Advertisement

Human IQ and Increasing Intelligence

  • R. Grant Steen
Chapter
Part of the The Springer Series on Human Exceptionality book series (SSHE)

Abstract

The only real evidence we have that childhood intelligence is increasing is that scores on tests of intelligence are increasing. But what if the tests are wrong? What if tests are a poor measure of intelligence or do not measure it at all? Could it be that the standardized tests so widely used do not measure our ability to learn, but rather measure how much we have already learned? We have defined intelligence as the ability to solve problems, but virtually any problem that is posed assumes some degree of prior knowledge. For example, most adult IQ tests presuppose that test takers know how to read. Many intelligence tests use analogies (“Finger is to hand as X is to foot”) to test logical ability, but analogies indirectly test whether a subject has an adequate vocabulary. Similarly, no one could use mathematical reasoning skills unless they have prior knowledge about numbers, and how to use them. Even a brilliant person who is not a native English speaker might perform rather poorly in a timed test given in English – and many IQ tests are timed. We have postulated three technical hypotheses that could potentially explain the Flynn effect, all of which contend that intelligence tests somehow mismeasure intelligence. But before we explore these hypotheses in depth, it is important to shed some light on the tests themselves.

Keywords

Intelligence Test Fluid Intelligence Peabody Picture Vocabulary Israeli Defense Force Scholastic Achievement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Steen, R. G. (1996). DNA & Destiny: Nature and Nurture in Human Behavior. New York: Plenum. 259 pp.Google Scholar
  2. 2.
    Flynn, J. (1984). The mean IQ of Americans: Massive gains 1932 to 1978. Psychological Bulletin, 95, 29–51.CrossRefGoogle Scholar
  3. 3.
    Prifitera, A., Weiss, L. G., & Saklofske, D. H. (1998). The WISC-III in context. In A. Prifitera & D. Saklofske (Eds.), WISC-III Clinical Use and Interpretation: Scientist-Practitioner Perspectives (pp. 1–38). New York: Academic.CrossRefGoogle Scholar
  4. 4.
    Flynn, J. R. (1998). Israeli military IQ tests: Gender differences small; IQ gains large. Journal of Biosocial Science, 30, 541–553.CrossRefPubMedGoogle Scholar
  5. 5.
    Randhawa, B. S. (1980). Change in intelligence and academic skills of grades four and seven pupils over a twenty-year period. 22nd International Congress of Psychology. Leipzig, East Germany.Google Scholar
  6. 6.
    de Leeuw, J., & Meester, A. C. (1984). Over het intelligence-onderzoek bijde militaire keuringer vanaf 1925 tot heden [Intelligence-as tested at selections for the military service from 1925 to the present]. Mens en Maatschappij, 59, 5–26.Google Scholar
  7. 7.
    Rist, T. (1982). Det Intellektuelle Prestasjonsnivaet i Befolkningen Sett I lys av den Samfunns-Messige Utviklinga [The level of the intellectual performance of the population seen in the light of developments in the community]. Oslo, Norway: Norwegian Armed Forces Psychology Service.Google Scholar
  8. 8.
    Teasdale, T. W., & Owen, D. R. (2000). Forty-year secular trends in cognitive abilities. Intelligence, 28, 115–120.CrossRefGoogle Scholar
  9. 9.
    Bouvier, U. (1969). Evolution des cotes a quelques tests [Evolution of scores from several tests]. Brussels, Belgium: Belgian Armed Forces, Center for Research into Human Traits.Google Scholar
  10. 10.
    Elley, W. B. (1969). Changes in mental ability in New Zealand school-children. New Zealand Journal of Educational Studies, 4, 140–155.Google Scholar
  11. 11.
    Clarke, S. C. T., Nyberg, V., & Worth, W. H. (1978). Technical report on Edmonton Grade III achievement: 1956–1977 comparisons. Edmonton, Alberta: University of Alberta.Google Scholar
  12. 12.
    Uttl, B., & Van Alstine, C. L. (2003). Rising verbal intelligence scores: Implications for research and clinical practice. Psychology and Aging, 18, 616–621.CrossRefPubMedGoogle Scholar
  13. 13.
    Vroon, P. A., de Leeuw, J., & Meester, A. C. (1984). Correlations between the intelligence levels of fathers and sons. In J. R. Flynn (Ed.), Utrecht, The Netherlands: Department of Theoretical Psychology and History of Psychology.Google Scholar
  14. 14.
    Colom, R., & Garcia-Lopez, O. (2003). Secular gains in fluid intelligence: Evidence from the culture-fair intelligence test. Journal of Biosocial Science, 35, 33–39.CrossRefPubMedGoogle Scholar
  15. 15.
    Lynn, R., Hampson, S. L., & Mullineux, J. C. (1987). A long-term increase in the fluid intelligence of English children. Nature, 328, 797.CrossRefPubMedGoogle Scholar
  16. 16.
    Daley, T. C., et al. (2003). IQ on the rise: The Flynn effect in rural Kenyan children. Psychological Science, 14, 215–219.CrossRefPubMedGoogle Scholar
  17. 17.
    Fuggle, P. W., et al. (1992). Rising IQ scores in British children: Recent evidence. Journal of Child Psychology and Psychiatry, 33, 1241–1247.CrossRefPubMedGoogle Scholar
  18. 18.
    Girod, M., & Allaume, G. (1976). L’evolution du niveau intellectuel de la population francaise pendent le dernier quart de siecle [The evolution of the intellectual level of the French population during the last quarter century]. International Review of Applied Psychology, 25, 121–123.CrossRefGoogle Scholar
  19. 19.
    Steen, R. G. (2007). The Evolving Brain: The Known and the Unknown (p. 427). New York: Prometheus Books.Google Scholar
  20. 20.
    Gould, S. J. (1981). The Mismeasurement of Man. New York: W. W. Norton & Co. 352 pp.Google Scholar
  21. 21.
    Detterman, D. K., & Thompson, L. A. (1997). What is so special about special education? The American Psychologist, 52, 1082–1090.CrossRefPubMedGoogle Scholar
  22. 22.
    Brand, C. (1987). Intelligence testing: Bryter still and bryter? Nature, 328, 110.Google Scholar
  23. 23.
    Daley, T. C., et al. (2003). IQ on the rise: The Flynn effect in rural Kenyan children. Psychological Science, 14, 215–219.CrossRefPubMedGoogle Scholar
  24. 24.
    Steen, R. G. (1996). DNA & Destiny: Nature and Nurture in Human Behavior (p. 295). New York: Plenum.Google Scholar
  25. 25.
    Flynn, J. R. (1987). Massive IQ gains in 14 nations: What IQ tests really measure. Psychological Bulletin, 101, 171–191.CrossRefGoogle Scholar
  26. 26.
    Carpenter, P. A., Just, M. A., & Shell, P. (1990). What one intelligence test measures: A theoretical account of the processing in the Raven Progressive Matrices Test. Psychological Review, 97, 404–431.CrossRefPubMedGoogle Scholar
  27. 27.
    Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23, 475–483.CrossRefPubMedGoogle Scholar
  28. 28.
    Flynn, J. R. (1998). Israeli military IQ tests: Gender differences small; IQ gains large. Journal of Biosocial Science, 30, 541–553.CrossRefPubMedGoogle Scholar
  29. 29.
    Teasdale, T. W., & Owen, D. R. (2000). Forty-year secular trends in cognitive abilities. Intelligence, 28, 115–120.CrossRefGoogle Scholar
  30. 30.
    Teasdale, T. W., & Owen, D. R. (1987). National secular trends in intelligence and education: A twenty-year cross-sectional study. Nature, 325, 119–121.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Medical Communications Consultants, LLCChapel HillUSA

Personalised recommendations