Introduction to B–C–N Materials

  • Chee Huei Lee
  • Vijaya K. Kayastha
  • Jiesheng Wang
  • Yoke Khin Yap
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 6)


B–C–N is an emerging material system consisting of novel nanostructures of boron (B), carbon (C), boron nitride (BN), carbon nitride (CN x ), boron-carbon nitride (B x C y N z ), and boron carbide (B x C y ). These B–C–N materials are sometimes called as frontier carbon materials, because of their flexibility in forming materials of various types of hybridizations similar to those in the pure carbon system. This chapter provides a concise introduction on all these materials. Readers are referred to various references and other chapters compiled in this book for further reading.


Boron Nitride Graphene Sheet Boron Carbide Triangular Zone Excimer Laser Annealing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Y. K. Yap acknowledges National Science Foundation CAREER Award (DMR 0447555) for supporting the project on frontier carbon materials; the U.S. Department of Energy, Office of Basic Energy Sciences (DE-FG02-06ER46294) for in part supporting the project on boron nitride nanotubes; and the U.S. Department of Army (W911NF-04-1-0029) and the Defense Advanced Research Projects Agency (DAAD17-03-C-0115 through Army Research Laboratory) for supporting his projects on CNTs.


  1. 1.
    H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature (London) 318, 162 (1985).Google Scholar
  2. 2.
    S. Iijima, Nature (London) 354, 56 (1991).Google Scholar
  3. 3.
  4. 4.
    A. Y. Liu, R. M. Wentzcovitch, and M. L. Cohen, Phys. Rev. B 39, 1760 (1989).Google Scholar
  5. 5.
    T. W. Capehart, T. A. Perry, C. B. Beetz, D. N. Belton, G. B. Fisher, C. E. Beall, B. N. Yates, and J. W. Taylor, Appl. Phys. Lett. 55, 957 (1989).Google Scholar
  6. 6.
    R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon nanotubes, Imperial College Press, London (1998).Google Scholar
  7. 7.
    M. S. Dresselhaus and G. Dresselhaus, Eds., Carbon Nanotubes: Synthesis, Structure, Properties and Applications, Springer-Verlag, Berlin (2001).Google Scholar
  8. 8.
    M. W. Geis and M. A. Tamor, in Encyclopedia of Applied Physics, Vol. 5, Diamond and Diamond-like Carbon, G. L. Trigg, Eds., VCH Publishers, Inc., New York, 1–24 (1993).Google Scholar
  9. 9.
    O. J. Vohler, F. von Sturm, and E. Wege, in Encyclopedia of Applied Physics, Vol. 3, Carbon Materials, G. L. Trigg, Eds., VCH Publishers, Inc., New York, 21–40 (1993).Google Scholar
  10. 10.
    M. S. Dresselhaus and G. Dresselhaus, in Encyclopedia of Applied Physics, Vol. 7, Graphite, G. L. Trigg, Eds., VCH Publishers, Inc., New York, 289–301 (1993).Google Scholar
  11. 11. Y. K. Yap, National Science Foundation Award # 0447555, “CAREER: Synthesis, Characterization and Discovery of Frontier Carbon Materials.Google Scholar
  12. 12.
    S. Iijima and T. Ichihashi, Nature (London) 363, 603 (1993).Google Scholar
  13. 13.
    D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Nature (London) 363, 605 (1993).Google Scholar
  14. 14.
    A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fisher, and R. E. Smalley, Science 273, 483 (1996).Google Scholar
  15. 15.
    M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Phys. Rev. B 45, 6234 (1992).Google Scholar
  16. 16.
    J. W. Mintmire, B. I. Dunlap, and C. T. White, Phys. Rev. Lett. 68, 631 (1992).Google Scholar
  17. 17.
    N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992).Google Scholar
  18. 18.
    J. W. G. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Nature (London) 391, 59 (1998).Google Scholar
  19. 19.
    T. W. Odom, J. L Huang, P. Kim, and C. M. Lieber, Nature (London) 391, 62 (1998).Google Scholar
  20. 20.
    N. Wang, Z. K. Tang, G. D. Li, and J. S. Chen, Nature 408, 50 (2000).Google Scholar
  21. 21.
    T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert, and R. E. Smalley, J. Phys. Chem. 99, 10694 (1995).Google Scholar
  22. 22.
    A. Peigney, Ch. Laurent, F. Dobigeon, and A. Rousset, J. Mater. Res. 12, 613 (1997).Google Scholar
  23. 23.
    J. H. Hafner, M. J. Bronikowski, B. R. Azamian, P. Nikolaev, A. G. Rinzler, D. T. Colbert, K. A. Smith, and R. E. Smalley, Chem. Phys. Lett. 296, 195 (1998).Google Scholar
  24. 24.
    H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Chem. Phys. Lett. 260, 471 (1996).Google Scholar
  25. 25.
    V. Kayastha, Y. K. Yap, S. Dimovski, and Y. Gogotsi, Appl. Phys. Lett. 85, 3265 (2004).Google Scholar
  26. 26.
    V. Kayastha, Y. K. Yap, Z. Pan, I. N. Ivanov, A. A. Puretzky, and D. B. Geohegan, Appl. Phys. Lett. 86, 253105 (2005).Google Scholar
  27. 27.
    K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima, Science 306, 1362 (2004).Google Scholar
  28. 28.
    G. Zhang, D. Mann, L. Zhang, A. Javey, Y. Li, E. Yenilmez, Q. Wang, J. P. McVittie, O. Nishi, J. Gibbons, and H. Dai, PNAS 102, 16141 (2005).Google Scholar
  29. 29.
    Y. Murakami, S. Chiashi, Y. Miyauchi, M. Hu, M. Ogura, T. Okubo, and S. Maruyama, Chem. Phys. Lett. 385, 298 (2004).Google Scholar
  30. 30.
    V. K. Kayastha, S. Wu, J. Moscatello, and Y. K. Yap, J. Phys. Chem. C 111, 10158 (2007).Google Scholar
  31. 31.
    S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, Science 298, 2361 (2002).Google Scholar
  32. 32.
    D. L. Medlin, T. A. Friedmann, P. B. Mirkarimi, M. J. Mills, and K. F. McCarty, Phys. Rev. B. 50, 7884 (1994).Google Scholar
  33. 33.
    R. S. Pease, Acta. Cryst. 5, 356 (1952).Google Scholar
  34. 34.
    T. Ishii, T. Sato, Y. Sekikawa, and M. Iwata, J. Cryst. Growth 52, 285 (1981)Google Scholar
  35. 35.
    F. P. Bundy and R. H. Wentorf, Jr, J. Chem Phys. 38, 1144 (1963)Google Scholar
  36. 36.
    R. H. Wentorf, Jr., J. Chem. Phys. 34, 809 (1961)Google Scholar
  37. 37.
    C. B. Samantaray and R. N. Singh, Int. Mater. Rev., 50, 313 (2005)Google Scholar
  38. 38.
    P. B. Mirkarimi, K. F. McCarty, and D. L. Medlin, Mat. Sci. Eng. R 21, 47 (1997)Google Scholar
  39. 39.
    J. Thomas,N. E. Weston, and T. E. O’Connor, J. Am. Chem. Soc. 84, 4619 (1963)Google Scholar
  40. 40.
    A. Rubio, J. L. Corkill, and M. L. Cohen, Phys. Rev. B. 49, 5081 (1994).Google Scholar
  41. 41.
    X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, Euro. Phy. Lett. 28, 335 (1994)Google Scholar
  42. 42.
    M. Ishigami, S. Aloni and A. Zettl, AIP Conf. Proc. 696, 94 (2003).Google Scholar
  43. 43.
    D. Ghosh, G. Subhash, C. H. Lee, Y. K. Yap, Appl. Phys. Letts. 91, 061910 (2007).Google Scholar
  44. 44.
    R. Naslain, in Boron and Refractory Borides, V. I. Matkovich, Ed., Springer-Verlag, New York, 139 (1977).Google Scholar
  45. 45.
    G. Will and K. Ploog, Nature 251, 406 (1974).Google Scholar
  46. 46.
    A. W. Laubengayer, D. T. Hurd, A. E. Newkirk, and J. L. Hoard, J. Am. Chem. Soc. 65, 1924 (1943).Google Scholar
  47. 47.
    A. Y. Liu and M. L. Cohen, Science 245, 841 (1989).Google Scholar
  48. 48.
    A. Y. Liu and M. L. Cohen, Phys. Rev. B 41, 10727 (1990).Google Scholar
  49. 49.
    D. M. Teter and R. J. Hemley, Science 271, 53 (1996).Google Scholar
  50. 50.
    C. M. Niu, Y. Z. Lu, and C. M. Lieber, Science 261, 334 (1993).Google Scholar
  51. 51.
    C. M. Lieber and Z. J. Zhang, Chem. Indus. 22, 922 (1995).Google Scholar
  52. 52.
    J. T. Hu, P. D. Yang, and C. M. Lieber, Phys. Rev. B 57, R3185 (1998).Google Scholar
  53. 53.
    J. T. Hu, P. D. Yang, and C. M. Lieber, Appl. Surf. Sci. 127–129, 569 (1998).Google Scholar
  54. 54.
    O. Matsumoto, T. Kotaki, H. Shikano, K. Takemura, and S. Tanaka, J. Electrochem. Soc. 141, L16 (1994).Google Scholar
  55. 55.
    Y. K. Yap, S. Kida, T. Aoyama, Y. Mori, and T. Sasaki, Appl. Phys. Lett. 73, 915 (1998).Google Scholar
  56. 56.
    Y. K. Yap, S. Kida, T. Aoyama, Y. Mori, and T. Sasaki, Diamond Relat. Mater. 8, 614 (1999).Google Scholar
  57. 57.
    Y. K. Yap, S. Kida, T. Aoyama, Y. Mori, and T. Sasaki, Diamond Relat. Mater. 9, 1228 (2000).Google Scholar
  58. 58.
    M. Itoh, Y. Suda, M. A. Bratescu, Y. Sakai, and K. Suzuki, Appl. Phys. A 79, 1575 (2004).Google Scholar
  59. 59.
    Y. A. Li, Z. B. Zhang, S. S. Xie, and G. Z. Yang, Chem. Phys. Lett. 247, 253 (1995).Google Scholar
  60. 60.
    Z. B. Zhang, Y. A. Li, S. S. Xie, and G. Z. Yang, J. Mater. Sci. Lett. 14, 1742 (1995).Google Scholar
  61. 61.
    S. Kumar, K. S. A. Butcher, and T. L. Tansley, J. Vac. Sci. Technol. A 14, 2687 (1996).Google Scholar
  62. 62.
    C. Y. Hsu and F. C. N. Hong, Jpn. J. Appl. Phys 37, L1058 (1998).Google Scholar
  63. 63.
    W. Lu and K. Komvopoulos, J. Appl. Phys. 85, 2642 (1999).Google Scholar
  64. 64.
    J. Peng, P. Zhang, Y. Guo, and G. H. Chen, Mater. Lett. 29, 191 (1996).Google Scholar
  65. 65.
    Y. A. Li, S. Xu, H. S. Li, and W. Y. Luo, J. Mater. Sci. Lett. 17, 31 (1998).Google Scholar
  66. 66.
    L. D. Jiang, A. G. Fitzgerald, and M. J. Rose, Appl. Surf. Sci. 158, 340 (2000).Google Scholar
  67. 67.
    J. Wei, J. Appl. Phys. 89, 4099 (2001).Google Scholar
  68. 68.
    X. C. Wang, P. Wu, Z. Q. Li, E. Y. Jiang, and H. L. Bai, J. Phys. D: Appl. Phys. 37, 2127 (2004).Google Scholar
  69. 69.
    M. Lejeune, O. Durand-Drouhin, S. Charvet, A. Zeinert, and M. Benlahsen, J. Appl. Phys. 101, 123501 (2007).Google Scholar
  70. 70.
    T. Y. Yen and C. P. Chou, Appl. Phys. Lett. 67, 2801 (1995).Google Scholar
  71. 71.
    Y. F. Zhang, Z. H. Zhou, and H. L. Li, Appl. Phys. Lett. 68, 634 (1996).Google Scholar
  72. 72.
    H. K. Woo, Y. F. Zhang, S. T. Lee, C. S. Lee, Y. W. Lam, and K. W. Wong, Diamond Relat. Mater. 6, 635 (1997).Google Scholar
  73. 73.
    J. L. He and W. L. Chang, Surf. Coat. Technol. 99, 184 (1998).Google Scholar
  74. 74.
    J. P. Riviere, D. Texier, J. Delafond, M. Jaouen, E. L. Mathe and J. Chaumont, Mater. Lett. 22, 115 (1995).Google Scholar
  75. 75.
    A. Fernandez, P. Prieto, C. Quiros, J. M. Sanz, J. M. Martin and B. Vacher, Appl. Phys. Lett. 69, 764 (1996).Google Scholar
  76. 76.
    X. W. Su, H. W. Song, F. Z. Cui, W. Z. Li, and H. D. Li, Surf. Coat. Technol. 84, 388 (1996).Google Scholar
  77. 77.
    Z. C. Wu, Y. H. Yu, and X. H. Liu, Appl. Phys. Lett. 68, 1291 (1996).Google Scholar
  78. 78.
    X. M. He, L. Shu, W. Z. Li, and H. D. Li, J. Mater. Res. 12, 1595 (1997).Google Scholar
  79. 79.
    J. Y. Feng, Y. Zheng, and J. Q. Xie, Mater. Lett. 27, 219 (1996).Google Scholar
  80. 80.
    P. N. Wang, Z. Guo, X. T. Ying, J. H. Chen, X. M. Xu, and F. M. Li, Phys. Rev. B 59, 13347 (1999).Google Scholar
  81. 81.
    Y. G. Li, A. T. S. Wee, C. H. A. Huan, W. S. Li, and J. S. Pan, Surf. Interface Anal. 28, 221 (1999).Google Scholar
  82. 82.
    Kazuhiro Yamamoto, Jpn. J. Appl. Phys. 44, 1879 (2005).Google Scholar
  83. 83.
    T. Hidekazu, M. Sougawa, K. Takarabe, S. Sato, and O. Ariyada, Jpn. J. Appl. Phys. 46, 1596 (2007).Google Scholar
  84. 84.
    D. Li, X.-W. Lin, S.-C. Cheng, V. P. Dravid, Y.-W. Chung, M.-S. Wong, and W. D. Sproul, Appl. Phys. Lett. 68, 1211 (1996).Google Scholar
  85. 85.
    J. Pereira, I. G. Grenier, and V. M. Guilbaud, Thin Solid Films 482, 226 (2005).Google Scholar
  86. 86.
    H. Y. Li, Y. C. Shi, and P. X. Feng, Appl. Phys. Lett. 89, 142901 (2006).Google Scholar
  87. 87.
    T. C. Mu, J. Huang, Z. M. Liu, B. X. Han, Z. H. Li, Y. Wang, T. Jiang, and H. X. Gao, J. Mater. Res. 19, 1736 (2004).Google Scholar
  88. 88.
    A.R. Badzian et al. in “Proceeding of the 3rd International Conference on Chemical Vapor Deposition” (F.A. Claski, Ed.), pp. 747–753. American Nuclear Society, Hinsdale, IL, 1972.Google Scholar
  89. 89.
    K. Montasser, S. Hattori, and S. Monita, Thin Solid Films 117, 311 (1984).Google Scholar
  90. 90.
    L. Maya, J. Am. Ceram. Soc. 71, 1104 (1988).Google Scholar
  91. 91.
    J. Kouvetaksi, T. Sasaki, C. Shen, R. Hagiwara, M. Lerner, K. M. Krishnan, and N. Bartlett, Synth. Metals 34, 1 (1989).Google Scholar
  92. 92.
    L. Maya and L. A. Harris, J. Am. Ceram. Soc. 73, 1912 (1990).Google Scholar
  93. 93.
    M. Yamada, M. Nakaishi, and K. Sugishima, J. Electrochem. Soc. 137, 2242 (1990).Google Scholar
  94. 94.
    T. M. Besmann, J. Am. Ceram. Soc. 73, 2498 (1990).Google Scholar
  95. 95.
    M. Morita, T. Hanada, H. Tsutsumi, Y. Matsuda, and W. Kawaguchi, J. Electrochem. Soc. 139, 1227 (1992).Google Scholar
  96. 96.
    F. Saugnac, F. Teyssandiev, and A. Marchand, J. Am. Ceram. Soc. 75, 161 (1992).Google Scholar
  97. 97.
    N. Kawaguchi and T. Kawashima, J. Chem. Soc., Chem. Commun. 14, 1133 (1993).Google Scholar
  98. 98.
    A. Derré, L. Filipozzi, F. Bouyer, and A. Marchand, J. Mater. Sci. 29, 1589 (1994).Google Scholar
  99. 99.
    M. Hubacek and T. Sato, J. Solid State Chem. 114, 258 (1995).Google Scholar
  100. 100.
    M. O. Watanabe, S. Itoh, K. Mizushima, and T. Sasaki, Thin Solid Films 281-282, 334 (1996).Google Scholar
  101. 101.
    Y. K. Yap, “Boron-Carbon Nitride Nanohybrids,” in Encyclopedia of Nanoscience and Nanotechnology (Foreword by R. E. Smalley), H. S. Nalwa, Ed., Volume 1, 383–394, American Scientific Publishers, (2004).Google Scholar
  102. 102.
    C. H. Lee and Y. K. Yap,“ Current Research Status of Boron-Carbon Nitride Bulks, Thin Films, and Nanostructures,” Chapter 10, in Diamond and Related Materials Research, Shôta Shimizu Ed., Nova Science Publisher, New York, 277–292 (2008).Google Scholar
  103. 103.
    M. Yano, Y. K. Yap, M. Okamoto, M. Onda, M. Yoshimura, Y. Mori, and T. Sasaki, Jpn. J. Appl. Phys. 39, L300 (2000).Google Scholar
  104. 104.
    Y. Kubota, K. Watanabe, O. Tsuda, and T. Taniguchi, Science 317, 932 (2007).Google Scholar
  105. 105.
    Y. Miyamoto, A. Rubio, M. L. Cohen, and S. G. Louie, Phys. Rev. B 50, 4976 (1994).Google Scholar
  106. 106.
    A. Y. Liu, R. M. Wentzcovitch, and M. L. Cohen, Phys. Rev. B 39, 1760 (1989).Google Scholar
  107. 107.
    T. Yuki, S. Umeda, and T. Sugino, Diamond Relat. Mater. 13, 1130 (2004).Google Scholar
  108. 108.
    J. Yu, E. G. Wang, J. Ahn, S. F. Yoon, Q. Zhang, J. Cui, and M. B. Yu, J. Appl. Phys. 87, 4022 (2000).Google Scholar
  109. 109.
    R. Gago, I. Jiménez, and J. M. Albella, Thin Solid Films 373, 277 (2000).Google Scholar
  110. 110.
    M. K. Lei,.Quan Li, Z. F. Zhou, I. Bello, C. S. Lee, and S. T. Lee, Thin Solid Films 389, 194 (2001).Google Scholar
  111. 111.
    D. H. Kim, E. Byon, S. Lee, J.-K. Kim, and H. Ruh, Thin Solid Films 447-448, 192 (2004).Google Scholar
  112. 112.
    Y. Wada, Y. K. Yap, M. Yoshimura, Y. Mori, and T. Sasaki, Diamond Relat. Mater. 9, 620 (2000).Google Scholar
  113. 113.
    Y. K. Yap, Y. Wada, M. Yamaoka, M. Yoshimura, Y. Mori, and T. Sasaki, Diamond Relat. Mater. 10, 1137 (2000).Google Scholar
  114. 114.
    H. Aoki, K. Ohyama, H. Sota, T. Seino, C. Kimura, and T. Sugino, Appl. Surf. Sci. 254, 596 (2007).Google Scholar
  115. 115.
    Pi-Chuen Tsai, Surf. Coat. Technol. 201, 5108 (2007).Google Scholar
  116. 116.
    Y. K. Yap, M. Yoshimura, Y. Mori, and T. Sasaki, Appl. Phys. Lett. 80, 2559 (2002).Google Scholar
  117. 117.
    H. Sun, S.-H. Jhi, D. Roundy, M. L. Cohen, and S. G. Louie, Phys. Rev. B 64, 094108 (2001).Google Scholar
  118. 118.
    A. R. Badzian, Mat. Res. Bull. 16, 1385 (1981).Google Scholar
  119. 119.
    E. Knittle, R. B. Kaner, R. Jeanloz, and M. L. Cohen, Phys. Rev. B 51, 12149 (1995).Google Scholar
  120. 120.
    T. Sasaki, M. Akaishi, S. Yamaoka, Y. Fujiki, and T. Oikawa, Chem. Mater. 5, 695 (1993).Google Scholar
  121. 121.
    S. Nakano, M. Akaishi, T. Sasaki, and S. Yamaoka, Chem. Mater. 6, 2246 (1994).Google Scholar
  122. 122.
    S. Nakano, M. Akaishi, T. Sasaki, and S. Yamaoka, Mater. Sci. Eng. A 209, 26 (1996).Google Scholar
  123. 123.
    Y. Zhao, D. W. He, L. L. Daemen, T. D. Shen, R. B. Schwarz, Y. Zhu, D. L. Bish, J. Huang, J. Zhang, G. Shen, J. Qian, and T. W. Zerda, J. Mater. Res. 17, 3139 (2002).Google Scholar
  124. 124.
    E. Kim, T. Pang, W. Utsumi, V. L. Solozhenko, and Y. Zhao, Phys. Rev. B 75, 184115 (2007).Google Scholar
  125. 125.
    S. Ulrich, H. Ehrhardt, T. Theel, J. Schwan, S. Westermeyr, M. Scheib, P. Becker, H. Oechsner, G. Dollinger, and A. Bergmaier, Diamond Relat. Mater. 7, 839 (1998).Google Scholar
  126. 126.
    Yao, L. Liu and W. H. Su, J. Mater. Res. 13, 1753 (1998).Google Scholar
  127. 127.
    J. Huang, Y. Zhu and H. Mori, J. Mater. Res. 16, 1178 (2001).Google Scholar
  128. 128.
    Y. Miyamoto, A. Rubio, M. L. Cohen, and S. G. Louie, Phys. Rev. B 50, 4976 (1994).Google Scholar
  129. 129.
    Z. W. Sieh, K. Cherrey, N. G. Chopra, X. Blasé, Y. Miyamoto, A. Rubio, M. L. Cohen, S. G. Louie, A. Zettl, and R. Gronsky, Phys. Rev. B 51, 11229 (1995).Google Scholar
  130. 130.
    Y. Zhang, H. Gu, K. Suenaga, and S. Iijima, Chem. Phys. Lett. 279, 264 (1997)Google Scholar
  131. 131.
    M. Terrones, A. M. Benito, C. Manteca-Diego, W. K. Hsu, O. I. Osman, J. P. Hare, D. G. Reid, H. Terrones, A. K. Cheetham, K. Prassides, H. W. Kroto, and D. R. M. Walton, Chem. Phys. Lett. 257, 576 (1996).Google Scholar
  132. 132.
    X. Blasé, J.C. Charlier, A. De Vita, and R. Car, Appl. Phys. Lett. 70, 197 (1997).Google Scholar
  133. 133.
    W. Q. Han, Y. Bando, K. Kurashima, and T. Sato, Jpn. J. Appl. Phys. 38, L755, (1999).Google Scholar
  134. 134.
    W.-Q. Han, J. Cumings, X. Huang, K. Bradley, and A. Zettl, Chem. Phys. Lett. 346, 368 (2001).Google Scholar
  135. 135.
    W.-Q. Han, W. Mickelson, J. Cuming, and A. Zettl, Appl. Phys. Lett. 81, 1110 (2002).Google Scholar
  136. 136.
    M. Terrones, D. Golberg, N. Grobert, T. Seeger, M. R. Reyes, M. Mayne, R. Kamalakaran, P. Dorozhkin, Z.-C. Dong, H. Terrones, M. Ruhle, and Y. Bando, Adv. Mater. 15, 1899 (2003).Google Scholar
  137. 137.
    D. Golberg, P. Dorozhkin, Y. Bando, M. Hasegawa, and Z.-C. Dong, Chem. Phys. Lett. 359, 220 (2002).Google Scholar
  138. 138.
    D. Golberg, Y. Bando, K. Kurashima, and T. Sato, Solid State Commun. 116, 1 (2000).Google Scholar
  139. 139.
    J. Wu, W.-Q. Han, W. Walukiewicz, J. W. AgerIII, W. Shan, E. E. Haller, and A. Zettl, Nano Lett. 4, 647 (2004).Google Scholar
  140. 140.
    C. Y. Zhi, J. D. Guo, X. D. Bai, and E. G. Wang, J. Appl. Phys. 91, 5325 (2002).Google Scholar
  141. 141.
    W. L. Wang, X. D. Bai, K. H. Liu, Z. Xu, D. Golberg, Y. Bando, and E. G. Wang, J. Am. Chem. Soc. 128, 6530 (2006).Google Scholar
  142. 142.
    R. Ma, D. Golberg, Y. Bando, and T. Sasaki, Phil. Trans. R. Soc. Lond. A, 362, 2161 (2004).Google Scholar
  143. 143.
    Y. Miyamoto, M. L. Cohen, and S. G. Louie, Solid State Commun. 102, 605 (1997).Google Scholar
  144. 144.
    W.Q. Han, Y. Bando, K. Kurashima, and T. Sato, Chem. Phys. Lett. 299, 368 (1999).Google Scholar
  145. 145.
    L. S. Panchakarla, A. Govindaraj, and C. N. R. Rao, ACS Nano 1, 494 (2007).Google Scholar
  146. 146.
    R. Czerw, M. Terrones, J.-C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P. M. Ajayan, W. Blau, M. Rühle, and D. L. Carroll, Nano Lett. 1, 457 (2001).Google Scholar
  147. 147.
    J. Liu, S. Webster, and D. L. Carroll, Appl. Phys. Lett. 88, 213119 (2006)Google Scholar
  148. 148.
    M. Doytcheva, M. Kaiser, M. A. Verheijen, M. Reyes-Reyes, M. Terrones, and N. de Jonge, Chem. Phys. Lett. 396, 126 (2004).Google Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  • Chee Huei Lee
    • 1
  • Vijaya K. Kayastha
    • 1
  • Jiesheng Wang
    • 1
  • Yoke Khin Yap
    • 1
  1. 1.Department of PhysicsMichigan Technological UniversityHoughtonUSA

Personalised recommendations