Properties and Applications of Doped Carbon Nanotubes

Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 6)


Carbon nanotubes are very stable systems having a considerable chemical inertness due to the strong sp 2 hybridized covalent carbon bonds on their surface. However, various applications of carbon nanotubes require their doping or ­chemical modification through the addition of atoms and/or molecules (covalently or ­noncovalently) in order to alter their physicochemical properties. In this chapter we review the importance of different types of doping in carbon nanotubes (single, double, and multiwalled). Regarding the location of the dopant species within the nanotubes, it is possible to classify the doping process as being exohedral ­(intercalation), endohedral (filling), and in-plane (replacing carbon atoms). The effects of doping on the electronic, vibrational, chemical, magnetic, and mechanical properties are discussed by analyzing the experimental results obtained with different spectroscopic techni­ques such as resonant Raman, X-ray photoelectron (XP), electron energy loss, and others. Applications of doped-carbon nanotubes are also summarized.


Carbon Nanotubes Atomic Transfer Radical Polymerization Atomic Transfer Radical Polymerization Electron Energy Loss Spectroscopy Radial Breathing Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are indebted to P.M. Ajayan, J.C. Charlier, A. Jorio, V. Meunier, B.G. Sumpter, A.M. Rao, M.S. Dresselhaus, M. Endo, R. Saito, T. Hayashi. Y.A. Kim, H. Muramatsu, H. Terrones, F. López-Urías, E. Muñoz-Sandoval, E. Cruz-Silva, J.M. Romo-Herrera, J.A. Rodríguez-Manzo, A. Zamudio, X. Blase, D. Golberg, R. Kamalakaran, N. Grobert, Ph. Redlich, D.L. Carroll, R. Czerw, A.K. Cheetham, M. Rühle, Y. Bando, K. McGuire, P.L. Gai, A.L. Elías, J.P. Laclette, J.C. Carrero-Sánchez, B. Fragneaud, M. De Honor, A. González-Montiel, J.Y. Cavallié, Karine Masenelli-Varlot, F. Villalpando-Páez, P. Corio, S.B. Fagan, J. Mendes Filho, and L. Noyola-Cherpitel for stimulating discussions and valuable assistance in some of the works reviewed here. MT is grateful to CONACYT-México [45772 (MT), 41464-Inter American Collaboration (MT), 2004-01-013/SALUD-CONACYT (MT), PUE-2004-CO2-9 Fondo Mixto de Puebla (MT), and the MIT-CONACYT collaboration project] for financial support. AGSF acknowledges the support from Brazilian agencies FUNCAP (grant 985/03), CNPq (grants 556549/2005-8, 475329/2006-6, 307417/2004-2), Rede Nacional de Pesquisa em Nanotubos de Carbono, Rede Nacional de Nanobiotecnologia e sistemas nanoestruturados, Instituto do Milênio de Nanotecnologia, and Instituto do Milênio de Materiais Complexos (CNPq/MCT-Brazil) Finally, AGSF and MT acknowledge the bilateral CNPq-CONACYT cooperation funding under grants CNPq 490283/2007-1 and CONACYT entitled “Synthesis and characterization of doped carbon nanotubes: experiments and theory”.


  1. 1.
    M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund: Science of Fullerenes and Carbon Nanotubes (Academic, New York 1996)Google Scholar
  2. 2.
    M. Terrones: Science and technology of the XXI century: synthesis, properties and applications of carbon nanotubes, Ann. Rev. Mater. Res. 33, 419 (2003)Google Scholar
  3. 3.
    M. R. Pederson, J. Q. Broughton: Nanocapillarity in fullerene tubules, Phys. Rev. Lett. 69, 2689 (1992)Google Scholar
  4. 4.
    P. M. Ajayan, T. W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, H. Hiura: Opening carbon nanotubes with oxygen and implications for filling, Nature 362, 522 (1993)Google Scholar
  5. 5.
    M. Terrones, N. Grobert, W. K. Hsu, Y. Q. Zhu, W. B. Hu, H. Terrones, J. P. Hare, H. W. Kroto, D. R. M. Walton: Advances in the creation of filled nanotubes and novel nanowires, Mater. Res. Soc. Bull. 24, 43 (1999)Google Scholar
  6. 6.
    J. Sloan, M. Terrones, S. Nufer, S. Friedrichs, S. R. Bailey, H. G. Woo, M. Ruhle, J. L. Hutchison, M. L. H. Green: Metastable one-dimensional AgCl1−xIx solid-solution wurzite “tunnel” crystals formed within single-walled carbon nanotubes, J. Am. Chem. Soc. 124, 2116 (2002)Google Scholar
  7. 7.
    M. Monthioux: Filling single-wall carbon nanotubes, Carbon 40, 1809 (2002)Google Scholar
  8. 8.
    D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato: Chemistry of carbon nanotubes, Chem. Rev. 106, 1105 (2006)Google Scholar
  9. 9.
    Z. Y. Wang, Z. B. Zhao, J. S. Qiu: Development of filling carbon nanotubes, Prog. Chem. 18, 563 (2006)Google Scholar
  10. 10.
    S. Iijima, T. Ichihashi: Single-shell carbon nanotubes of 1nm diameter, Nature 363, 603 (1993)Google Scholar
  11. 11.
    D. S. Bethune, C. H. Kiang, M. S. De Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers: Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls, Nature 363, 605 (1993)Google Scholar
  12. 12.
    B. W. Smith, M. Monthioux, D. E. Luzzi: Encapsulated C60 in carbon nanotubes, Nature 296, 323 (1998)Google Scholar
  13. 13.
    J. Sloan, J. Hammer, M. Z. Sibley, M. L. H. Green: The opening and filling of single walled carbon nanotubes (SWTs), Chem. Commun. 3, 347 (1998)Google Scholar
  14. 14.
    C. H. Kiang, J. S. Choi, T. T. Tran, A. D. Bacher: Molecular nanowires of 1 nm diameter from capillary filling of single-walled carbon nanotubes, J. Phys. Chem. B 103, 7449 (1999)Google Scholar
  15. 15.
    P. Corio, A. P. Santos, M. L. A. Temperini, V. W. Brar, M. A. Pimenta, and M. S. Dresselhaus: Characterization of single wall carbon nanotubes filled with silver and with chromium compounds, Chem. Phys. Lett. 383, 475 (2004)Google Scholar
  16. 16.
    A. Govindaraj, B. C. Satishkumar, M. Nath, C. N. R. Rao: Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles, Chem. Mater. 12, 205 (2000)Google Scholar
  17. 17.
    J. Sloan, D. M. Wright, H. G. Woo, S. R. Bailey, G. Brown, A. P. E. York, K. S. Coleman, J. L. Hutchison, M. L. H. Green: Capillarity and silver nanowire formation observed in single walled carbon nanotubes, Chem. Commun. 700, 699 (1999)Google Scholar
  18. 18.
    R. R. Meyer, J. Sloan, R. E. Dunin-Borkowski, A. Kirkland, M. C. Novotny, S. R. Bailey, J. L. Hutchison, M. L. H. Green: Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes, Science 289, 1324–1326 (2000)Google Scholar
  19. 19.
    D. E. Luzzi, B. W. Smith: Carbon cage structures in single wall carbon nanotubes: A new class of materials, Carbon 38, 1751 (2000)Google Scholar
  20. 20.
    E. Hernández, V. Meunier, B. W. Smith, R. Rurali, H. Terrones, Buongiorno, N. Nardelli, M. Terrones, D. E. Luzzi, J. C. Charlier: Fullerene coalescence in nanopeapods: A path to novel tubular carbon, Nano Lett. 3, 1037 (2003)Google Scholar
  21. 21.
    K. Hirahara, K. Suenaga, S. Bandow, H. Kato, T. Okazaki, H. Shinohara, S. Iijima: One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys. Rev. Lett. 85, 5384 (2000)Google Scholar
  22. 22.
    M. S. Dresselhaus, G. Dresselhaus: Intercalation compounds of graphite, Adv. Phys. 30, 139 (1981)Google Scholar
  23. 23.
    A. M. Rao, P. C. Eklund, S. Bandow, A. Thess, R. E. Smalley: Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering, Nature 388, 257 (1997)Google Scholar
  24. 24.
    A. G. Souza Filho, M. Endo, H. Muramatsu, T. Hayashi, Y. A. Kim, E. B. Barros, N. Akuzawa, G. G. Samsonidze, R. Saito, M. S. Dresselhaus: Resonance Raman scattering studies in Br-2-adsorbed double-wall carbon nanotubes, Phys. Rev. B 73, 235413 (2006)Google Scholar
  25. 25.
    M. V. Veloso, A. G. Souza Filho, J. Mendes Filho, S. B. Fagan, R. Mota: Ab initio study of covalently functionalized carbon nanotubes, Chem. Phys. Lett. 430, 71 (2006)Google Scholar
  26. 26.
    T. Ramanathan, F. T. Fischer, R. S. Ruo, L. C. Brinson: Amino-functionalized carbon nanotubes for binding to polymers and biological systems, Chem. Mater. 17, 1290 (2005)Google Scholar
  27. 27.
    S. Kazaoui, N. Minami, R. Jacquemin, H. Kataura, Y. Achiba: Amphoteric doping of single-wall carbon-nanotube thin films as probed by optical absorption spectroscopy, Phys. Rev. B 60, 13339 (1999)Google Scholar
  28. 28.
    C. E. Lowell: Solid solution of boron in graphite, J. Am. Ceram. Soc. 50, 142 (1966)Google Scholar
  29. 29.
    C. T. Hach, L. E. Jones, C. Crossland, P. A: Thrower: An investigation of vapor deposited boron rich carbon - A novel graphite-like material, Part 1: The structure of BCx (C6B) thin films, Carbon 37, 221 (1999)Google Scholar
  30. 30.
    A. Oya, R. Yamashita, S. Otani: Catalytic graphitization of carbons by borons, Fuel 58, 495 (1979)Google Scholar
  31. 31.
    M. Endo, T. Hayashi, S. H. Hong, T. Enoki, M. S. Dresselhaus: Scanning tunneling microscope study of boron-doped highly oriented pyrolytic graphite, J. Appl. Phys. 90, 5670 (2001)Google Scholar
  32. 32.
    M. Endo, C. Kim, T. Karaki, Y. Nishimura, M. J. Matthews, S. D. M. Brown, M. S. Dresselhaus: Anode performance of a Li ion battery based on graphitized and B-doped milled mesophase pitch-based carbon fibers, Carbon 37, 561 (1999)Google Scholar
  33. 33.
    A. Marchand, J. V. Zanchetta: Proprietes electroniques d’un carbone dope a l’azote, Carbon 3, 483 (1966)Google Scholar
  34. 34.
    K. Takeya, K. Yazawa: Unusual galvanomagnetic properties of pyrolytic graphite, J. Phys. Soc. Jpn 19, 138 (1964)Google Scholar
  35. 35.
    K. Takeya, K. Yazawa, N. Okuyama, H. Akutsu: Evidence for existence of extremely light carriers in pyrolytic carbons, Phys. Rev. Lett. 15, 111 (1965)Google Scholar
  36. 36.
    T. Belz, A. Baue, J. Find, M. Günter, D. Herein, H Möckel, N. Pfänder, H. Sauer, G. Schulz, J. Schütze, O. Timpe, U. Wild, R. Schlögi: Structural and chemical characterization of N-doped nanocarbons, Carbon 36, 731 (1998)Google Scholar
  37. 37.
    M. Terrones, N. Grobert, H. Terrones: Synthetic routes to nanoscale BxCyNz architectures, Carbon 40, 1665 (2002)Google Scholar
  38. 38.
    S. Latil, S. Roche, D. Mayou, J.-C. Charlier: Mesoscopic transport in chemically doped carbon nanotubes, Phys. Rev. Lett. 92, 256805 (2004)Google Scholar
  39. 39.
    S. Azevedo, R. de Paiva: Structural stability and electronic properties of carbon-boron nitride compounds, Europhys. Lett. 75, 126 (2006)Google Scholar
  40. 40.
    E. Hernández, C. Goze, P. Bernier, A. Rubio: Elastic properties of C and BxCyNz composite nanotubes, Phys. Rev. Lett. 80, 4502 (1999)Google Scholar
  41. 41.
    E. Hernández, C. Goze, P. Bernier, A. Rubio: Elastic properties of single-wall nanotubes, Appl. Phys. A. Mater Sci. Process. 68, 287 (1999)Google Scholar
  42. 42.
    R. P. Gao, Z. L. Wang, Z. G. Bai, W. A. de Heer, L. M. Dai, M. Gao: Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays, Phys. Rev. Lett. 85, 622 (2000)Google Scholar
  43. 43.
    E. Cruz-Silva, D. A. Cullen, L. Gu, J. M. Romo-Herrera, E. Munoz-Sandoval, F. Lopez-Urias, B. G. Sumpter, V. Meunier, J. C. Charlier, D. J. Smith, H. Terrones, M. Terrones: Heterodoped Nanotubes: Theory, synthesis, and characterization of phosphorus-nitrogen doped multiwalled carbon nanotubes, ACS Nano 2, 441 (2008)Google Scholar
  44. 44.
    O. Stephan, P. M. Ajayan, C. Colliex, P. Redlich, J. M. Lambert, P. Bernier, P. Lefin: Doping graphitic and carbon nanotube structures with boron and nitrogen, Science 266, 1683 (1994)Google Scholar
  45. 45.
    P. Redlich, L. Loeffler, P. M. Ajayan, J. Bill, F. Aldinger, M. Ruhle: B–C–N nanotubes and boron doping of carbon nanotubes, Chem. Phys. Lett. 260, 465 (1996)Google Scholar
  46. 46.
    M. Terrones, W. K. Hsu, S. Ramos, R. Castillo, H. Terrones: The role of boron nitride in graphite plasma arcs, Fullerene Sci. Technol. 6, 787 (1998)Google Scholar
  47. 47.
    W. K. Hsu, M. Terrones: Unpublished resultsGoogle Scholar
  48. 48.
    M. Glerup, J. Steinmetz, D. Samaille, O. Stephan, S. Enouz, A. Loiseau, S. Roth, P. Bernier: Synthesis of N-doped SWNT using the arc-discharge procedure, Chem. Phys. Lett. 387, 193 (2004)Google Scholar
  49. 49.
    Y. Zhang, H. Gu, K. Suenaga, S. Iijima: Heterogeneous growth of B–C–N nanotubes by laser ablation, Chem. Phys. Lett. 279, 264 (1997)Google Scholar
  50. 50.
    P.L. Gai, O. Stephan, K. McGuire, A. M. Rao, M. S. Dresselhaus, G. Dresselhaus, C. Colliex: Structural systematics in boron-doped single wall carbon nanotubes, J. Mater. Chem. 14, 669 (2004)Google Scholar
  51. 51.
    M. Terrones, N. Grobert, J. Olivares, J. P. Zhang, H. Terrones, K. Kordatos, W. K. Hsu, J. P. Hare, P. D. Townsend, K. Prassides, A. K. Cheetham, H. W. Kroto, D. R. M. Walton: Controlled production of aligned-nanotube bundles, Nature 388, 52 (1997)Google Scholar
  52. 52.
    M. Terrones, P. Redlich, N. Grobert, S. Trasobares, W. K. Hsu, H. Terrones,Y. Q. Zhu, J. P. Hare, C. L. Reeves, A. K. Cheetham, M. Ruhle, H. W. Kroto, D. R. M. Walton: Carbon nitride nanocomposites: Formation of aligned CxNy nanofibers, Adv. Mater. 11, 655 (1999)Google Scholar
  53. 53.
    R. Sen, B. C. Satishkumar, S. Govindaraj, K. R. Harikumar, M. K. Renganathan, C. N. R. Rao: Nitrogen-containing carbon nanotubes, J. Mater. Chem. 7, 2335 (1997)Google Scholar
  54. 54.
    G. Keskar, R. Rao, J. Luo, J. Hudson, A. M. Rao: Growth, nitrogen doping and characterization of isolated single-wall carbon nanotubes using liquid precursors, Chem. Phys. Lett. 412, 269 (2005)Google Scholar
  55. 55.
    F. Villalpando-Paez, A. Zamudio, A. L. Elias, H. Son, E. B. Barros, S. Chou, Y. A. Kim, H. Muramatsu, T. Hayashi, J. Kong, H. Terrones, G. Dresselhaus, M. Endo, M. Terrones, M. S. Dresselhaus: Synthesis and characterization of long strands of nitrogen-doped single-walled carbon nanotubes, Chem. Phys. Lett. 424, 345 (2006)Google Scholar
  56. 56.
    B.G. Sumpter, V. Meunier, J. M. Romo-Herrera, E. Cruz-Silva, D. A. Cullen, H. Terrones, D. J. Smith, M. Terrones: Nitrogen-mediated carbon nanotube growth: Diameter reduction, metallicity, bundle dispersability, and bamboo-like structure formation, ACS Nano 1, 369 (2007)Google Scholar
  57. 57.
    M. Pinault, M. Mayne-L’Hermite, C. Reynaud, V. Pichot, P. Launois, D. Ballutadud: Growth of multiwalled carbon nanotubes during the initial stages of aerosol-assisted CCVD, Carbon 43, 2968 (2005)Google Scholar
  58. 58.
    R. Kamalakaran, M. Terrones, T. Seeger, Ph. Kohler-Redlich, M. Rühle, Y. A. Kim, T. Hayashi, M. Endo: Synthesis of thick and crystalline nanotube arrays by spray pyrolysis, Appl. Phys. Lett. 77, 3385–3387 (2000)Google Scholar
  59. 59.
    E. G. Wang, Z. G. Guo, J. Ma, M. M. Zhou, Y. K. Pu, S. Liu, G. Y. Zhang, D. Y. Zhong: Optical emission spectroscopy study of the influence of nitrogen on carbon nanotube growth, Carbon 41, 1827 (2003)Google Scholar
  60. 60.
    K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, D. Pribat: Uniform patterned growth of carbon nanotubes without surface carbon, Appl. Phys. Lett. 79, 1534 (2001)Google Scholar
  61. 61.
    K. B. K. Teo, D. B. Hash, R. G. Lacerda, N. L. Rupesinghe, M. S. Bell, S. H. Dalal, D. Bose, T. R. Govindan, B. A. Cruden, M. Chhowalla, G. A. J. Amaratunga, J. M. Meyyappan, W. I. Milne: The significance of plasma heating in carbon nanotube and nanofiber growth, Nano Lett. 4, 921 (2004)Google Scholar
  62. 62.
    J. Yu, X. D. Bai, J. Ahn, S. F. Yoon, E. G. Wang: Highly oriented rich boron B–C–N nanotubes by bias-assisted hot filament chemical vapor deposition, Chem. Phys. Lett. 323, 529 (2000)Google Scholar
  63. 63.
    D. Golberg, Y. Bando, L. Bourgeois, K. Kurashima, T. Sato: Large-scale synthesis and HRTEM analysis of single-walled B- and N-doped carbon nanotube bundles, Carbon 38, 2017 (2000)Google Scholar
  64. 64.
    E. Borowiak-Palen, T. Pichler, G. G. Fuentes, A. Graff, R. J. Kalenczuk, M. Knupfer, J. Fink: Efficient production of B-substituted single-wall carbon nanotubes, Chem. Phys. Lett. 378, 516 (2003)Google Scholar
  65. 65.
    M. Endo, H. Muramatsu, T. Hayashi, Y. A. Kim, G. Van Lier, J. C. Charlier, H. Terrones, M. Terrones, M. S. Dresselhaus: Atomic nanotube welders: Boron interstitials triggering connections in double-walled carbon nanotubes, Nano Lett. 5, 1099 (2005)Google Scholar
  66. 66.
    K. Koziol, M. S. Shaffer, A. H. Windle: Three-dimensional internal order in multiwalled carbon nanotubes grown by chemical vapor deposition, Adv. Mater. 17, 760 (2005)Google Scholar
  67. 67.
    C. Ducati, K. Koziol, S. Friedrichs, T. J. V. Yates, M. S. Shaffer, P. A. Midgkey, A. H. Windle: Crystallographic order in multi-walled carbon nanotubes synthesized in the presence of nitrogen, Small 2, 774 (2006)Google Scholar
  68. 68.
    Ph. Kohler-Redlich and M. Terrones, Unpublished resultsGoogle Scholar
  69. 69.
    X. Blase, J.-C. Charlier, A. De Vita, R. Car, Ph. Redlich, M. Terrones, W. K. Hsu, H. Terrones, D. L. Carroll, P. M. Ajayan: Boron-mediated growth of long helicity-selected carbon nanotubes, Phys. Rev. Lett. 83, 5078 (1999)Google Scholar
  70. 70.
    W. K. Hsu, S. Firth, P. Redlich, M. Terrones, H. Terrones, Y. Q, Zhu, N. Grobert, A. Schilder, R. J. H. Clark, H. W. Kroto, D. R. M. Walton: Boron doping effects in carbon nanotubes, J. Mater. Chem. 10, 1425 (2000)Google Scholar
  71. 71.
    E. Hernández, P. Ordejón, I. Boustani, A. Rubio, J. A. Alonso: Tight binding molecular dynamics stuides of boron assisted nanotube growth, J. Chem. Phys. 113, 3814 (2000)Google Scholar
  72. 72.
    K. McGuire, N. Gothard, P. L. Gai, M. S. Dresselhaus, G. Sumanasekera, A. M. Rao: Synthesis and Raman characterization of boron-doped single-walled carbon nanotubes, Carbon 43, 219 (2005)Google Scholar
  73. 73.
    M. Terrones, W. K. Hsu, A. Schilder, H. Terrones, N. Grobert, J. P. Hare, Y. Q. Zhu, M. Schwoerer, K. Prassides, H. W. Kroto, D. R. M. Walton: Novel nanotubes and encapsulated nanowires, Appl. Phys. A Mater. Sci. Process 66, 307 (1998)Google Scholar
  74. 74.
    D. L. Carroll, P. Redlich, X. Blase, J. C. Charlier, S. Curran, P. M. Ajayan, S. Roth, M. Ruhle: Effects of nanodomain formation on the electronic structure of doped carbon nanotubes, Phys. Rev. Lett. 81, 2332 (1998)Google Scholar
  75. 75.
    R. Czerw, M. Terrones, J. C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P. M. Ajayan, W. Blau, M. Ruhle, D. L. Carroll: Identification of electron donor states in N-doped carbon nanotubes, Nano Lett. 1, 457 (2001)Google Scholar
  76. 76.
    D. Golberg, P. S. Dorozhkin, Y. Bando, Z. C. Dong, C. C. Tang, Y. Uemura, N. Grobert, M. Reyes-Reyes, H. Terrones, M. Terrones: Structure, transport and field-emission properties of compound nanotubes: CNx vs. BNCx (x < 0.1)Appl. Phys A Mater. Sci. Process. 76, 499 (2003)Google Scholar
  77. 77.
    K. Liu, P. Avouris, R. Martel, W. K. Hsu: Electrical transport in doped multiwalled carbon nanotubes, Phys. Rev. B 63, 161404 (2001)Google Scholar
  78. 78.
    W. K. Hsu, S. Y. Chu, E. Munoz-Picone, J. L. Boldu, S. Firth, P. Franchi, B. P. Roberts, A. Schilder, H. Terrones, N. Grobert, Y. Q. Zhu, M. Terrones, M. E. McHenry, H. W. Kroto, D. R. M. Walton: Metallic behaviour of boron-containing carbon nanotubes, Chem. Phys. Lett. 323, 572 (2000)Google Scholar
  79. 79.
    Y. M. Choi, D. S. Lee, R. Czerw, P. W. Chiu, N. Grobert, M. Terrones, M. Reyes-Reyes, H. Terrones, J. C. Charlier, P. M. Ajayan, S. Roth, D. L. Carroll, Y. W. Park: Nonlinear behavior in the thermopower of doped carbon nanotubes due to strong, localized states, Nano Lett. 3, 839 (2003)Google Scholar
  80. 80.
    L. Grigorian, G. U. Sumanasekera, A. L. Loper, S. Fang, J. L. Allen, P. C. Eklund: Transport properties of alkali-metal-doped single-wall carbon nanotubes. Phys. Rev. B 58, 4195 (1998)Google Scholar
  81. 81.
    K. Bradley, S.H. Jhi, P. G. Collins, J. Hone, M. L. Cohen, S. G. Louie, A. Zettl: Is the intrinsic thermoelectric power of carbon nanotubes positive, Phys. Rev. Lett. 85, 4361 (2000)Google Scholar
  82. 82.
    R. S. Lee, H. J. Kim, J. E. Fischer, A. Thess, R. E. Smalley: Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br, Nature 388, 255 (1997)Google Scholar
  83. 83.
    A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thes, R. E. Smalley, G. Dresselhaus, M. S. Dresselhaus: Diameter-selective Raman scattering from vibrational modes in carbon nanotubes, Science 275, 187 (1997)Google Scholar
  84. 84.
    S. Bandow, A. M. Rao, G. U. Sumanasekera, P. C. Eklund, F. Kokai, K. Takahashi, S. Iijima: Evidence for anomalously small charge transfer in doped single-wall carbon nanohorn aggregates with Li, K and Br, Appl. Phys. A Mater. Science Process. 71, 561 (2000)Google Scholar
  85. 85.
    M. S. Dresselhaus, P. C. Eklund: Phonons in carbon nanotubes, Adv Phys. 40, 705 (2000)Google Scholar
  86. 86.
    M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. Souza Filho, R. Saito: Raman spectroscopy on isolated single wall carbon nanotubes, Carbon 40, 2043 (2002)Google Scholar
  87. 87.
    A. Kukovecz, T. Pichler, R. Pfeiffer, H. Kuzmany: Diameter selective charge transfer in p- and n-doped single wall carbon nanotubes synthesized by the HiPCO method, Chem. Commun. 5, 1730 (2002)Google Scholar
  88. 88.
    M.S. Dresselhaus, G. Dresselhaus, M. Hofmann: The big picture of Raman scattering in carbon nanotubes, Vib. Spectrosc. 45, 71–81 (2007)Google Scholar
  89. 89.
    M. A. Pimenta, A. Marucci, S. Empedocles, M. Bawendi, E. B. Hanlon, A. M. Rao, P. C. Eklund, R. E. Smalley, G. Dresselhaus, M. S. Dresselhaus: Raman modes of metallic carbon nanotubes, Phys. Rev. B 58, 16016 (1998)Google Scholar
  90. 90.
    A. G. Souza Filho, A. Jorio, G. G. Samsonidze, G. Dresselhaus, R. Saito, M. S. Dresselhaus: Raman spectroscopy for probing chemically/physically induced phenomena in carbon nanotubes, Nanotechnology 14, 1130 (2003)Google Scholar
  91. 91.
    L. Duclaux: Review of the doping of carbon nanotubes (multiwalled and single-walled, Carbon 1751, 717 (2002)Google Scholar
  92. 92.
    J. E. Fischer: Chemical doping of single-wall carbon nanotubes, Acc. Chem. Res. 35, 1079 (2002)Google Scholar
  93. 93.
    S. Banerjee, T. Hemraj-Benny, S. S. Wong: Routes towards separating metallic and semiconducting nanotubes, J. Nanosci. Nanotechnol. 5, 841 (2005)Google Scholar
  94. 94.
    M. Endo, Y. A. Kim, T. Hayashi, H. Muramatsu, M. Terrones, R. Saito, F. Villalpando-Paez, S. G. Chou, M. S. Dresselhaus: Nanotube coalescence-inducing mode: A novel vibrational mode in carbon systems, Small 2, 1031 (2006)Google Scholar
  95. 95.
    C. Fantini, E. Cruz, A. Jorio, M. Terrones, H. Terrones, G. Van Lier, J. C. Charlier, M. S. Dresselhaus, R. Saito, Y. A. Kim, T. Hayashi, H. Muramatsu, M. Endo, M. A. Pimenta: Resonance Raman study of linear carbon chains formed by the heat treatment of double-wall carbon nanotubes, Phys. Rev. B 73, 193408 (2006)Google Scholar
  96. 96.
    S. B. Fagan, A. G. Souza Filho, J. M. Filho, P. Corio, M. S. Dresselhaus: Electronic properties of Ag- and CrO3-filled single-wall carbon nanotubes, Chem. Phys. Lett. 456, 54 (2005)Google Scholar
  97. 97.
    P. Corio, A. P. Santos, M. L. A. Temperini, V. W. Brar, M. A. Pimenta, M. S. Dresselhaus: Characterization of single wall carbon nanotubes filled with silver and with chromium compounds, Chem. Phys. Lett. 383, 475 (2004)Google Scholar
  98. 98.
    A. Rakitin, C. Papadopoulos, J. M. Xu: Carbon nanotube self-doping: Calculation of the hole carrier concentration, Phys. Rev. B 67, 033411 (2003)Google Scholar
  99. 99.
    G. Chen, C. A. Furtado, U. J. Kim, P. C. Eklund: Alkali-metal-doping dynamics and anomalous lattice contraction of individual debundled carbon nanotubes, Phys. Rev. B 72, 155406 (2005)Google Scholar
  100. 100.
    G. Chen, C. A. Furtado, S. Bandow, S. Iijima, P. C. Eklund: Anomalous contraction of the C–C bond length in semiconducting carbon nanotubes observed during Cs doping, Phys. Rev. B 71, 045408 (2005)Google Scholar
  101. 101.
    L. Terrazos, R. B. Capaz: Unpublished resultsGoogle Scholar
  102. 102.
    A. Das, A. K. Sood, A. Govindaraj, A. M. Saitta, M. Lazzeri, F. Mauri, C. N. R. Rao: Doping in carbon nanotubes probed by Raman and transport measurements, Phys. Rev. Lett. 99, 136803 (2007)Google Scholar
  103. 103.
    N. Caudal, A. M. Saitta, M. Lazzeri, F. Mauri: Kohn anomalies and nonadiabaticity in doped carbon nanotubes, Phys. Rev. B 75, 115423 (2007)Google Scholar
  104. 104.
    A. G. Souza Filho, V. Meunier, M. Terrones, B. G. Sumpter, E. B. Barros, F. Villalpando-Páez, J. Mendes Filho, Y. A. Kim, H. Muramatsu, T. Hayashi, M. Endo, M. S. Dresselhaus: Selective tuning of the electronic properties of co-axial nanocables through exohedral doping, Nano Lett. 7, 2383 (2007)Google Scholar
  105. 105.
    T. Hayashi, D. Shimamoto, Y. A. Kim, H. Muramatsu, F. Okino, H. Touhara, T. Shimada, Y. Miyauchi, S. Maruyama, M. Terrones, M. S. Dresselhaus, M. Endo: Selective optical property modification of double-walled carbon nanotubes by fluorination, ACS Nano 2, 485 (2008)Google Scholar
  106. 106.
    A. Jorio, M. A. Pimenta, A. G. Souza Filho, R. Saito, M. S. Dresselhaus, G. Dresselhaus: Characterizing carbon nanotube samples with resonance Raman scattering, New J. Phys. 5, 137 (2003)Google Scholar
  107. 107.
    E. B. Barros, H. B. Son, Ge. G. Samsonidze, A. G. Souza Filho, R. Saito, Y. A. Kim, H. Muramatsu, T. Hayashi, M. Endo, M. S. Dresselhaus: Double-wall carbon nanotubes treated with H2SO4, Phys. Rev. B 76, 045425 (2007)Google Scholar
  108. 108.
    V. Georgakilas, D. Voulgaris, E. Vazquez, M. Prato, D. M. Guldi, A. Kukovecz, H. Kuzmany: Purification of HiPCO carbon nanotubes via organic functionalization, J. Am. Chem. Soc. 124, 14318 (2002)Google Scholar
  109. 109.
    M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. Richardson, N. G. Tassi: DNA-assisted dispersion and separation of carbon nanotubes, Nat. Mater. 2, 338 (2003)Google Scholar
  110. 110.
    M. Zheng, A. Jagota., M. S. Strano, A. P. Santos, P. Barone, S. G. Chou, B. A. Diner, M. S. Dresselhaus, R. S. Mclean, G. B. Onoa, G. G. Samsonidze, E. D. Semke, M. Ursey, D. J. Walls: Structure-based carbon nanotube sorting by sequence-dependent DNA assembly, Science 302, 1545 (2003)Google Scholar
  111. 111.
    D. A. Heller, E. S. Jeng, T. K. Yeung, B. M. Martinez, A. E. Moll, J. B. Gastala, M. S. Strano: Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes, Science 311, 508 (2006)Google Scholar
  112. 112.
    J.-C. Charlier, M. Terrones, M. Baxendale, V. Meunier, T. Zacharia, N. L. Rupesinghe, W. K. Hsu, N. Grobert, H. Terrones, G. A. J. Amaratunga: Enhanced electron field emission in B-doped carbon nanotubes, Nano Lett. 2, 1191 (2002)Google Scholar
  113. 113.
    M. Doytcheva, M. Kaiser, M. Reyes-Reyes, M. Terrones, N. de Jonge: Electron emission from individual nitrogen-doped multi-walled carbon nanotubes, Chem. Phys. Lett. 396, 126 (2004)Google Scholar
  114. 114.
    M. Endo, Y. A. Kim, T. Hayashi, K. Nishimura, T. Matusita, K. Miyashita, M. S. Dresselhaus: Vapor-grown carbon fibers (VGCFs) – Basic properties and their battery applications, Carbon 39, 1287 (2001)Google Scholar
  115. 115.
    D. Y. Zhang, G. Y. Zhang, S. Liu, E. G. Wang, Q. Wang, H. Li, X. J. Huang: Lithium storage in polymerized carbon nitride nanobells, Appl. Phys. Lett. 79, 3500 (2001)Google Scholar
  116. 116.
    J. Kong, N. R. Franklin, C. W. Zhou, M. G. Chapline, S. Peng, K. J. Cho, H. J. Dai: Nanotube molecular wires as chemical sensors, Science 287, 622 (2000)Google Scholar
  117. 117.
    S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, C. M. Lieber: Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology, Nature 394, 52, 1998Google Scholar
  118. 118.
    P.G. Collins, K. Bradley, M. Ishigami, A. Zettl: Extreme oxygen sensitivity of electronic properties of carbon nanotubes, Science 287, 1801 (2000)Google Scholar
  119. 119.
    F. Villalpando-Páez, A. H. Romero, E. Munoz-Sandoval, L. M. Martinez, H. Terrones, M. Terrones: Fabrication of vapor and gas sensors using films of aligned CNx nanotubes, Chem. Phys. Lett. 386, 137 (2004)Google Scholar
  120. 120.
    P. Calvert: Nanotube composites – A recipe for strength, Nature 399, 210 (1999)Google Scholar
  121. 121.
    A. Eitan et al., In Proceedings of the Tenth US–Japan Conference on Composite Materials. 634 (2002)Google Scholar
  122. 122.
    B. Fragneaud, K. Masenelli-Varlot, A. González-Montiel, M. Terrones, J. Y. Cavaillé: Efficient coating of N-doped carbon nanotubes with polystyrene using atomic transfer radical polymerization, Chem. Phys. Lett. 419, 567 (2005)Google Scholar
  123. 123.
    M. Dehonor, K. Masenelli-Varlot, A. González-Montiel, C. Gauthier, J. Y. Cavaillé, H. Terrones, M. Terrones: Nanotube brushes: Polystyrene grafted covalently on CNx nanotubes by nitroxide-mediated radical polymerization, Chem. Commun. 5349 (2005)Google Scholar
  124. 124.
    Fragneaud, et al.: UnpublishedGoogle Scholar
  125. 125.
    D. M. Guldi, M. Marcaccio, D. Paolucci, F. Paolucci, M. Tagmatarchis, D. Tasis, E. Vasquez, M. Prato, Angew. Chem. Int. Ed. 42, 4206 (2003)Google Scholar
  126. 126.
    K. Y. Jiang, L. S. Schadler, R. W. Siegel, X. J. Zhang, H. F. Zhang, M. Terrones: Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation, J. Mater. Chem. 14, 37 (2004)Google Scholar
  127. 127.
    K. Y. Jiang, A. Eitan, L. S. Schadler, P. M. Ajayan, R. W. Siegel, N. Grobert, M. Mayne, M. Reyes-Reyes, H. Terrones, M. Terrones: Selective attachment of gold nanoparticles to nitrogen-doped carbon nanotubes, Nano Lett. 3, 275 (2003)Google Scholar
  128. 128.
    A. Zamudio, A. L. Elías, J. A. Rodríguez-Manzo, F. López-Urías, G. Rodríguez-Gattorno, F. Lupo, M. Rühle, D. J. Smith, H. Terrones, D. Díaz, M. Terrones: Efficient anchoring of silver nanoparticles on N-doped carbon nanotubes, Small 2, 346 (2005)Google Scholar
  129. 129.
    X. Lepró et al.: Unpublished dataGoogle Scholar
  130. 130.
    J. L. Carrero-Sánchez, A. L. Elías, R. Mancilla, G. Arellín, H. Terrones, J. P. Laclette, M. Terrones: Biocompatibility and toxicological studies of carbon nanotubes doped with Nitrogen, Nano Lett. 6, 1609 (2006)Google Scholar
  131. 131.
    D. B. Warheit, B. R. Laurence, K. L. Reed, D. H. Roach, G. A. M. Reynolds, T. R. Webb: Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats, Toxicol. Sci. 77, 117 (2004)Google Scholar
  132. 132.
    A. L. Elias, J. C. Carrero-Sánchez, H. Terrones, M. Endo, J. P. Laclette, M. Terrones: Comparative viability studies of pure carbon and nitrogen-doped multi walled carbon nanotube with amoeba cells: From amoebicidal to biocompatible structures, 3, 1723–1729 (2007)Google Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Federal do Ceará, C.P. 6030Fortaleza-CE
  2. 2.Laboratory for Nanoscience and Nanotechnology Research LINAN and Advanced Materials DepartmentIPICyTSan Luis PotosiMexico

Personalised recommendations