PubMedGoogle Scholar
  103. 103.
    Lee CT, Wu S, Gabrilovich D, et al. Antitumor effects of an adenovirus expressing antisense insulin-like growth factor I receptor on human lung cancer cell lines. Cancer Res 1996; 56: 3038–3041.PubMedGoogle Scholar
  104. 104.
    Zbar B, Glenn G, Lubensky I, et al. Hereditary papillary renal cell carcinoma: clinical studies in 10 families. J Urol 1995; 153: 907–912.PubMedCrossRefGoogle Scholar
  105. 105.
    Datta K, Nambudripad R, Pal S, Zhou M, Cohen HT, Mukhopadhyay D. Inhibition of insulin-like growth factor-I-mediated cell signaling by the von Hippel-Lindau gene product in renal cancer. J Biol Chem 2000; 275: 20700–20706.PubMedCrossRefGoogle Scholar
  106. 106.
    Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177–182.PubMedCrossRefGoogle Scholar
  107. 107.
    Slamon DJ, Godolphin W, Jones LA, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244: 707–712.PubMedCrossRefGoogle Scholar
  108. 108.
    Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001; 2: 127–137.PubMedCrossRefGoogle Scholar
  109. 109.
    Holbro T, Hynes NE. ErbB receptors: directing key signaling networks throughout life. Annu Rev Pharmacol Toxicol 2004; 44: 195–217.PubMedCrossRefGoogle Scholar
  110. 110.
    Chang CH, Scott GK, Kuo WL, et al. ESX: a structurally unique Ets overexpressed early during human breast tumorigenesis. Oncogene 1997; 14: 1617–1622.PubMedCrossRefGoogle Scholar
  111. 111.
    Hsu FJ, Benike C, Fagnoni F, et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 1996; 2: 52–58.PubMedCrossRefGoogle Scholar
  112. 112.
    Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 1998; 4: 328–332.PubMedCrossRefGoogle Scholar
  113. 113.
    Ho A, Dowdy SF. Regulation of G(1) cell-cycle progression by oncogenes and tumor suppressor genes. Curr Opin Genet Dev 2002; 12: 47–52.PubMedCrossRefGoogle Scholar
  114. 114.
    Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999; 13: 1501-1512.PubMedCrossRefGoogle Scholar
  115. 115.
    Lee MH, Yang HY. Negative regulators of cyclin-dependent kinases and their roles in cancers. Cell Mol Life Sci 2001; 58: 1907–1922.PubMedCrossRefGoogle Scholar
  116. 116.
    Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell 2002; 2: 103–112.PubMedCrossRefGoogle Scholar
  117. 117.
    Sherr CJ. The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2001; 2: 731–737.PubMedCrossRefGoogle Scholar
  118. 118.
    Fahraeus R, Paramio JM, Ball KL, Lain S, Lane DP. Inhibition of pRb phosphorylation and cell-cycle progression by a 20-residue peptide derived from p16CDKN2/INK4A. Curr Biol 1996; 6: 84–91.PubMedCrossRefGoogle Scholar
  119. 119.
    Gius DR, Ezhevsky SA, Becker-Hapak M, Nagahara H, Wei MC, Dowdy SF. Transduced p16INK4a peptides inhibit hypophosphorylation of the retinoblastoma protein and cell cycle progression prior to activation of Cdk2 complexes in late G1. Cancer Res 1999; 59: 2577–2580.PubMedGoogle Scholar
  120. 120.
    Ball KL, Lain S, Fahraeus R, Smythe C, Lane DP. Cell-cycle arrest and inhibition of Cdk4 activity by small peptides based on the carboxy-terminal domain of p21WAF1. Curr Biol 1997; 7: 71–80.PubMedCrossRefGoogle Scholar
  121. 121.
    Nagahara H, Vocero-Akbani AM, Snyder EL, et al. Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat Med 1998; 4: 1449–1452.PubMedCrossRefGoogle Scholar
  122. 122.
    Snyder EL, Meade BR, Dowdy SF. Anti-cancer protein transduction strategies: reconstitution of p27 tumor suppressor function. J Control Release 2003; 91: 45–51.PubMedCrossRefGoogle Scholar
  123. 123.
    Del Gaizo V, Payne RM. A novel TAT-mitochondrial signal sequence fusion protein is processed, stays in mitochondria, and crosses the placenta. Mol Ther 2003; 7: 720–730.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Radiation Oncology and Image-applied TherapyGraduate School of Medicine, Kyoto UniversitySakyo-kuJapan

Personalised recommendations