Advertisement

Heteroatomic Single-Wall Nanotubes Made of Boron, Carbon, and Nitrogen

  • Raul Arenal
  • Annick Loiseau
Chapter
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 6)

Abstract

In this chapter, we review the current status of research on heteroatomic single-walled nanotubes (SWNTs): boron nitride (BN), B–C, C–N, and B–C–N. We present developments in the synthesis, the characterization, and the properties measurements and theoretical studies. These nanotubes have unique properties when compared with that of their carbon counterparts. For instance, BN-SWNTs are chemically inert, resistant to oxidation at high-temperature, and most importantly, possess a uniform electronic structure that is independent of their geometry. In the first part of this chapter, we review the different synthesis methods employed to produce these nanotubes (high and medium-low temperature processes). We then turn to the study of the atomic structure of these nanomaterials by different transmission electron microscopy techniques as well as we review the works concerning the growth mechanism of these nanotubes. Finally, the main physical (electronic, vibrational, optical, mechanical, electromechanical, and thermal) and chemical (functionalization and hydrogen storage) properties of these heteroatomic SWNTs, particularly the case of BN, are outlined, followed by the presentation of the potential applications of these nanoobjects.

Keywords

Boron Nitride Electron Energy Loss Spectroscopy Boron Oxide Chemical Vapor Deposition Technique Boron Nitride Nanotubes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Some of the work shown here was supported by the European Community research and training network COMELCAN (HPRN-CT-2000-00128), by the European Commission under the 6 Framework Programme (STREP project BNC Tubes, contract number NMP4-CT-2006-03350), by the “Agence Nationale de la Recherche” – France (A.N.R.) and done within the framework of the GDR-I ‘Nano-I’ (N 2756) of the CNRS. Part of the results presented in this chapter are issued from very fruitful collaborations and discussions with B. Attal-Tretout, X. Blase, L. Bresson, J.L. Cochon, C. Colliex, N. Dorval, F. Ducastelle, S. Enouz-Vedrenne, A.C. Ferrari, M. Glerup, A. Gloter, P. Jaffrennou, M. Kociak, S. Lefrant, H. Lin, A. Maguer, J.Y. Mevellec, D. Pigache, S. Reich, A. Rubio, J. Serrano, O. Stephan, D. Taverna, M. Tence, L. Wirtz, and A. Zobelli.

References

  1. 1.
    S. Iijima, Nature 354, 56 (1991).CrossRefGoogle Scholar
  2. 2.
    X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Europhys. Lett. 28, 335 (1994).CrossRefGoogle Scholar
  3. 3.
    A. Rubio, J.L. Corkill, M.L. Cohen, Phys. Rev. B 49, 5081 (1994).CrossRefGoogle Scholar
  4. 4.
    X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Phys. Rev. B 51, 6868 (1995).CrossRefGoogle Scholar
  5. 5.
    D. Golberg, Y. Bando, C. Tang, C.Y. Zhi, Adv. Mat. 19, 2413 (2007).CrossRefGoogle Scholar
  6. 6.
    R. Arenal, X. Blase, A. Loiseau, Adv. Phys. (in press).Google Scholar
  7. 7.
    A. Loiseau, P. Launois, P. Petit, S. Roche, J.-P. Salvetat (Eds.), Understanding Carbon Nanotubes from Basics to Applications, Series: Lecture Notes in Physics, 677, Springer, Berlin (2006).Google Scholar
  8. 8.
    W. Kratschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, Nature 347, 354 (1990).CrossRefGoogle Scholar
  9. 9.
    T.W. Ebbesen, P.M. Ajayan, Nature 358, 220 (1992).CrossRefGoogle Scholar
  10. 10.
    S. Iijima, T. Ichihashi, Nature 363, 603 (1993).CrossRefGoogle Scholar
  11. 11.
    R.Droppa, Jr. P.Hammer, A.C.M. Carvalho, M.C. dos Santos, F.Alvarez, J. Non-Crystalline Solids 299, 874 (2002).CrossRefGoogle Scholar
  12. 12.
    M.Glerup, J.teinmetz, D.Samaille, O.Stphan, S.Enouz, A.Loiseau, S.Roth, P.Bernier, Chem. Phys. Lett. 387, 193 (2004).CrossRefGoogle Scholar
  13. 13.
    J.-C. Charlier, M. Terrones, M. Baxendale, V. Meunier, T. Zacharia, N.L. Rupesinghe, W.K. Hsu, N. Grobert, H. Terrones, G.A.J. Amaratunga, Nano Lett. 2, 1191 (2002).CrossRefGoogle Scholar
  14. 14.
    N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, Science 269, 966 (1995) moncy, G. Hug, H. Pascard, Phys. Rev. Lett. 76, 4737 (1996).CrossRefGoogle Scholar
  15. 15.
    A. Loiseau, F. Willaime, N. Demoncy, G. Hug, H. Pascard, Phys. Rev. Lett. 76, 4737 (1996).CrossRefGoogle Scholar
  16. 16.
    C.M. Lee, S.I. Choi, S.S. Choi, S.H. Hong, Curr. Appl. Phys. 6, 166 (2006).CrossRefGoogle Scholar
  17. 17.
    R.S. Lee, J. Gavillet, M. Lamy de la Chapelle, A. Loiseau, J.-L. Cochon, D. Pigache, J. Thibault, F. Willaime, Phys. Rev. B 64, 121405(R) (2001).Google Scholar
  18. 18.
    R. Arenal, PhD Thesis Universite Paris XI - Orsay, (2005).Google Scholar
  19. 19.
    R. Arenal, O. Stéphan, J.L. Cochon, A. Loiseau, J. Am. Chem. Soc. 129, 16183 (2007).CrossRefGoogle Scholar
  20. 20.
    E. Borowiak-Palen, T. Pichler, G.G. Fuentes, A. Graff, R.J. Kalenczuk, M. Knupfer, J. Fink, Chem. Phys. Lett. 378, 516 (2003).CrossRefGoogle Scholar
  21. 21.
    S. Enouz, O. Stephan, J.L. Cochon, C. Colliex, A. Loiseau, Nano Lett. 7, 1856 (2007).CrossRefGoogle Scholar
  22. 22.
    S. Enouz, PhD Thesis Universite Montpellier II (2007).Google Scholar
  23. 23.
    H. Lin, J. Lagoute, C. Chacon, R. Arenal, O. Stephan, V. Repain, Y. Girard, S. Enouz, L. Bresson, S. Rousset, A. Loiseau, Phys. Status Solidi B doi: 10.1002/pssb.200879634 (2008).Google Scholar
  24. 24.
    M. Castignolles, PhD Thesis Universite Montpellier II (2004).Google Scholar
  25. 25.
    J. Gavillet, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, J.-C. Charlier, Phys. Rev. Lett. 87, 275504 (2001).CrossRefGoogle Scholar
  26. 26.
    P.L. Gai, O. Stephan, K. McGuire, A.M. Rao, M.S. Dresselhaus, G. Dresselhaus, C. Colliex, J. Mater. Chem. 14, 669 (2004).CrossRefGoogle Scholar
  27. 27.
    C.E. Lowell, J. of American Chem. Soc. 50, 142 (1967).Google Scholar
  28. 28.
    G. Keskar, R. Rao, J. Luo, J. Hudson, J. Chen, A.M. Rao, Chem. Phys. Lett. 412, 269 (2005).CrossRefGoogle Scholar
  29. 29.
    F. Villalpando-Paez, A. Zamudio, A.L. Elias, H. Son, E.B. Barros, S.G. Chou, Y.A. Kim, H. Muramatsu, T. Hayashi, J. Kong, H. Terrones, G. Dresselhaus, M. Endo, M. Terrones, M.S. Dresselhaus, Chem. Phys. Lett. 424, 345 (2006).CrossRefGoogle Scholar
  30. 30.
    P. Ayala, A. Grneis, C. Kramberger, M.H. Rmmeli, I.G. Solrzano, F.L. Freire, T. Pichler, J. Chem. Phys. 127, 184709 (2007).CrossRefGoogle Scholar
  31. 31.
    W.L. Wang, X.D. Bai, K.H. Liu, Z. Xu, D. Golberg, Y. Bando, E.G. Wang, J. Am. Chem. Soc. 128, 6530 (2006).CrossRefGoogle Scholar
  32. 32.
    J. Thomas, N.E. Weston, T.E. O’Connor, J. Am. Chem. Soc. 84, 4619 (1963).CrossRefGoogle Scholar
  33. 33.
    J. Economy, R.Y. Lin, in Boron Nitride Fibers in Boron, Refractory Borides, V.I. Matkovich (Ed.), Springer, Berlin (1977).Google Scholar
  34. 34.
    E.L. Muetterties (Ed.), The Chemistry of Boron, its Compounds, Wiley, New York (1967).Google Scholar
  35. 35.
    M. Hubacek, M. Ueki, T. Sato, V. Broiek, Thermochim. Acta 282/283, 359 (1996).Google Scholar
  36. 36.
    A. Aydogdu, N. Sevin, J. Eur. Ceram. Soc. 23, 3153 (2003).CrossRefGoogle Scholar
  37. 37.
    D.-F. Lii, J.-L. Huang, L.-J. Tsui, S.-M. Lee, Surf. Coat. Technol. 150, 269 (2002).CrossRefGoogle Scholar
  38. 38.
    L. Hackspill, J. Besson, A. Hrold, Chimie minrale, Volume II, Presses Universitaires de France,Paris (1968).Google Scholar
  39. 39.
    W. Han, Y. Bando, K. Kurashima, T. Sato, Appl. Phys. Lett. 73, 3085 (1998).CrossRefGoogle Scholar
  40. 40.
    T.S.M. Bartnitskaya, G.S. Oleinik, A.V. Pokropivnyi, V.V. Pokropivnyi, JETP Lett. 69, 163 (1999).CrossRefGoogle Scholar
  41. 41.
    W.Q. Han, P. Todd, M. Strongin, Appl. Phys. Lett. 89, 173103 (2006).CrossRefGoogle Scholar
  42. 42.
    D. Golberg, Y. Bando, L. Bourgeois, K. Kurashima, T. Sato, Carbon 38, 2017 (2000).CrossRefGoogle Scholar
  43. 43.
    Zhong-lin Wang Chun Hui, Electron Microscopy of Nanotubes, Springer, Berlin (2003).Google Scholar
  44. 44.
    C.P. Ewels, M. Glerup, J. Nanosci. Nanotechnol. 5, 1345 (2005).CrossRefGoogle Scholar
  45. 45.
    S. Enouz, J.L. Bantignies, M.R. Babaa, L. Alvarez, P. Parent, F. Le Normand, O. Stephan, P. Poncharal, A. Loiseau, B. Doyle, J. Nanosci. Nanotechnol. 7, 1 (2007).CrossRefGoogle Scholar
  46. 46.
    M. De Graef, Introduction to Conventional Transmission Electron Microscopy, Cambridge University Press, Cambridge (London/New York) (2003).CrossRefGoogle Scholar
  47. 47.
    P. Stadelmann, Ultramicroscopy 21, 131 (1987).CrossRefGoogle Scholar
  48. 48.
    B.G. Demczyck, J. Cumings, A. Zettl, R.O. Ritchie, Appl. Phys. Lett. 78, 2772 (2001).CrossRefGoogle Scholar
  49. 49.
    R. Arenal, M. Kociak, A. Loiseau, D.J. Miller, Appl. Phys. Lett. 89, 073104 (2006).CrossRefGoogle Scholar
  50. 50.
    A. Zobelli, C.P. Ewels, A. Gloter, G. Seifert, O. Stephan, S. Csillag, C. Colliex, Nano Lett. 6, 1955 (2006).CrossRefGoogle Scholar
  51. 51.
    K. Suenaga, H. Wakabayashi, M. Koshino, Y. Sato, K. Urita, S. Iijima, Nat. Nanotechnol., 2, 358 (2007).CrossRefGoogle Scholar
  52. 52.
    P. Lambin, A. Lucas, Phys. Rev. B 56, 3571 (1997).CrossRefGoogle Scholar
  53. 53.
    M. Gao, J. M. Zuo, R. Twesten, I. Petrov, Appl. Phys. Lett. 82, 2703 (2003).CrossRefGoogle Scholar
  54. 54.
    R. Arenal, M. Kociak, A. Loiseau, D.J. Miller, Microsc. Microanal. 12, 578 (2006).CrossRefGoogle Scholar
  55. 55.
    J.G. Wiltshire, L.-J. Li, L.M. Herz, R.J. Nicholas, M. Glerup, J.-L. Sauvajol, A.N. Khlobystov, Phys. Rev. B 72, 205431 (2005).CrossRefGoogle Scholar
  56. 56.
    L.-J. Li, M. Glerup, A.N. Khlobystov, J.G. Wiltshire, J.-L. Sauvajol, Taylor, R.J. Nicholas, Carbon 44, 2752 (2006).CrossRefGoogle Scholar
  57. 57.
    R.F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, Plenum Press, New York, (1996).Google Scholar
  58. 58.
    C. Jeanguillaume, C. Colliex, Ultramicroscopy 28, 252 (1989).CrossRefGoogle Scholar
  59. 59.
    R. Arenal, O. Stephan, A. Loiseau, C. Colliex, Microsc. Microanal. 13, 1240 (2007).Google Scholar
  60. 60.
    R. Arenal, F. De la Pena, O. Stephan, M. Walls, M. Tence, A. Loiseau, C. Colliex, Ultramicroscopy 109, 32 (2008).Google Scholar
  61. 61.
    R. Arenal, M. Kociak, N.J. Zaluzec, Appl. Phys. Lett. 90, 204105 (2007).CrossRefGoogle Scholar
  62. 62.
    O. Stephan, P.M. Ajayan, C. Colliex, F. CyrotLackmann, E. Sandre, Phys. Rev. B 53, 13824 (1996).CrossRefGoogle Scholar
  63. 63.
    S. Enouz-Vedrenne, O. Stephan, M. Glerup, J.-L. Cochon, C. Colliex, A. Loiseau, J. Phys. Chem. C 112, 16422 (2008).Google Scholar
  64. 64.
    X. Blase, J.C. Charlier, A. De Vita, R. Car, Ph. Redlich, M. Terrones, W.K. Hsu, H. Terrones, D.L. Carroll, P.M. Ajayan, Phys. Rev. Lett. 83, 5078 (1999).CrossRefGoogle Scholar
  65. 65.
    M. Cau, N. Dorval, B. Attal-Trtout, J.L. Cochon, B. Cao, L. Bresson, P. Jaffrennou, M. Silly, A. Loiseau, J. Nanoscien. Nanotech. (in press).Google Scholar
  66. 66.
    X. Blase, A. De Vita, J.C. Charlier, R. Car, Phys. Rev. Lett 80, 1666 (1998).CrossRefGoogle Scholar
  67. 67.
    M. Terrones, J.M. Romo-Herrera, E. Cruz-Silva, F. Lopez-Urias, E. Munoz-Sandoval, J.J. Velazquez-Salazar, H. Terrones, Y. Bando, D. Golberg, Mat. Today 10, 30 (2007).CrossRefGoogle Scholar
  68. 68.
    S. Latil, S. Roche, D. Mayou, J.C. Charlier, Phys. Rev. Lett. 92, 256805 (2004).CrossRefGoogle Scholar
  69. 69.
    R. Czerw, M. Terrones, J.C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, D. Tekleab, P.M. Ajayan, W. Blau, M. Ruhle, D.L. Carroll, Nano Lett. 1, 457 (2001).CrossRefGoogle Scholar
  70. 70.
    M. Terrones, P.M. Ajayan, F. Banhart, X. Blase, D.L. Carroll, J.C. Charlier, R. Czerw, B. Foley, N. Grobert, R. Kamalakaran, P. Kohler-Redlich, M. Ruhle, T. seeger, H. Terrones, Appl. Phys. A 74, 355 (2002).CrossRefGoogle Scholar
  71. 71.
    V. Krstic, G.L.J.A. Rikken, P. Bernier, S. Roth, M. Glerup, Eur. Phys. Lett. 77, 37001 (2007).CrossRefGoogle Scholar
  72. 72.
    A. Yu Kasumov, R. Deblock, M. Kociak, B. Reulet, H. Bouchiat, I. Khodos, Yu.B. Gorbatov, V.T. Volko, C. Journet, M. Burghard, Science 284, 1508 (1999).CrossRefGoogle Scholar
  73. 73.
    A.Y. Kasumov, M. Kociak, M. Ferrier, R. Deblock, S. Gueron, B. Reulet, I. Khodos, O. Stephan, H. Bouchiat, Phys. Rev. B 68, 214521 (2003).CrossRefGoogle Scholar
  74. 74.
    M. Kociak, A.Y. Kasumov, S. Gueron, B. Reulet, I.I. Khodos, Yu.B. Gorbatov, V.T. Volkov, L. Vaccarini, H. Bouchiat, Phys. Rev. Lett. 86, 2416 (2001).CrossRefGoogle Scholar
  75. 75.
    I. Takesue, J. Haruyama, N. Kobayashi, S. Chiashi, S. Maruyama, T. Sugai, H. Shinohara, Phys. Rev. Lett. 96, 057001 (2006).CrossRefGoogle Scholar
  76. 76.
    N. Murata, J. Haruyama, J. Reppert, A.M. Rao, T. Koretsune, S. Saito, M. Matsudaira, Y. Yagi, Phys. Rev. Lett. 100, 27002 (2008).CrossRefGoogle Scholar
  77. 77.
    M. Radosavljevic, J. Appenzeller, V. Derycke, R. Martel, P. Avouris, A. Loiseau, J.-L. Cochon, D. Pigache, Appl. Phys. Lett. 82, 4131 (2003).CrossRefGoogle Scholar
  78. 78.
    K.H. Khoo, M.S.C. Mazzoni, S.G. Louie, Phys. Rev. B 69, 201401 (2004).CrossRefGoogle Scholar
  79. 79.
    M. Ishigami, J. Sau, S. Aloni, M. Cohen, A. Zettl, Phys. Rev. Lett. 94, 056804 (2005).CrossRefGoogle Scholar
  80. 80.
    S.H. Lim, H.I. Elim, X.Y. Gao, A.T.S. Wee, W. Ji, J.Y. Lee, J. Lin, Phys. Rev. B 73, 045402 (2006).CrossRefGoogle Scholar
  81. 81.
    E. Borowiak-Palen, T. Pichler, A. Graff, R.J. Kalenczuk, M. Knupfer, J. Fink, Carbon 42 1123 (2004).CrossRefGoogle Scholar
  82. 82.
    J.S. Lauret, R. Arenal, F. Ducastelle, A. Loiseau, M. Cau, B. Attal-Tretout, E. Rosencher, L. Goux-Capes, Phys. Rev. Lett. 94, 037405 (2005).CrossRefGoogle Scholar
  83. 83.
    L. Wirtz, A. Marini, M. Gruning, A. Rubio, Cond-Mat 0508421 (2005).Google Scholar
  84. 84.
    L. Wirtz, A. Marini, A. Rubio, Phys. Rev. Lett. 96, 126104 (2006).CrossRefGoogle Scholar
  85. 85.
    A.G. Marinopoulos, L. Wirtz, A. Marini, V. Olevano, A. Rubio, L. Reining, Appl. Phys. A 78, 1157 (2004).CrossRefGoogle Scholar
  86. 86.
    C.-H. Park, C.D. Spataru, S.G. Louie, Phys. ReV. Lett. 96, 126105 (2006).CrossRefGoogle Scholar
  87. 87.
    B. Arnaud, S. Lebegue, P. Rabiller, M. Alouani, Phys. Rev. Lett. 96, 026402 (2006).CrossRefGoogle Scholar
  88. 88.
    M.G. Silly, P. Jaffrennou, J. Barjon, J.-S. Lauret, F. Ducastelle, A. Loiseau, E. Obraztsova, B. Attal-Tretout, E. Rosencher, Phys. Rev. B 75, 085205 (2007).CrossRefGoogle Scholar
  89. 89.
    P. Jaffrennou, J. Barjon, T. Schmid, L. Museur, A. Kanaev, J.-S. Lauret, C.Y. Zhi, C. Tang, Y. Bando, D. Golberg, B. Attal-Tretout, F. Ducastelle, A. Loiseau, Phys. Rev. B 77, 235422 (2008).CrossRefGoogle Scholar
  90. 90.
    P. Jaffrennou, F. Donatini, J. Barjon, J.-S. Lauret, B. Attal-Tretout, H. Mariette, F. Ducastelle, A. Loiseau, Chem. Phys. Lett. 442, 372 (2007).CrossRefGoogle Scholar
  91. 91.
    R. Arenal, O. Stephan, M. Kociak, D. Taverna, A. Loiseau, C. Colliex, Phys. Rev. Lett. 95, 127601 (2005).CrossRefGoogle Scholar
  92. 92.
    R. Arenal, O. Stephan, M. Kociak, D. Taverna, A. Loiseau, C. Colliex, Microsc. Microanal. 14, 274 (2008).CrossRefGoogle Scholar
  93. 93.
    A. Gloter, A. Douiri, M. Tencé, C. Colliex, Ultramicroscopy 96, 385 (2002).CrossRefGoogle Scholar
  94. 94.
    A.A. Lucas, L. Henrard, Ph. Lambin, Phys. Rev. B 49, 2888 (1994).CrossRefGoogle Scholar
  95. 95.
    R. Vilanove, C.R. Acad. Sc. Paris 272, 1066 (1971).Google Scholar
  96. 96.
    C. Tarrio, S.E. Schnatterly, Phys. Rev. B 40, 7852 (1989).CrossRefGoogle Scholar
  97. 97.
    L. Henrard, F. Malengreau, P. Rudolf, K. Hevesi, R. Caudano, Ph. Lambin, Th. Cabioc’h, Phys. Rev. B 59, 5832 (1999).CrossRefGoogle Scholar
  98. 98.
    O. Stéphan, M. Kociak, D. Taverna, K. Suenaga, L. Henrard, C. Colliex, Phys. Rev. B 66, 155422 (2002).CrossRefGoogle Scholar
  99. 99.
    M.S. Dresselhaus, G. Dresselhaus, and Ph. Avouris (Eds.), Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Springer-Verlag, Berlin, 2001.Google Scholar
  100. 100.
    S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties, Wiley-VCH, Berlin, 2004.Google Scholar
  101. 101.
    A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000).CrossRefGoogle Scholar
  102. 102.
    K. McGuire, N. Gothard, P.L. Gai, M.S. Dresselhaus, G. Sumanasekera, A.M. Rao, Carbon 43, 219 (2005).CrossRefGoogle Scholar
  103. 103.
    D. sanchez-Portal, E. Hernandez, Phys. Rev. B 66, 235415 (2002).CrossRefGoogle Scholar
  104. 104.
    L. Wirtz, A. Rubio, R. Arenal, A. Loiseau, Phys. Rev. B 68, 045425 (2003).CrossRefGoogle Scholar
  105. 105.
    V.N. Popov, Phys. Rev. B 67, 085408 (2003).CrossRefGoogle Scholar
  106. 106.
    J. Serrano, A. Bosak, R. Arenal, M. Krisch, K. Watanabe, T. Taniguchi, H. Kanda, A. Rubio, L. Wirtz, Phys. Rev. Lett. 98, 095503 (2007).CrossRefGoogle Scholar
  107. 107.
    R. Geick, C.H. Perry, G. Rupprecht, Phys. Rev. 146, 543 (1966).CrossRefGoogle Scholar
  108. 108.
    S. Reich, A.C. Ferrari, R. Arenal, A. Loiseau, I. Bello, J. Robertson, Phys. Rev. B 71, 205201 (2005).CrossRefGoogle Scholar
  109. 109.
    R. Arenal, A.C. Ferrari, S. Reich, L. Wirtz, J.-Y. Mevellec, S. Lefrant, A. Rubio, A. Loiseau, Nano Lett. 6, 1812 (2006).CrossRefGoogle Scholar
  110. 110.
    E. Hernandez, C. Goze, P. Bernier, A. Rubio, Phys. Rev. Lett. 80, 4502 (1998).CrossRefGoogle Scholar
  111. 111.
    L. Vaccarini, C. Goze, L. Henrard, E. Hernandez, P. Bernier, A. Rubio, Carbon 38 1681 (2000).CrossRefGoogle Scholar
  112. 112.
    T. Dumitrica, H. Bettinger, G.E. Scuseria, B. Yakobson, Phys. Rev. B 68, 085412 (2003).CrossRefGoogle Scholar
  113. 113.
    H. Bettinger, T. Dumitrica, G.E. Scuseria, B. Yakobson, Phys. Rev. B 58, 041406 (2002).CrossRefGoogle Scholar
  114. 114.
    P. Kral, E.J. Mele, D. Tomanek, Phys. Rev. Lett. 85, 1512 (2000).CrossRefGoogle Scholar
  115. 115.
    E.J. Mele, P. Kral, Phys. Rev. Lett. 88, 056803 (2002).CrossRefGoogle Scholar
  116. 116.
    S.M. Nakhmanson, A. Calzolari, V. Meunier, J. Bernholc, M. Buongiorno Nardelli, Phys. Rev. B 67, 235406 (2003).CrossRefGoogle Scholar
  117. 117.
    R.J. Baierle, T.M. Schmidt, A. Fazzio, Sol. State Comm. 142, 49 (2007).CrossRefGoogle Scholar
  118. 118.
    X.J. Wu, W. An, X.C. Zheng, J. Am. Chem. Soc. 128, 12001 (2006).CrossRefGoogle Scholar
  119. 119.
    C. Zhi, Y. Bando, C. Tang, R. Xie, T. Sekiguchi, D. Golberg, J. Am. Chem. Soc. 127, 15996 (2005).CrossRefGoogle Scholar
  120. 120.
    S.Y. Xie, W. Wang, K.A. Shiral Fernando, X. Wang, Y. Lin, Y.P. Sun, Chem. Commun., 3670 (2005).Google Scholar
  121. 121.
    S. Pal, S. R. C. Vivekchand, A. Govindaraj, C. N. R. Rao, J. Mater. Chem. 17, 450 (2007).Google Scholar
  122. 122.
    A. Maguer, E. Leroy, Lionel Bresson, E. Doris, A. Loiseau, C. Mioskowski, J. Mater. Chem. 19, 1271 (2008).Google Scholar
  123. 123.
    R. Ma, Y. Bando, H. Zhu, T. Sato, C. Xu, D. Wu, J. Amer. Chem. Soc. 124, 7672 (2002).CrossRefGoogle Scholar
  124. 124.
    S.-H. Jhi, Y.-K. Kwon”, Phys. Rev. B 69, 245407 (2004).CrossRefGoogle Scholar
  125. 125.
    X. Wu, J. Yang, J.G. Hou, Q. Zhu, Phys. Rev. B 69, 153411 (2004).CrossRefGoogle Scholar
  126. 126.
    Z. Zhou, X. Gao, J. Yan, D. Song, Carbon 44, 939 (2006).CrossRefGoogle Scholar
  127. 127.
    Z.Y. Zhang, K. Cho, Phys. Rev. B 75, 75420 (2007).CrossRefGoogle Scholar
  128. 128.
    F. Li, Y. Xia, M. Zhao, X. Liu, B. Huang, Y. Ji, C. Song, Phys. Lett. A 357, 369 (2006).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  1. 1.Laboratoire d’Etude des Microstructres (LEM)UMR 104 CNRS-ONERA, Avenue de la Division LeclercFrance

Personalised recommendations