Advertisement

Boron and Boron Carbide Materials: Nanostructures and Crystalline Solids

  • Kah Chun Lau
  • Yoke Khin Yap
  • Ravindra Pandey
Chapter
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 6)

Abstract

Owing to the rapid developments related to the novel B x C y N z ternary structures, the pedagogical review chapter has several antecedents as new results have emerged. Specifically, we will focus on the B x C y (with x, y ;= ;0–1) hybrid material where the qualitative trend, in general, can be described by the ratio of its constituents. There is, however, a significant asymmetric popularity between the boron and carbon in the scientific literature. Carbon-based structures are well studied compared with boron-based structures. Consequently, understanding of the role played by boron in the formation of the B x C y hybrid structures remains somewhat incomplete. We, therefore, devote a substantial part of discussion on the boron-related structures with an aim to achieve the goal of a complete understanding of the physics and chemistry of the hybrid B x C y material.

Keywords

Boron Atom Boron Carbide Boron Cluster Elemental Boron Tubular Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W. Kohn, Rev. Mod. Phys. 71, S59 (1999).Google Scholar
  2. 2.
    Y.K. Yap, Boron-carbon nitride nanohybrids, In: H.S. Nalwa (Ed.) Encyclopedia of Nanoscience and Nanotechnology, 1, 383–394 (American Scientific, New York, 2004).Google Scholar
  3. 3.
    A.R. Badzian, T. Niemyski, S. Appenheimer, and E. Olkusnik, In: F.A. Claski (Ed.) Proceedings of the Third International Conference on Chemical Vapor Deposition (Edited by F.A. Claski), 747 (1972).Google Scholar
  4. 4.
    E.L. Muetterties (Ed.), The Chemistry of Boron and Its Compounds (John Wiley, New York, 1967).Google Scholar
  5. 5.
    E.L. Muetterties (Ed.), Boron Hydride Chemistry (Academic, New York, 1975).Google Scholar
  6. 6.
    L. Pauling, Nature of Chemical Bond and the Structure of Molecules and Crystals, 3rd Edition (Cornell University Press, Itacha, NY, 1960).Google Scholar
  7. 7.
    A. Quandt and I. Boustani, ChemPhysChem 6, 2001 (2005).Google Scholar
  8. 8.
    K.C. Buschbeck, Boron Compounds, Elemental Boron, and Boron Carbides, Gmelin Handbook of Inorganic Chemistry, Vol. 13 (Springer, Berlin, 1981).Google Scholar
  9. 9.
    D.W. Bullett, J. Phys. C Solid State Phys. 15, 415 (1982).Google Scholar
  10. 10.
    C. Mailhiot, J.B. Grant, and A.K. McMahan, Phys. Rev. B 42, 9033 (1990).Google Scholar
  11. 11.
    D. Li, Y. Xu, and W.Y. Ching, Phys. Rev. B 45, 5895 (1992).Google Scholar
  12. 12.
    N. Vast, S. Baroni, G. Zerah, J.M. Besson, A. Polian, J.C. Chervin, and T. Grimsditch, Phys. Rev. Lett. 78, 693 (1997).Google Scholar
  13. 13.
    M. Fujimori, T. Tanaka, T. Nakayama, E. Nishibori, K. Kimura, M. Takata, and M. Sakata, Phy. Rev. Lett. 82, 4452 (1999).Google Scholar
  14. 14.
    J. Zhao and J.P. Lu, Phys. Rev. B 66, 092101 (2002).Google Scholar
  15. 15.
    U. Häussermann, S.I. Simak, R. Ahuja, and B. Johansson, Phys. Rev. Lett 90, 065701 (2003).Google Scholar
  16. 16.
    A. Masago, K. Shirai, and H. Katayama-Yoshida, Phys. Rev. B 73, 104102 (2006).Google Scholar
  17. 17.
    R.J. Nelmes, J.S. Loveday, D.R. Allan, J.M. Besson, G. Hamel, P. Grima, and S. Hull, Phys. Rev. B 47, 7668 (1993).Google Scholar
  18. 18.
    J.C. Thompson and W.J. McDonald, Phys. Rev. 132, 82 (1963).Google Scholar
  19. 19.
    D.N. Sanz, P. Loubeyre, and M. Mezouar, Phys. Rev. Lett. 89, 245501 (2002).Google Scholar
  20. 20.
    D.A. Young, Phase Diagrams of the Elements (University of California Press, Berkeley, CA, 1991).Google Scholar
  21. 21.
    R. Kawai and J.H. Weare, J. Chem. Phys. 95, 1151 (1991).Google Scholar
  22. 22.
    R. Kawai and J.H. Weare, Chem. Phys. Lett. 191, 311 (1992).Google Scholar
  23. 23.
    H.C. Longuet-HigginsM. de. V. Roberts, Proc. R. Soc. Lond. Ser. A A224, 336 (1955).Google Scholar
  24. 24.
    H.C. Longuet-Higgins, Q. Rev. Chem. Soc. 11, 121 (1957).Google Scholar
  25. 25.
    K.C. Lau and R. Pandey, J. Phys. Chem. C, 111, 2906 (2007).Google Scholar
  26. 26.
    M.I. Eremets, V.V. Struzhkin, H.K. Mao, and R.J. Hemley, Science 293, 272 (2001).Google Scholar
  27. 27.
    T.H. Geballe, Science 293, 223 (2001).Google Scholar
  28. 28.
    D.A. Papaconstantopoulos and M.J. Mehl, Phys. Rev. B 65, 172510 (2002).Google Scholar
  29. 29.
    W.N. Lipscomb, Boron Hydrides (Benjamin, New York, 1963).Google Scholar
  30. 30.
    W.N. Lipscomb, J. Less Common Met. 82, 1 (1981).Google Scholar
  31. 31.
    E.D. Jemmis, M.M. Balakrishnarajan, and P.D. Pancharatna, J. Am. Chem. Soc. 123, 4313 (2001).Google Scholar
  32. 32.
    E.D. Jemmis, M.M. Balakrishnarajan, and P.D. Pancharatna, Chem. Rev. 102, 93 (2002).Google Scholar
  33. 33.
    E.D. Jemmis and E.G. Jayasree, Acc. Chem. Res. 36, 816 (2003).Google Scholar
  34. 34.
    L. Hanley and S.L. Anderson, J. Phys. Chem. 91, 5161 (1987).Google Scholar
  35. 35.
    L. Hanley, J.L. Whittena, and S.L. Anderson, J. Phys. Chem. 92, 5803 (1988).Google Scholar
  36. 36.
    S.J. La Placa, P.A. Roland, and J.J. Wynne, Chem. Phys. Lett. 190, 163 (1992).Google Scholar
  37. 37.
    P.A. Hintz, M.B. Sowa, S.A. Ruatta, and S.L. Anderson, J. Chem. Phys. 94, 6446 (1991).Google Scholar
  38. 38.
    R. Kawai and J.H. Weare, J. Chem. Phys. 95, 1151 (1991).Google Scholar
  39. 39.
    R. Kawai and J.H. Weare, Chem. Phys. Lett. 191, 311 (1992).Google Scholar
  40. 40.
    M.B. Sowa, A.L. Snolanoff, A. Lapicki, and S.L. Anderson, J. Chem. Phys. 106, 9511 (1997).Google Scholar
  41. 41.
    H.J. Zhai, B. Kiran, J. Li, and L.S. Wang, Nat. Mater. 2, 827 (2003).Google Scholar
  42. 42.
    B. Kiran, S. Bulusu, H. Zhai, S. Yoo, X.C. Zeng, and L.S. Wang, Proc. Natl Acad. Sci. USA 102, 961 (2005).Google Scholar
  43. 43.
    C.J. Otten, O.R. Lourie, M. Yu, J.M. Cowley, M.J. Dyer, R.S. Ruoff, and W.E. Buhro, J. Am. Chem. Soc. 124, 4564 (2002).Google Scholar
  44. 44.
    T.T. Xu, J. Zheng, N. Wu, A.W. Nichollas, J.R. Roth, D.A. Dikin, and R.S. Ruoff, Nano Lett. 4, 963 (2004).Google Scholar
  45. 45.
    D. Ciuparu, R.F. Klie, Y. Zhu, and L. Pfefferle, J. Phys. Chem. B 108, 3967 (2004).Google Scholar
  46. 46.
    I. Boustani, Phys. Rev. B 55, 16426 (1997).Google Scholar
  47. 47.
    I. Boustani and A. Quandt, Europhys. Lett. 39, 527 (1997).Google Scholar
  48. 48.
    K.C. Lau and R. Pandey, Comput. Lett. (Special Issue: Clusters: From a few atoms to nanoparticles) 1, 259 (2005).Google Scholar
  49. 49.
    N.G. Szwacki, A. Sadrzadeh, and B.I. Yakobson, Phys. Rev. Lett. 98, 166804 (2007).Google Scholar
  50. 50.
    A.K. Ray, I.A. Howard, and K.M. Kanal, Phys. Rev. B 45, 14247 (1992).Google Scholar
  51. 51.
    V. Bonacic-Koutecky, P. Fantucci, and J. Koutecky, Chem. Rev. 91, 1035 (1991).Google Scholar
  52. 52.
    H. Kato, K. Yamashita, and K. Morokuma, Chem. Phys. Lett. 190, 361 (1992).Google Scholar
  53. 53.
    I. Boustani, Int. J. Quant. Chem. 52, 1081 (1994).Google Scholar
  54. 54.
    I. Boustani, Chem. Phys. Lett. 240, 135 (1995).Google Scholar
  55. 55.
    A. Ricca and C.W. Bauschlicher, Chem. Phys. 208, 233 (1996).Google Scholar
  56. 56.
    F.L. Gu, X. Yang, A.C. Tang, H. Jiao, and P.V.R. Schleyer, J. Comput. Chem. 19, 203 (1998).Google Scholar
  57. 57.
    J.E. Fowler and J.M. Ugalde, J. Phys. Chem. A 104, 397 (2000).Google Scholar
  58. 58.
    H.J. Zhai, L.S. Wang, A.N. Alexandrova, A.I. Boldyrev, and V.G. Zakrzewski, J. Phys. Chem. A 107, 9313 (2003).Google Scholar
  59. 59.
    H.J. Zhai, L.S. Wang, A.N. Alexandrova, and A.I. Boldyrev, J. Chem. Phys. 117, 7917 (2002).Google Scholar
  60. 60.
    A.N. Alexandrova, A.I. Boldyrev, H.J. Zhai, L.S. Wang, E. Steiner, and P.W. Fowler, J. Phys. Chem. A 107, 1359 (2003).Google Scholar
  61. 61.
    A.N. Alexandrova, A.I. Boldyrev, H.J. Zhai, and L.S. Wang, J. Phys. Chem. A 108, 3509 (2004).Google Scholar
  62. 62.
    H.J. Zhai, A.N. Alexandrova, K.A. Birch, A.I. Boldyrev, and L.S. Wang, Angew. Chem. Int. Ed. 42, 6004 (2003).Google Scholar
  63. 63.
    J.E. Fowler and J.M. Ugalde, J. Phys. Chem. A 104, 397 (2000).Google Scholar
  64. 64.
    J. Aihara, J. Phys. Chem. A 105, 5486 (2001).Google Scholar
  65. 65.
    M.A.L. Marques and S. Botti, J. Chem. Phys. 123, 014310 (2005).Google Scholar
  66. 66.
    K.C. Lau, M.D. Deshpande, R. Pati, and R. Pandey, Int. J. Quant. Chem. 103, 866 (2005).Google Scholar
  67. 67.
    S. Chacko, D.G. Kanhere, and I. Boustani, Phys. Rev. B 68, 035414 (2003).Google Scholar
  68. 68.
    I. Boustani, A. Rubio, and J.A. Alonso, Chem. Phys. Lett. 311, 21 (1999).Google Scholar
  69. 69.
    I. Boustani, A. Quandt, and A. Rubio, J. Solid State Chem. 154, 269 (2000).Google Scholar
  70. 70.
    R.O. Jones and G. Seifert, Phys. Rev. Lett. 79, 443 (1997).Google Scholar
  71. 71.
    R.O. Jones, J. Chem. Phys. 110, 5189 (1999).Google Scholar
  72. 72.
    H. Prinzbach, A. Weiler, P. Landenberger, F. Wahl, J. Worth, L.T. Scott, M. Gelmont, D. Olevano, and B. Issendorff, Nature 407, 60 (2000).Google Scholar
  73. 73.
    N.G. Szwacki, Nanoscale Res. Lett. 3, 49 (2008).Google Scholar
  74. 74.
    M.H. Evans, J.D. Joannopoulos, and S.T. Pantelides, Phys. Rev. B 72, 045434 (2005).Google Scholar
  75. 75.
    I. Cabria, M.J. López, and J.A. Alonso, Nanotechnology 17, 778 (2006).Google Scholar
  76. 76.
    K.C. Lau and R. Pandey, J. Phys. Chem. B, 112, 10217 (2008).Google Scholar
  77. 77.
    J. Kunstmann and A. Quandt, Phys. Rev. B 74, 035413 (2006).Google Scholar
  78. 78.
    H. Tang and S. Ismail-Beigi, Phys. Rev. Lett. 99, 115501 (2007).Google Scholar
  79. 79.
    X. Yang, Y. Ding, and J. Ni, Phys. Rev. B 77, 041402(R) (2008).Google Scholar
  80. 80.
    K.C. Lau, R. Pati, A.C. Pineda, and R. Pandey, Chem. Phys. Lett. 418, 549 (2006).Google Scholar
  81. 81.
    K.C. Lau, R. Orlando, and R. Pandey, J. Phys. Condens. Matter 20, 125202 (2008).Google Scholar
  82. 82.
    K. Kirihara, Z. Wang, K. Kawaguchi, Y. Shimizu, T. Sasaki, N. Koshizaki, K. Soga, and K. Kimura, Appl. Phys. Lett. 86, 212101 (2005).Google Scholar
  83. 83.
    I. Boustani, A. Quandt, E. Hernández, and A. Rubio, J. Chem. Phys. 110,3176 (1999).Google Scholar
  84. 84.
    J. Kunstmann and A. Quandt, Chem. Phys. Lett. 402, 21 (2005).Google Scholar
  85. 85.
    D. Zhang, R. Zhu, and C. Liu, J. Mater. Chem. 16, 2429 (2006).Google Scholar
  86. 86.
    K.C. Lau, R. Pandey, R. Pati, and S.P. Karna, Appl. Phys. Lett. 88, 212111 (2006).Google Scholar
  87. 87.
    S. Reich, C. Thomsen, and P. Ordejon, Phys. Rev. B 65, 153407 (2002).Google Scholar
  88. 88.
    J. Tang, L. Qin, T. Sasaki, M. Yudasaka, A. Matsushita, and S. Iijima, Phys. Rev. Lett. 85, 1887 (2000).Google Scholar
  89. 89.
    C. Kittel, Introduction to Solid State Physics, 7th Edition (Wiley, New York, 1996).Google Scholar
  90. 90.
    R.B. Heimann, S.E. Evsyukov and Y. Kocack, Proc. Fifth London Int. Carbon Graphite Conf. 3, 104 (1979).Google Scholar
  91. 91.
    R. Saito, G. Dresselhaus, and M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 2003).Google Scholar
  92. 92.
    M.S. Dresselhaus, G. Dresselhaus, and P. Avouris (Eds.) Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Springer, Berlin, 2001).Google Scholar
  93. 93.
    F.P. Bundy and J.S. Kasper, J. Chem. Phys. 46, 3437 (1967).Google Scholar
  94. 94.
    T. Yagi, W. Utsumi, M. Yamakata, T. Kikegawa, and O. Shimomura, Phys. Rev. B 46, 6031 (1992).Google Scholar
  95. 95.
    H. Rydberg, M. Dion, N. Jacobson, E. Schröder, P. Hyldgaard, S.I. Simak, D.C. Langreth, and B.L. Lundqvist, Phys. Rev. Lett. 91, 126402 (2003).Google Scholar
  96. 96.
    K. Yoshizawa, T. Yumura, T. Yamabe, and S. Bandow, J. Am. Chem. Soc. 122, 11871 (2000).Google Scholar
  97. 97.
    M.S. Dresselhaus and G. Dresselhaus, Adv. Phys. 51, 1 (2002).Google Scholar
  98. 98.
    Y.P. Kudryavtsev, S.E. Evsyukov, M.B. Guseva, V.G. Babaev, and V.V. Khvostov, Russ. Chem. Bull. 42, 399 (1993).Google Scholar
  99. 99.
    B.V. Lebedev, Russ. Chem. Bull. 49, 965 (2000).Google Scholar
  100. 100.
    C.X. Shi and J. Ke (Eds.) Structure and Properties of Ceramics, Materials Science and Technology, Vol. 11 (Science Press, Beijing, 1998).Google Scholar
  101. 101.
    G.V. Tsagareishvili and F.N. Tavatze, Prog. Cryst. Growth Char. 16, 341 (1988).Google Scholar
  102. 102.
    H.T. Hall and L.A. Compton, Inorg. Chem. 4, 1213 (1965).Google Scholar
  103. 103.
    S. Han, J. Ihm, S.G. Louie, and M.L. Cohen, Phys. Rev. Lett. 80, 997 (1998).Google Scholar
  104. 104.
    K.L. Saenger, Angular distribution of ablated material, In: D.B. Chrisey and G.K. Hubler (Eds.) Pulsed Laser Deposition of Thin Films (Wiley, New York, 1994).Google Scholar
  105. 105.
    F. Kokai, M. Taniwaki, T. Takahashi, A. Goto, M. Ishihara, K. Yamamoto, and Y. Koga, Diamond Relat. Mater. 10, 1412 (2001).Google Scholar
  106. 106.
    B. Wei, R. Vajtai, Y.J. Jung, F. Banhart, G. Ramanath, and P.M. Ajayan, J. Phys. Chem. B 106, 5807 (2002).Google Scholar
  107. 107.
    R. Lazzari, N. Vast, J.M. Besson, S. Baroni, and A.D. Corso, Phys. Rev. Lett. 83, 3230 (1999).Google Scholar
  108. 108.
    J. Donohue, The Structure of the Elements (Wiley, New York, 1974).Google Scholar
  109. 109.
    H.L. Yakel, Acta Crystallogr. B 31, 1797 (1975).Google Scholar
  110. 110.
    F. Mauri et al, Phys. Rev. Lett. 87, 085506 (2001).Google Scholar
  111. 111.
    Y. Feng et al, Phys. Rev. B 69, 125402 (2004).Google Scholar
  112. 112.
    P. Lunca-Popa et al, J. Phys. D 38, 1248 (2005).Google Scholar
  113. 113.
    G. Fanchini, J.W. McCauley, and M. Chhowalla, Phys. Rev. Lett. 97, 035502 (2006).Google Scholar
  114. 114.
    T.M. Duncan, J. Am. Chem. Soc. 106, 2270 (1984).Google Scholar
  115. 115.
    D.M. Bylander et al, Phys. Rev. B 42, 1394 (1990).Google Scholar
  116. 116.
    X.Q. Yan, W.J. Li, T. Goto, and M.W. Chen, Appl. Phys. Lett. 88, 131905 (2006).Google Scholar
  117. 117.
    D. Ghosh, G. Subhash, C.H. Lee, and Y.K. Yap, Appl. Phys. Lett. 91, 061910 (2007).Google Scholar
  118. 118.
    R.M. Chrenko, Phys. Rev. B. 7, 4560 (1970).Google Scholar
  119. 119.
    R. Kalish, Diamond Relat. Mater. 10, 1749 (2001).Google Scholar
  120. 120.
    J.E. Butler, M.W. Geis, K.E. Krohn, J. LawlessJr., S. Deneault, T.M. Lyszczarz, D. Flechtner, and R. Wright, Semicond. Sci. Technol. 18, S67 (2003).Google Scholar
  121. 121.
    J. Robertson, Semicond. Sci. Technol. 18, S12 (2003).Google Scholar
  122. 122.
    K. Thonke, Semicond. Sci. Technol. 18, S20 (2003).Google Scholar
  123. 123.
    M. Werner, O. Dorsch, H.U. Baerwind, E. Obermeier, L. Haase, W. Seifert, A. Ringhandt, C. Johnston, S. Romani, H. Bishop, and R.P. Chalker, Appl. Phys. Lett. 64, 595 (1994).Google Scholar
  124. 124.
    E.A. Ekimov, V.A. Sidorov, E.D. Bauer, N.N. Mel’nik, N.J. Curro, J.D. Thompson, and S.M. Stishov, Nature 428, 542 (2004).Google Scholar
  125. 125.
    Y. Takano, M. Nagao, I. Sakaguchi, M. Tachiki, T. Hatano, K. Kobayashi, H. Umezawa, and H.H. Kawarada, Appl. Phys. Lett. 85, 2851 (2004).Google Scholar
  126. 126.
    Z.L. Wang, Q. Luo, L.W. Liu, C.Y. Li, H.X. Yang, H.F. Yang, J.J. Li, X.Y. Lu, Z.S. Jin, L. Lu, and C.Z. Gu, Diamond Relat. Mater. 15, 659 (2006).Google Scholar
  127. 127.
    L. Boeri, J. Kortus, and O.K. Anderson, Phys. Rev. Lett. 93, 237002 (2004).Google Scholar
  128. 128.
    K.W. Lee and W.E. Pickett, Phys. Rev. Lett. 93, 237003 (2004).Google Scholar
  129. 129.
    E. Bustrarret, J. Kacmarcik, C. Marcenat, E. Gheeraert, C. Cytemann, J. Marcus, and T. Klein, Phys. Rev. Lett. 93, 237005 (2004).Google Scholar
  130. 130.
    X. Blase, Ch. Adessi, and D. Connetable, Phys. Rev. Lett. 93, 237004 (2004).Google Scholar
  131. 131.
    H.J. Xiang, Z. Li, J. Yang, J.G. Hou, and Q. Zhu, Phys. Rev. B 70, 212504 (2004).Google Scholar
  132. 132.
    F. Giustino, J.R. Yates, I. Souza, M.L. Cohen, and S.G. Louie, Phys. Rev. Lett. 98, 047005 (2007).Google Scholar
  133. 133.
    K.M. Krishnan, Appl. Phys. Lett. 58, 1857 (1991).Google Scholar
  134. 134.
    D. Tomanek, R.M. Wentzcovitch, S.G. Louie, and M.L. Cohen, Phys. Rev. B 37, 3134 (1988).Google Scholar
  135. 135.
    Q. Wang, L. Chen, and J.F. Annett, Phys. Rev. B 54, R2271 (1996).Google Scholar
  136. 136.
    F.J. Ribeiro and M.L. Cohen, Phys. Rev. B 69, 212507 (2004).Google Scholar
  137. 137.
    J. Kouvetakis, R.B. Kaner, M.L. Sattler, and N. Bartlett, J. Chem. Soc. Chem. Commun. 1758 (1986).Google Scholar
  138. 138.
    H. Sun, F.J. Ribeiro, J. Li, D. Roundy, M.L. Cohen, and S.G. Louie, Phys. Rev. B 69, 024110 (2004).Google Scholar
  139. 139.
    U. Landman and W.D. Luedtke, Faraday Discuss. Chem. Soc. 125, 1 (2004).Google Scholar
  140. 140.
    H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, and R.E. Smalley, Nature 318, 162 (1985).Google Scholar
  141. 141.
    M.S. Dresselhaus, G. Dresselhaus, and P.C. Ecklund, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1996).Google Scholar
  142. 142.
    H.W. Kroto, J.E. Fischer, and D.E. Cox (Eds.) The Fullerenes (Pergamon, Oxford, 1993).Google Scholar
  143. 143.
    H.W. Kroto and D.R.M. Walton (Eds.), The Fullerenes, New Horizons for the Chemistry, Physics, and Astrophysics of Carbon (Cambridge University Press, Cambridge, 1993).Google Scholar
  144. 144.
    L. Forro and L. Mihaly, Rep. Prog. Phys. 64, 649 (2001).Google Scholar
  145. 145.
    S. Iijima, Nature 354, 56 (1991).Google Scholar
  146. 146.
    J.J.L. Morton, A.M. Tyryshkin, A. Ardavan, K. Porfyrakis, S.A. Lyon, and G.A.D. Briggs, Nat. Phys. 2, 40 (2006).Google Scholar
  147. 147.
    S.C. Benjamin, A. Ardavan, G.A.D. Briggs, D.A. Britz, D. Gunlycke, J. Jefferson, M.A.G. Jones, D.F. Leigh, B.W. Lovett, A.N. Khlobystov, S.A. Lyon, J.J.L. Morton, K. Porfyrakis, M.R. Sambrook, and A.M. Tyryshkin, J. Phys. Condens. Matter. 18, S867 (2006).Google Scholar
  148. 148.
    S.J. Tan, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, and C. Dekker, Nature 386, 474 (1997).Google Scholar
  149. 149.
    M. Bockrath, D.H. Cobden, P.L. McEuen, N.G. Nasreen, G. Chopra, A. Zettl, A. Thess, and R.E. Smalley, Science 275, 1992 (1997).Google Scholar
  150. 150.
    K. Tsukagoshi, B.W. Alphenaar, and H. Ago, Nature 401, 572 (1999).Google Scholar
  151. 151.
    Z. Yao, H.W.Ch. Postma, L. Balents, and C. Dekker, Nature 402, 273 (1999).Google Scholar
  152. 152.
    R.D. Antonov and A.T. Johnson, Phys. Rev. Lett. 83, 3274 (1999).Google Scholar
  153. 153.
    S.J. Tan, A.R.M. Verschueren, and C. Dekker, Nature 393, 49 (1998).Google Scholar
  154. 154.
    A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).Google Scholar
  155. 155.
    M.I. Katsnelson and K.S. Novoselov, Solid State Commun. 143, 3 (2007).Google Scholar
  156. 156.
    M.S. Dresselhaus and G. Dresselhaus, Adv. Phys. 51, 1 (2002).Google Scholar
  157. 157.
    M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, and M. Ohba, Carbon 42, 2929 (2004).Google Scholar
  158. 158.
    M.F. Yu, O. Lourie, K. Moloni, T.F. Kelly, and R.S. Ruoff, Science 287, 637 (2000).Google Scholar
  159. 159.
    S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Nature 442, 282 (2006).Google Scholar
  160. 160.
    T. Guo, C. Jin, and R.E. Smalley, J. Phys. Chem. 95, 4948 (1991).Google Scholar
  161. 161.
    R. Yu, M. Zhan, D. Cheng, S. Yang, Z. Liu, and L. Zheng, J. Phys. Chem. 99, 1818 (1995).Google Scholar
  162. 162.
    J.C. Hummelen, B. Knight, J. Pavlovich, R. Gonzalez, and F. Wudl, Science, 269, 1554 (1995).Google Scholar
  163. 163.
    T. Kimura, T. Sugai, and H. Shinohara, Chem. Phys. Lett. 256, 269 (1996).Google Scholar
  164. 164.
    D. Golberg, Y. Bando, K. Kurashima, and T. Sasaki, 72, 2108 (1998).Google Scholar
  165. 165.
    Y.J. Zou, X.W. Zhang, Y.L. Li, B. Wang, H. Yan, J.Z. Cui, L.M. Liu, and D.A. Da, J. Mater. Sci. 37, 1043 (2002).Google Scholar
  166. 166.
    D.N. Mcllroy, D. Zhang, Y. Kranov, H. Han, A. Alkhateeb, and M.G. Norton, Mater. Res. Soc. Symp. Proc. 739, H5.2 (2003).Google Scholar
  167. 167.
    D.N. Mcllroy, D. Zhang, R.M. Cohen, J. Wharton, Y. Geng, M.G. Norton, G. De Stasio, B. Gilbert, L. Perfetti, J.H. Streiff, B. Broocks, and J.L. McHale, Phys. Rev. B 60, 4874 (1999).Google Scholar
  168. 168.
    H.J. Dai, E.W. Wong, Y.Z. Lu, S.S. Fan, and C.M. Lieber, Nature 375, 769 (1995).Google Scholar
  169. 169.
    J. Wei, B. Jiang, Y. Li, C. Xu, D. Wu, and B. Wei, J. Mater. Chem. 12, 3121 (2002).Google Scholar
  170. 170.
    B.C. Satishkumar, A. Govindraraj, K.R. Harikumar, J.P. Zhang, A.K. Cheetham, and C.N.R. Rao, Chem. Phys. Lett. 300, 473 (1999).Google Scholar
  171. 171.
    W.Q. Han, Y. Bando, K. Kurashima, and T. Sato, Chem. Phys. Lett. 299, 368 (1999).Google Scholar
  172. 172.
    D.L. Carroll, Ph. Redlich, X. Blase, J.C. Charlier, S. Curran, P.M. Ajayan, S. Roth, and M. Rühle, Phys. Rev. Lett. 81, 2332 (1998).Google Scholar
  173. 173.
    B.Q. Wei, R. Spolenak, P. Redlich, M. Ruhle, and E. Arzt, Appl. Phys. Lett. 74, 3149 (1999).Google Scholar
  174. 174.
    O. Ponomarenko, M.W. Radny, and P.V. Smith, Phys. Rev. B 74, 125421 (2006).Google Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  • Kah Chun Lau
    • 1
  • Yoke Khin Yap
    • 1
  • Ravindra Pandey
    • 1
  1. 1.Department of PhysicsMichigan Technological UniversityHoughtonUSA

Personalised recommendations