Skip to main content

Optical and Vibrational Properties of Boron Nitride Nanotubes

  • Chapter
  • First Online:
B-C-N Nanotubes and Related Nanostructures

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 6))

Abstract

As for carbon nanotubes, optical and vibrational spectroscopy – in particular Raman and luminescence spectroscopy – play an important role for the characterization of BN nanotubes. In this chapter we review, from a theoretical view point, the different spectroscopic techniques that are currently used for BN nanotubes and make a close link with available experimental data. We summarize experimental and theoretical data on optical absorption spectroscopy, luminescence spectroscopy, electron-energy loss spectroscopy, Raman spectroscopy, and infrared (IR) absorption spectroscopy. The combination of all those methods allows for a fairly complete characterization of the electronic structure and the vibrational properties of BN tubes. Possible applications in optoelectronic devices are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Much can be written about the exact value of the gap. For the dispersion in Fig. 1, we have used DFT and LDA for the exchange-correlation functional. This yields a gap of 4.5 eV. The exact value of the bandgap is discussed further in the text.

  2. 2.

    The code Yambo [32] that was used for the black curve in Fig. 7 uses norm-conserving pseudopotentials, while VASP [33, 34] (red curve in Fig. 7) uses the projector-augmented-wave (PAW) method [35]. PAW was also used in [21].

  3. 3.

    The fact that for zigzag and chiral tubes, the IR-active modes are a subset of the Raman-active modes is different in BN tubes and C tubes and is due to the reduced symmetry (= less strict selection rules) for BN tubes. In carbon tubes, only the set of IR-active modes of chiral tubes partially overlaps with the set of Raman-active modes [96]. For zigzag and armchair C tubes, the sets of Raman- and IR-active modes are disjoint.

References

  1. A. Rubio, J.L. Corkill, and M.L. Cohen, Phys. Rev. B 49, 5081(R) (1994).

    Google Scholar 

  2. X. Blase, A. Rubio, S.G. Louie, and M.L. Cohen, Europhys. Lett. 28, 335 (1994).

    Article  CAS  Google Scholar 

  3. Y. Miyamoto, A. Rubio, S.G. Louie, and M.L. Cohen, Phys. Rev. B 50, 18360 (1994).

    Article  CAS  Google Scholar 

  4. Y. Miyamoto, A. Rubio, S.G. Louie, and M.L. Cohen, Phys. Rev. B 50, 4976 (1994).

    Article  CAS  Google Scholar 

  5. Y. Miyamoto, A. Rubio, S.G. Louie, and M.L. Cohen, Phys. Rev. Lett. 76, 2121 (1996).

    Article  CAS  Google Scholar 

  6. N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, and A. Zettl, Science 269, 966 (1995)

    Article  CAS  Google Scholar 

  7. Z. Weng-Sieh, K. Cherrey, N.G. Chopra, X. Blase, Y. Miyamoto, A. Rubio, M.L. Cohen, S.G. Louie, A. Zettl, and R. Gronsky, Phys. Rev. B 51, 11229 (1995).

    Article  CAS  Google Scholar 

  8. O. Stephan, P.M. Ajayan, C. Colliex, Ph. Redlich, J.M. Lambert, P. Bernier, and P. Lefin, Science 266, 1683 (1994).

    Article  CAS  Google Scholar 

  9. M. Radosavljević, J. Appenzeller, V. Derycke, R. Martel, P. Avouris, A. Loiseau, J.-L. Cochon, D. Pigache, Appl. Phys. Lett. 82, 4131 (2003).

    Article  Google Scholar 

  10. K. Watanabe, T. Taniguchi and H. Kanda, Nat. Mater. 3, 404 (2004).

    Article  CAS  Google Scholar 

  11. L. Wirtz, A. Marini, and A. Rubio, Phys. Rev. Lett. 96, 126104 (2006).

    Article  Google Scholar 

  12. G.Y. Guo and J.C. Lin, Phys. Rev. B 71, 165402 (2005).

    Article  Google Scholar 

  13. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  14. A.D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  15. B. Baumeier, P. Krüger, and J. Pollmann, Phys. Rev. B 76, 085407 (2007).

    Article  Google Scholar 

  16. M.S. Hybertsen and S.G. Louie, Phys. Rev. B 34, 5390 (1986).

    Article  CAS  Google Scholar 

  17. W.G. Aulbur, L. Jönsson, and J.W. Wilkins, Quasiparticle calculations in solids in Solid State Physics, edited by H. Ehrenreich and F. Spaepen (Academic, New York, 2000), Vol. 54, p. 1.

    Google Scholar 

  18. G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).

    Article  CAS  Google Scholar 

  19. C. Friedrich and A. Schindlmayr, in Computational Nanoscience: Do It Yourself! (NIC Series), edited by J. Grotendorst, S. Blügel, and D. Marx (John von Neumann Institute for Computing, Jülich, 2006), Vol. 31, p. 335.

    Google Scholar 

  20. X. Blase, A. Rubio, S.G. Louie and M.L. Cohen, Phys. Rev. B 51, 6868 (1995).

    Article  CAS  Google Scholar 

  21. B. Arnaud, S. Lebègue, P. Rabiller, and M. Alouani, Phys. Rev. Lett. 96, 026402 (2006).

    Article  CAS  Google Scholar 

  22. G. Strinati, Phys. Rev. B 29, 5718 (1984).

    Article  CAS  Google Scholar 

  23. M. Rohlfing and S.G. Louie, Phys. Rev. Lett. 81, 2312 (1998).

    Article  CAS  Google Scholar 

  24. C. Tarrio and S.E. Schnatterly, Phys. Rev. B 40, 7852 (1989).

    Article  CAS  Google Scholar 

  25. Y.N. Xu and W.Y. Ching, Phys. Rev. B 44, 7787 (1991).

    Article  CAS  Google Scholar 

  26. G. Cappellini, G. Satta, M. Palummo, and G. Onida, Phys. Rev. B 64, 035104 (2001).

    Article  Google Scholar 

  27. A.G. Marinopoulos, L. Wirtz, A. Marini, V. Olevano, A. Rubio, and L. Reining, Appl. Phys. A 78, 1157 (2004).

    Article  CAS  Google Scholar 

  28. L. Wirtz, A. Marini, M. Grüning, C. Attaccalite, G. Kresse, and A. Rubio, Phys. Rev. Lett. 100, 189701 (2008).

    Article  Google Scholar 

  29. M. Shinada and S. Sugano, J. Phys. Soc. Jpn 21, 1936 (1966).

    Article  CAS  Google Scholar 

  30. T.G. Pedersen, Phys. Rev. B 67, 073401 (2003).

    Article  Google Scholar 

  31. B. Arnaud, S. Lebègue, P. Rabiller, and M. Alouani, Phys. Rev. Lett. 100, 189702 (2008).

    Article  Google Scholar 

  32. A. Marini, C. Hogan, M. Grüning, D. Varsano, Comp. Phys. Comm. (2009), doi:10.1016/j.cpc. 2009.02.003.

    Google Scholar 

  33. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  34. M. Shishkin and G. Kresse, Phys. Rev. B 74, 035101 (2006).

    Article  Google Scholar 

  35. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  36. R. Mamy, J. Thomas, G. Jezequel, and J.C. Lemonnier, J. Phys. (Paris) Lett. 42, 473 (1981).

    CAS  Google Scholar 

  37. J.S. Lauret, R. Arenal, F. Ducastelle, A. Loiseau, M. Cau, B. Attal-Tretout, and E. Rosencher, Phys. Rev. Lett. 94, 037405 (2005).

    Article  CAS  Google Scholar 

  38. A. Marini, Phys. Rev. Lett. 101, 106405 (2008).

    Google Scholar 

  39. T. Ando, J. Phys. Soc. Jpn 66, 1066 (1997).

    Article  CAS  Google Scholar 

  40. C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, and S.G. Louie, Phys. Rev. Lett. 92, 077402 (2004).

    Article  Google Scholar 

  41. C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, and S.G. Louie, Appl. Phys. A 78, 1129 (2004).

    Article  CAS  Google Scholar 

  42. E. Chang, G. Bussi, A. Ruini, and E. Molinari, Phys. Rev. Lett. 92, 196401 (2004).

    Article  Google Scholar 

  43. F. Wang, G. Dukovic, L.E. Brus, and T.F. Heinz, Science 308, 838 (2005).

    Article  CAS  Google Scholar 

  44. Y.-Z. Ma, S.L. Dexheimer, L. Valkunas, S.M. Bachilo, and G.R. Fleming, Phys. Rev. Lett. 94, 157402 (2005).

    Article  Google Scholar 

  45. Y.-Z. Ma, L. Valkunas, S.M. Bachilo, and G.R. Fleming, J. Phys. Chem. B 109, 15671 (2005).

    Article  CAS  Google Scholar 

  46. C.-H. Park, C.D. Spataru, S.G. Louie, Phys. Rev. Lett. 96, 126105 (2006).

    Article  Google Scholar 

  47. Y. Kubota, K. Watanabe, O. Tsuda, and T. Taniguchi, Science 317, 932 (2007).

    Article  CAS  Google Scholar 

  48. L. Museur and A. Kanaev, J. Appl. Phys. 103, 103520 (2008).

    Article  Google Scholar 

  49. P. Jaffrennou, J. Barjon, J.-S. Lauret, B. Attal-Trétout, F. Ducastelle, and A. Loiseau, J. Appl. Phys. 102, 116102 (2007).

    Article  Google Scholar 

  50. C.A. Taylor II, S.W. Brown, V. Subramaniam, S. Kidner, S.C. Rand, and R. Clark, Appl. Phys. Lett. 65, 1251 (1994).

    Article  CAS  Google Scholar 

  51. M.G. Silly, P. Jaffrennou, J. Barjon, J.-S. Lauret, F. Ducastelle, A. Loiseau, E. Obraztsova, B. Attal-Tretout, and E. Rosencher, Phys. Rev. B 75, 085205 (2007).

    Article  Google Scholar 

  52. W.-Q. Han, H.-G. Yu, C. Zhi, J. Wang, Z. Liu, T. Sekiguchi, and Y. Bando, Nano Lett. 8, 491 (2008).

    Article  CAS  Google Scholar 

  53. T. Taniguchi and K. Watanabe, J. Cryst. Growth 303, 525 (2007).

    Article  CAS  Google Scholar 

  54. J. Wu, W.-Q. Han, W. Walukiewicz, J.W. Ager III, W. Shan, E.E. Haller, A. Zettl, Nano Lett. 4(4), 647 (2004).

    Article  CAS  Google Scholar 

  55. P. Jaffrennou, F. Donatini, J. Barjon, J.-S. Lauret, A. Maguer, B. Attal-Tretout, F. Ducastelle, and A. Loiseau, Chem. Phys. Lett. 442, 372 (2007).

    Article  CAS  Google Scholar 

  56. P. Jaffrennou, J. Barjon, J.-S. Lauret, A. Maguer, D. Goldberg, B. Attal-Trétout, F. Ducastelle, and A. Loiseau, Phys. Status Solidi B 244, 4147 (2007).

    Article  CAS  Google Scholar 

  57. P. Jaffrennou, J. Barjon, T. Schmid, L. Museur, A. Kanaev, J.-S. Lauret, C.Y. Zhi, C. Tang, Y. Bando, D. Goldberg, B. Attal-Trétout, F. Ducastelle, and A. Loiseau, Phys. Rev. B 77, 235422 (2008).

    Article  Google Scholar 

  58. K.H. Koo, M.S.C. Mazzoni, and S.G. Louie, Phys. Rev. B 69, 201401(R) (2004).

    Google Scholar 

  59. C.-W. Chen, M.-H. Lee, and S.J. Clark, Nanotechnology 15, 1837 (2004).

    Article  CAS  Google Scholar 

  60. C. Attaccalite, L. Wirtz, A. Marini, and A. Rubio, Phys. Status Solidi B 244, 4288 (2007).

    Article  CAS  Google Scholar 

  61. G.G. Fuentes, E. Borowiak-Palen, T. Pichler, X. Liu, A. Graff, G. Behr, R.J. Kalenczuk, M. Knupfer, and J. Fink, Phys. Rev. B 67, 035429 (2003).

    Article  Google Scholar 

  62. Vl.A. Margulis, E.E. Muryumin, and E.A. Gaiduk, Phys. Rev. B 77, 035425 (2008).

    Article  Google Scholar 

  63. R. Arenal, O. Stéphan, M. Kociak, D. Taverna, A. Loiseau, and C. Colliex, Phys. Rev. Lett. 95, 127601 (2005).

    Article  CAS  Google Scholar 

  64. D. Taverna, M. Kociak, V. Charbois, and L. Henrard, Phys. Rev. B 66, 235419 (2002).

    Article  Google Scholar 

  65. L. Henrard and P. Lambin, J. Phys. B 29, 5127 (1996).

    Article  CAS  Google Scholar 

  66. P.C. Eklund, J.M. Holden, R.A. Jishi, Carbon 33, 959 (1995).

    Article  CAS  Google Scholar 

  67. J. Kastner, T. Pichler, H. Kuzmany, S. Curran, W. Blau, D.N. Weldon, M. Delamesiere, S. Draper, and H. Zandbergen, Chem. Phys. Lett. 221, 53 (1994).

    Article  CAS  Google Scholar 

  68. A.M. Rao, E. Richter, S. Bandow, B. Chase, P.C. Eklund, K.A. Williams, S. Fang, K.R. Subbaswamy, M. Menon, A. Thess, R.E. Smalley, G. Dresselhaus, and M.S. Dresselhaus, Science 275, 187 (1997).

    Article  CAS  Google Scholar 

  69. R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, and M.S. Dresselhaus, Phys. Rev. B 57, 4145 (1998).

    Article  CAS  Google Scholar 

  70. U. Kuhlmann, H. Jontoljak, N. Pfänder, P. Bernier, C. Journet, and C. Thomsen, Chem. Phys. Lett. 294, 237 (1998).

    Article  CAS  Google Scholar 

  71. E. Borowiak-Palen, T. Pichler, G.G. Fuentes, B. Bendjemil, X. Liu, A. Graff, G. Behr, R.J. Kalenczuk, M. Knupfer, and J. Fink, Chem. Commun. 1, 82 (2003).

    Article  Google Scholar 

  72. V. N. Popov, Phys. Rev. B 67, 085408 (2003).

    Article  Google Scholar 

  73. P. Saxena, Pand S.P. Sanyal, Phys. E 24, 244 (2004).

    Article  CAS  Google Scholar 

  74. E. Rokuta, Y. Hasegawa, K. Suzuki, Y. Gamou, C. Oshima, and A. Nagashima, Phys. Rev. Lett. 79, 4609 (1997).

    Article  CAS  Google Scholar 

  75. D. Sánchez-Portal and E. Hernández, Phys. Rev. B 66, 235415 (2002).

    Article  Google Scholar 

  76. L. Wirtz, R. Arenal de la Concha, A. Loiseau, and A. Rubio, Phys. Rev. B 68, 045425 (2003).

    Article  Google Scholar 

  77. L. Wirtz and A. Rubio, IEEE Trans. Nanotechnol. 2, 341 (2003).

    Article  Google Scholar 

  78. O. Madelung (Ed.), Semiconductors – Basic Data (Springer, Berlin, 1996).

    Google Scholar 

  79. G. Kern, G. Kresse, and J. Hafner, Phys. Rev. B 59, 8551 (1999).

    Article  CAS  Google Scholar 

  80. W.J. Yu, W.M. Lau, S.P. Chan, Z.F. Liu, and Q.Q. Zheng, Phys. Rev. B 67, 014108 (2003).

    Article  Google Scholar 

  81. J. Serrano, A. Bosak, R. Arenal, M. Krisch, K. Watanabe, T. Taniguchi, H. Kanda, A. Rubio, and L. Wirtz, Phys. Rev. Lett. 98, 095503 (2007).

    Article  CAS  Google Scholar 

  82. R. Geick, C.H. Perry, and G. Rupprecht, Phys. Rev. 146, 543 (1966).

    Article  CAS  Google Scholar 

  83. R.J. Nemanich, S.A. Solin, and R.M. Martin, Phys. Rev. B 23, 6348 (1981).

    Article  CAS  Google Scholar 

  84. S. Reich, A.C. Ferrari, R. Arenal, A. Loiseau, I. Bello, and J. Robertson, Phys. Rev. B 71, 205201 (2005).

    Article  Google Scholar 

  85. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College Publishing, Orlando, 1976).

    Google Scholar 

  86. A. Marini, P. García-Gonzalez, and A. Rubio, Phys. Rev. Lett. 96, 136404 (2006).

    Article  Google Scholar 

  87. O. Dubay and G. Kresse, Phys. Rev. B 67, 035401 (2003).

    Article  Google Scholar 

  88. G. Kresse, J. Furthmüller, and J. Hafner, Europhys. Lett. 32, 729 (1995).

    Article  CAS  Google Scholar 

  89. P. Pavone, R. Bauer, K. Karch, O. Schütt, S. Vent, W. Windl, D. Strauch, S. Baroni, and S. de Gironcoli, Phys. B 219 & 220, 439 (1996).

    Article  Google Scholar 

  90. L. Wirtz and A. Rubio, Solid State Commun. 131, 141 (2004).

    Article  CAS  Google Scholar 

  91. E.J. Mele and P. Kral, Phys. Rev. Lett. 88, 056803 (2002).

    Article  CAS  Google Scholar 

  92. The selection rules for Raman and IR spectroscopy are discussed in many textbooks. E.g., a nice introduction can be found in: D.C. Harris and M.D. Bertolucci, Symmetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy (Dover, New York, 1989).

    Google Scholar 

  93. M. Damnjanović, T. Vuković, I. Milošević, and B. Nikolić, Act Cryst. A57, 304 (2001).

    Google Scholar 

  94. O.E. Alon, Phys. Rev. B 64, 153408 (2001).

    Article  Google Scholar 

  95. O.E. Alon, J. Phys.: Condens. Mat. 15, S2489 (2003).

    Article  CAS  Google Scholar 

  96. O.E. Alon, Phys. Rev. B 63, 201403 (2001).

    Article  Google Scholar 

  97. R. Saito, G. Dresselhaus, and M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).

    Book  Google Scholar 

  98. R.A. Jishi, L. Venkataraman, M.S. Dresselhaus, and G. Dresselhaus, Chem. Phys. Lett. 209, 77–82 (1993).

    Article  CAS  Google Scholar 

  99. J. Kürti, G. Kresse, and H. Kuzmany, Phys. Rev. B 58, R8869 (1998).

    Article  Google Scholar 

  100. H. Vogt, in Light Scattering in Solids II, edited by M. Cardona and G. Güntherodth (Springer, Berlin, 1982).

    Google Scholar 

  101. L. Wirtz, M. Lazzeri, F. Mauri, and A. Rubio, Phys. Rev. B 71, 241402(R) (2005).

    Article  Google Scholar 

  102. M. Lazzeri and F. Mauri, Phys. Rev. Lett. 90, 036401 (2003).

    Article  Google Scholar 

  103. R. Arenal, A.C. Ferrari, S. Reich, L. Wirtz, J.-Y. Mevellec, S. Lefrant, A. Rubio, and A. Loiseau, Nano Lett. 6, 1812 (2006).

    Article  CAS  Google Scholar 

  104. E. Balan, A.M. Saitta, F. Mauri, and G. Calas, Am Mineral 86, 1321 (2001).

    CAS  Google Scholar 

  105. J.A. Misewich et al, Science 300, 783 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge funding by Spanish MEC (FIS2007-65702-C02-01), Grupos Consolidados UPV/EHU of the Basque Country Government (IT-319-07), and European Community through e-I3 ETSF project (INFRA-211956); NoE Nanoquanta (NMP4-CT-2004-500198) and SANES (NMP4-CT-2006-017310). All this work started as an activity of the European research and training network COMELCAN and benefited a lot from fruitful collaborations and discussions with A. Marini, M. Grüning, C. Attaccalite, F. Mauri, M. Lazzeri, R. Arenal, P. Jaffrennou, and A. Loiseau. A.R. acknowledge Profs. S.G. Louie, M.L. Cohen, and A. Zettl for fundamental collaborations and support while we started the field of BN nanotubes that now is the scope of the present book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Rubio .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag New York

About this chapter

Cite this chapter

Wirtz, L., Rubio, A. (2009). Optical and Vibrational Properties of Boron Nitride Nanotubes. In: B-C-N Nanotubes and Related Nanostructures. Lecture Notes in Nanoscale Science and Technology, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0086-9_5

Download citation

Publish with us

Policies and ethics