Conduction and Electromigration


The requirements of high-speed sub-100 nm devices are higher conductive interconnecting lines for local and global interconnections and lower associated capacitive reactance of the interconnecting lines. The conductivity of copper (σCu = 0.598 ohm-cm and σ Al = 0.374 ohm-cm) is higher and it offers higher resistance to electromigration (EM) compared to aluminum (or Al-alloy). At the same time, copper has the advantage of making finer wires with lower resistive loss which will subsequently reduce RC delay and increase the speed of the device (Fig. 7.1). Therefore, recently copper has become the primary choice for local and global interconnecting lines for modern integrated circuits (ICs) [1].


Barrier Layer Grain Boundary Twin Boundary Joule Heating Atomic Layer Deposition 


  1. 1.
    W. Steinhoegl, G. Schindler, G. Steinlesberger, M. Traving, and M. Englehardt, Comprehensive study of copper wires with lateral dimensions of 100 nm and smaller, J. Appl. Phys., 97, 023706 (2005) and A.F. Mayadas and M. Shatzkes, Electrical resistivity model for polycrystalline films: The case of arbitrary reflection at external surfaces, Phys. Rev., B, 1 (4), 1382 (1970) and also M. Armacost, Materials 7 Processing. IEEE IITC, San Francisco, CA, (June 2008).Google Scholar
  2. 2.
    G. Steinlesberger, M. Englehardt, G. Schindler, and W. Steinhoegl, Processing technology of the investigation of sub-50 nm copper damascene interconnects, Solid State Electron., 47, 1237 (2002) and K. Banerjee, S. Souri, P. Kapur, and K. Saraswat, 3-D ICs: A novel chip design for improving deep-submicrometer interconnect performance and system-on-chip integration, Proc. IEEE 89, 602 (May 2001) and also M. Leong et al., Transistor scaling with novel materials, Mater. Today, 9(6), 26 (2006)Google Scholar
  3. 3.
    C. Blass, P. Weinberger, L. Szunyog, P.M. Levy, C.B. Sommers, and I. Mertig, Phil. Mag., B-78, 549 (1998) and N. Srivastava and K. Banerjee, A comparative scaling analysis of metallic and carbon nano tube interconnections for nanometer scale VLSI technologies, Proc. 21st Int. VLSI multilevel interconnect Conf. Waikoloa, HI, 393, Sept. 29–2 Oct. (2004) and J.A. Green wood, Br. J. Appl. Phys., 17, 1621 (1966) and R. Holm, Electrical contacts. Theory and applications, Springer-Verlag, Berlin, (1967) and Y.H. Jang, and J.R. Barber, J. Appl. Phys., 94 (11), 7215 (2003) and also J. Van Olmen et al., IEEE IITC Tech Dig.,, 241 (2007)Google Scholar
  4. 4.
    H.E. Camblong and P.M. Levy, Electrical resistivity of a thin film, Cond. Matter., 9911093 V1, Nov. (1999) and also J.Y. Cho et al., J. Electron. Mater., 34 (1), 53 (2005) and N. Michael et al., J. Electron. Mater., 32 (10), 988 (2003) and C.A. Stafford, D. Baeriswyl, and Burki, Jellium model of metallic nanocohesion, Phys. Rev. Letts., 79 (15) 2863 Oct. (1997) and also J. Gouldstone et al., Acta Mater., 55, 4015 (2007)Google Scholar
  5. 5.
    C. Blass, P. Weinberger, L. Szunyog, P.M. Levy, and C.B. Sommers, Phys. Rev., 60, 492 (1999) and H. Kudo, IEEE IITC Burlingame, CA, April (2008)Google Scholar
  6. 6.
    Y. Imry and R. Landauer, Conductance viewed as transmission, Rev. Mod. Phys., 71, S306–S312 (1999) and K.F. Var, F.A.P. Osorio, A.N. Borges, and P.C.M. Machado, Atomistic simulation of ultra submicron MOSFETs, Microelectron. J., 34 (7–8), 599 (2003)Google Scholar
  7. 7.
    G. Chen, Thermal conductivity and ballistic transport in cross plane direction of super lattice, Phys. Rev. B, 57, 14958–14973 (1998) and A. Roy et al., Semicond. Sci. Technol., 21, 1369 (2006)Google Scholar
  8. 8.
    Y.S. Ju and K.E Goodson, Phonon scattering in silicon film with thickness of 100 nm, Appl. Phys. Lett., 74, 3005–3007 (1999) and T. Sun, B. Yao, A. Warren, V. Kumar, K. Bormak, and K.R. Coffee, IEEE IITC, San Francisco, CA, June (2008)Google Scholar
  9. 9.
    C.L. Tien, A. Majumdar, and F.M. Garner, Microscale energy transport, Taylor and Francis Pub., New York, (1998) and O. Muscato, Physica, 365 (2), 409 (2005)Google Scholar
  10. 10.
    D.A. Young, and H.J. Maris, Lattice-Dynamical calculations of the Kapitza resistance between fcc lattices, Phys. Rev. B, 40, 3685–3693 (1989) and G. Ta, C. Ouvrad, H. Chauveau, and S. Nath, Microelectron Relib., 47 (5), 610 (2007)Google Scholar
  11. 11.
    E.H. Sondheimer, Adv. Phys., 1, 1 (1952), and K. Banerjee and A. Mehrotra, Analog IC and signal processing, 35, 97 (2003) and F. Chen and D. Gardner, Influence of line dimensions on the resistance of Cu-interconnects, IEEE Electron Dev. Letts., 19, 508 (1998) and also M. Hauschidt et al., J. Appl. Phys., (2007)Google Scholar
  12. 12.
    K.L. Chopra, Phys. Rev., 155, 660 (1967) and also B. Dieny, J. Phys. Cond. Matter. 4, 8008 (1996)Google Scholar
  13. 13.
    M.P. Oxley and L.J. Allen, ICSC: a program for calculating inelastic scattering cross sections for fast electrons incident on crystal, J. Appl. Cryst., 36, 940–943 (2003)CrossRefGoogle Scholar
  14. 14.
    J.A. Davis et al., Interconnect limits on giga scale integration (GSI) in the 21st century, Proc. IEEE, 89 (3), 305 (2001) and J.Y. Cho, M. Mirkuri, D.N. Lee, J.K. An, and J.A. Szpunar, J. Electron. Mats., 34 (1), 53 (2005) and V. Sukharev, E. Zschech, and W.D. Nix, J. Appl. Phys., 102, 3505 (2007)Google Scholar
  15. 15.
    K. Fuchs, The conductivity of thin metallic films according to the electron theory of metals, Proc. Cambridge Philosophical Soc., 34 (1938), and also S. Datta, Electronic transport in mesoscopic systems, Cambridge University Press., Cambridge, London, (1995)Google Scholar
  16. 16.
    K.C. Elsom and J.R. Sambles, Macroscopic surface roughness and the resistivity of thin films, J. Phys., F11 (647) (1981) and also S.N. Chandler-Wilde and R Potthast, The domain derivative in rough-surface scattering and rigorous estimates for first order perturbation theory, Proc. Royal Soc. Lond., A, 1 (2002)Google Scholar
  17. 17.
    P. Kapur, J. Mcvitte, and K.C. Saraswat, Technology and reliability constrained future copper interconnects, IEEE Trans. Electron Dev., 49, (4) 590 (2002)CrossRefGoogle Scholar
  18. 18.
    K.A. Dun, Reliability implications of ultra-thin copper lines and low-k dielectrics, SEMATECH, TRC, Oct. 25–27 (2004) and also S.N. Chandler-Wilde and R. Potthast, The domain derivative in rough surface scattering and rigorous estimates for first order perturbation theory, Proc. R. Soc. Lond. A, (2002)Google Scholar
  19. 19.
    S.M. Rossnagel and T.S. Kuan, Alteration of Cu-resistivity in size effect regime, J. Vac. Sci. Technol., B-22, (1), 240 (2004)Google Scholar
  20. 20.
    A. Gladkikh, M. Karpovski, A. Palevski, and Y.S. Kaganovski, J. Appl. Phys., D31, 1626 (1998) and also J.A. Davis et al., Interconnect limits on giga scale integration in the 21st century, Proc. IEEE, 89 (3) (2001) and also T. Tonegawn, M. Hiroi, K. Motoyama, K. Fuji, and H. Miyamoto, Proc. IEEE, IITC, 216 (2003) and Y. Igarashi, and T. Ito, J. Vac. Sci. Technol., B-16 (5), 2745 (1998)Google Scholar
  21. 21.
    A.M. Song, A. Lorke, A. Kriele, J.P. Katthaus, W. Wegscheider, and M. Bichler, Non-linear electron transport in an asymetric microjunction: A ballistic rectifier, Phys. Rev. Letts., 80 (17), 3831–3834 (1998) and S. Yokogawa and H. Tsu Vhiya, J. Appl. Phys., 101(1), 013513 Jan. (2007)Google Scholar
  22. 22.
    K. Takayanagi, Y. Kondo, and H. Ohnishi, Jpn. J. Appl. Phys., Int. (3), Jan. (2000)Google Scholar
  23. 23.
    N. Agraiet, J.G. Rodrigo, and S. Vieira, Phys. Rev., B-47, 12345 (1993) and also S.B. Cronin, Y.M. Lin, O. Rabin, M.R. Black, G. Dresselhaus, M. S. Dresselhaus, and P.L. Gai, Microsc. Microanal., 8, 58 (2002) and also F. Chen, J.P. Gambino, J.P. Gill, B. Li, and T.D. Sulivan, US Patent 7231617 (2007)Google Scholar
  24. 24.
    J.L. Pascual et al., Science, 267, 1793 (1995) and also D.M. Saylor, A. Morawiece, and G.S. Rohrer, Acta Mater., 51, 3663 (2003)Google Scholar
  25. 25.
    G.L. Costa-Kramer et al., Phys. Rev., 855, 5416 (1997) and also U.F. Kocks, C.N. Tome and H-R. Wenk, Texture anisotropy: Preferred orientations in polycrystals and their effect on materials properties, Cambridge University Press. New York, (1998)Google Scholar
  26. 26.
    A.F. Hebard, R.R. Ruel, and C.B. Eom, Charge transfer and surface scattering at Cu-C60 planar interfaces, Phys. Rev. B, 54 (19) (1996) and S.N. Chandler-Wilde and C.R. Ross, Scattering by rough surfaces, Math. Methods Appl. Sci., 19, 959 (1996) and also K. Barmark, C. Cabral Jr., K.P. Rodbelt, and J.M.E. Harper, J. Vac. Sci. Technol. B., 24 (6), 2485 Nov. (2006)Google Scholar
  27. 27.
    P. Wissmann, Surface physics, In G. Hohler (ed.) Tracts in modern physics, Springer, New York, Vol. 77 (1975) and G.P. Beyer et al., Al speed Fill, Maters. Sci. Semicond. Process, 2, 75 (1999) and FJJ.V. Loo and G.D. Reck, Acta Metal., 21, 61 (1973) and also S. Zhang et al., IEEE Int. Symp. Adv. Packaging Mater., March (2006)Google Scholar
  28. 28.
    E.H. Sondheimer, The mean free path of electrons in metals, Adv. Phys., 1, 1–42 (1952) and also S. Datta, In R.H. Friend and M.A. Reed (eds.) Physics of electronic transport in single atoms, molecules and related nano-structures, IOP publishing, England, (2004) and also W. Steinhogl, G. Schindler, G. Steinlesberger and M. Engelhardt, Size dependent resistivity of metallic wires in the mesoscopic range, Phys. Rev. B, 66, 075414 (2002)Google Scholar
  29. 29.
    W. Steinhoegl, G. Schindler, G. Steinlesberger, M. Traving, and M. Englehardt, Scaling laws for the resistivity increase of sub-100 nm interconnects, Proc. Int. Conf. simulation of semiconductor processed devices, p. 27 (2003)Google Scholar
  30. 30.
    K. Hansen, E. Laegsgaad, I. Stensgaad and F. Besenbacher, Phys. Rev., 856, 2208 (1997) and W. Zhang et al., Surface and grain boundary scattering studied in beveled polycrystalline copper films, J. Vac. Sci. Technol., 22 (4), 1830 (2004) and also K-C Chen, W-W Wu, C-N Liao, L-J chen and K.N. Tu, Science, 321 (5892), 1066 Aug. (2008)Google Scholar
  31. 31.
    K. Schwab, E.A. Henriksen, J. Woriock, and M.L. Roukes, Nature, 404, 974 (2000)CrossRefGoogle Scholar
  32. 32.
    G. Chen, Ballistic diffusive heat conduction equations, Phys. Rev. Letts., 86, 2297–2300 (2001)CrossRefGoogle Scholar
  33. 33.
    K.E. Goodson and Y.S. Ju, Heat conduction in novel electronic films, Annu. Rev. Mat. Sci., 29, 261–293 (1999) and also T. Turner, Requirements for dual-damascene Cu-line width resistivity measurements, Solid State Technology (SST), April (2000)Google Scholar
  34. 34.
    N.D. Lang, Phys. Rev., B52, 5335 (1995) and F. Chen, J.P. Gambino, J.P. Gill, B. Li, and T.D. Sullivan, U.S. Patent 7231617 June (2007)Google Scholar
  35. 35.
    T. Ishibashi and Y. Yamauchi, A possible near ballistic collection in AlGaAs/GaAs HBT with a modified collector structure, IEEE Trans. Electron. Dev. Ed-35, 401 (1988) and also R.N. Tait, S.K. Dew, T. Smy, and M.J. Brett, J. Appl. Phys., 70, 4295 (1991) and T. Muppidi, D. Field, and J.E. Sanchez, Barrier layer, geometric and alloying effects on the microstructure and texture of copper films and damascene lines for interconnect applications, Thin Solid Films, 471, 63–70 (2005)Google Scholar
  36. 36.
    Q.T. Jiang, Analysis of copper grains in damascene trenches after rapid thermal processing or furnace anneals, J. Electron. Mater., 31 (1), 10 (2002)CrossRefGoogle Scholar
  37. 37.
    J.M.E. Harper, C. Cabral, Jr., P.C. Andricacos, L. Gignac, I.C. Noyan, K.P. Rodbell, and C.K. Hu, J. Appl. Phys., 86, 2616 (1999) and K-C Chen, W-W Wu, C-N Liao, L-J. Chen, and K.N. Tu, Science, 321 (5892) 1066 Aug. (2008)Google Scholar
  38. 38.
    D. Walther, M.E. Gross, K. Evans-Lutterodt, W.L. Brown, M. Oh, S. Merchant, and P Naresh, Room temperature recrystallization of electroplated copper thin films, Proc. MRS., Vol. 612 (2000)Google Scholar
  39. 39.
    L. Lu, Y. Shen, X. Chen, L. Quin, and K. Lu, Ultrastrength and high electrical conductivity in copper, Science, 304, 422 (2004)CrossRefGoogle Scholar
  40. 40.
    J. Stohr et al., Science 259, 658 (1993) and also Kh. M. Manan, Kh. R. Karin, J. Phys. F Metal Phys., 5, 1687 (1975) and P.L. Gai, R. Mitra, and J.R. Weertman, Structural variations in nanocrystalline nickel films, Pure Appl. Chem., 74 (9), 1519 (2002)Google Scholar
  41. 41.
    S.S. Brenner, J. Appl. Phys., 27, 1484 (1956) and also H. Yoshinga, Phys. Stat. Sol., 18, 625 (1966) and also V. Dureuil, C. Ricolleau, M. Gandias, and C. Grigis, Phase transitions in Co nanoclusters grown by pulsed laser deposition, Eur. Phys., J. D., 14, 83 (2001)Google Scholar
  42. 42.
    J.W. Christian and S. Mahajan, Prog. Mater. Sci., 39 (1) (1995) and also R.A. Masumura and I.A. Ovid’ko, Enhanced diffusion near amorphous grain boundaries in nanocrystalline and poly crystalline solids, Mater. Phys. Mech. 1, 31 (2000)Google Scholar
  43. 43.
    S.D. Dahlgren et al., Thin Solid Films, 40, 345 (1977) and also D. Farkas, Fracture mechanisms of symmetrical tilt grain boundaries, Phil. Mag. Letts., 80 (4), 229 (2000) and K-C Chen, W-W Wu, C-N Liao, L-J. Chen, and K.N. Tu, Science, 321 (5892) 1066 Aug. (2008)Google Scholar
  44. 44.
    A.P. Sutton and R.W. Balluffi, Interfaces in crystalline materials, Clarendon Press, Oxford, London, (1995)Google Scholar
  45. 45.
    I. Nakamichi, Mat. Sci. Forum, 207, 47 (1996) and also L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Science, 304, 422 (2004)Google Scholar
  46. 46.
    M.A. Meyers and K.K. Chawla, Mechanical behavior materials, Prentice Hall, Upper Saddle River, NJ, (1999) and A. Gouldstone et al., Acta Mater., 55, 4015 (2007)Google Scholar
  47. 47.
    H. Kawazoe and M. Niewczas, Dislocation microstructures and surface roughness in fatigued fine grained copper polycrystals, Phil. Mag., 84, (3–5), 381 (2004) and T. Zhu, J. Li, and S. Yip, Proc. R. Soc. Lond. A., 462, 1741 (2006)Google Scholar
  48. 48.
    T. Masaru, K. Nobuhiko, and M. Brandbyge, Theory of ballistic electron transport through atom bridge between tip and surface, Proc. APS., Los Angeles, March 18 (2003)Google Scholar
  49. 49.
    M.P. Anderson, G.S. Crest, and D.J. Srolovitz, Phils. Mag., B59, 293 (1989), and also R. Potthast, Point sources and multipoles in inverse scattering, Chapman and Hall, New York, (2001) and L. Lu et al., Acta Mater, 53 (70), 2169 (2005)Google Scholar
  50. 50.
    S.N. Chandler-Wilde, and B. Zhang, A uniqueness result for scattering by infinite rough surfaces, SIAM, J. Appl. Math. 58, 1774 (1998a) and also N. Bonanos, B.C.H. Steele, and E.P. Butler, Applications of impedance spectroscopy, In J.R. McDonald (ed.) Impedance spectroscopy, John Wiley, Chapt. 4, p. 191 (1987)Google Scholar
  51. 51.
    M.P. Anderson, D.J. Srolovitz, G.S. Grest, and P.S. Sahni, Acta Metal., 32(5) 783 (1984) and also H.E. Camblong, and P.M. Levy, Electrical resistivity of a thin metallic film, Cond. Matter. 1, 1 Nov. (1999)Google Scholar
  52. 52.
    K.L. Chopra and M.R. Randlett, J. Appl. Phys., 38, 3144 (1967) and also D.J. Keavney, S.K. Park, C.M. Falco, and J.M. Slaughter, J. Appl. Phys., 86 (1), 476 (1999) and C.A. Schuh, Mater. Today, 9 (5), 32 (2006)Google Scholar
  53. 53.
    J.C. Maxwell, A treatise on electricity and magnetism, 2nd (ed.) Clarendon Press, Oxford, London, (1954) and M.P. Anderson and S. Ling, Computer simulation of transport of thin films, J. Electron. Mater., 19 (11), 1161 Nov. (1990) and A.M. Coratolo, J. Mater. Sci., 41, 3105 (2006)Google Scholar
  54. 54.
    D.R. Fridlind and A.F. Bower, Influence of anisotropic surface diffusivity on electromigration induced void migration and evolution, J. Appl. Phys., 85 (6), 3168 (1999)CrossRefGoogle Scholar
  55. 55.
    O. Kraft and E. Artz, Acta Mater., 45, 1599 (1997)CrossRefGoogle Scholar
  56. 56.
    R.M. Keller, S.P. Baker, and E. Artz, Stress temperature behavior of unpassivated thin copper films. Acta Mater., 47, 415 (1999)CrossRefGoogle Scholar
  57. 57.
    C.K. Hu, R. Rosenberg, and K.Y. Lee, Electromigration path in Cu thin films, Appl. Phys. Lett., 74, 2945 (1999)CrossRefGoogle Scholar
  58. 58.
    L. Zang and H. Gao, Coupled grain boundary and surface diffusion in a polycrystalline thin film constrained by substrate, Z. Metallkd., 93, 417 (2002)CrossRefGoogle Scholar
  59. 59.
    J.R. Rice and T.J. Chuang, Energy variation in diffusive cavity growth, J. Am. Ceram. Soc., 64, 46 (1981) and R.P. Vinci, E.M. Zielinski, and J.C. Bravman, Thin Solid Films, 262, 142 (1995)Google Scholar
  60. 60.
    Y.A. Antipov and H. Gao, Atomic diffusion from a material interface into grain boundary, Proc. Royal. Soc. Lond., A458, 1673 (2002)Google Scholar
  61. 61.
    M.D. Thouless, Effects of surface diffusion on the creep of thin films and sintered arrays of particles, Acta Metal Mater., 41 1057 (1993), and also M.J. Buchler, A. Hartmair, and H. Gao, Atomistic and continum studies of crack like diffusion wedges and dislocation submission thin Films, J. Mech. Phys. Solids, 51, 2105 (2003) and K-C Chen, W-W Wu, C-N Liao, L-J. Chen, and K.N. Tu, Science, 321 (5892) 1066 Aug (2008)Google Scholar
  62. 62.
    J.A. Nucci, Y.S. Diamond, and J.E. Sanchez Jr., Appl. Phys. Lett., 66, 3585 (1995) and also V.R. Hunter, IEEE Trans. Electron. Dev., 44, (2), 304 (1997)Google Scholar
  63. 63.
    J.A. Nucci, R.R. Keller, J.E. Sanchez, and Y.S. Diamond, Appl. Phys. Lett., 68, 4017 (1996)CrossRefGoogle Scholar
  64. 64.
    T.M. Shaw, L. Gignac, X.H. Liu, and R.R. Rosenberg, Stress voiding in wide copper lines. In S.P. Baker, M.A. Korhonen, E. Artz, and P.S. Ho, (eds.) Stress induced phenomena in metallization, 6th Int. Workshop, 177–183 (2001)Google Scholar
  65. 65.
    T. Hara and K. Sakata, Stress in copper seed layer employing copper interconnections, Electrochem. Solid State Lett., 4 (10) G-77 (2001)CrossRefGoogle Scholar
  66. 66.
    S. Balakumar et al., Effect of stress on the properties of copper lines in Cu interconnects, Electrochem. Solid State Lett., 7 (4), G-68 (2004)CrossRefGoogle Scholar
  67. 67.
    O. Kraft, M. Hommel, and E. Artz, Mat. Sci. Eng., A 288, 209 (2000) and H-J Lee, H-H Han, S-H Kong, J-Y Sun, and K-H Oh, MRC Proc. Symp. F, Spring (2006)Google Scholar
  68. 68.
    D. Chocyk et al., Evolution of stress and structure in Cu thin films, Cryst. Res. Technol., 40 (4/5), 509 (2005)CrossRefGoogle Scholar
  69. 69.
    M.F. Doerner and W.D. Nix, Crit. Rev. Solid State Mater. Sci., 14, 225 (1988) and also A.A. Volinsky, Mechanical reliability and characterization of modern microelectronic interconnect structures, Int’l Eng. Consortium (IEC), Royal Plaza Hotel & Trade Center, Marlborough, MA, June 23–25, (2003)Google Scholar
  70. 70.
    H. Windischmann, Criti. Rev. Solid State Mater. Sci., 17, 547 (1992)CrossRefGoogle Scholar
  71. 71.
    T. Hara, K. Sakata, and Y. Yoshida, Electrochem. Solid State Lett., 5, C41 (2002) and D. Xu, W-L Kwan, K. Chen, X. Zhang, V. Ozoli and K.N. Tu, Appl. Phys. Lett., 91, 254105 Dec. (2007)Google Scholar
  72. 72.
    P. Besser et al., MRS. Symp. Proc., 563 (1999) and P. Besser, Stress induced phenomena in metallization, AIP Conf. Proc., 491, 229 (1999) and also D. Rodney et al., Mat. Sci. Eng. 13, 427 (2005)Google Scholar
  73. 73.
    P. Besser, SRC /TRC on Reliability, SEMATECH, Austin, TX, Nov. (2000) and A. Gouldstone et al., Materialia, 55, 4015 (2007)Google Scholar
  74. 74.
    M.A. Korhonen, P. Boergesen, K.N. Tu, and C.Y. Li, J. Appl. Phys., 73, 3790 (1993) and also Z. Lu, W. Huang, M.R. Stan, K. Skadron, and J. Lach, Interconnect life time prediction for reliability aware systems, IEEE Trans. On VLSI systems, 15 (2), 159 (2007) and J.J. Clement and C.V. Thompson, J. Appl. Phys., 78 (2), 900 (1995) and N.L. Beverly, G.B. Alers, and J.A. Prybyla, Appl. Phys. Lett., 68 (17), 2372 (1996)Google Scholar
  75. 75.
    D. Gan, P.S. Ho, R. Huang, J. Leu, J. Maiz, and T. Scherban, Isothermal stress relaxation in electroplated Cu-films. I Mass transport measurements, J. Appl. Phys., 97, 103531 (2005) and also I.A. Bloch, J. Appl. Phys. 47, 1203 (1976)Google Scholar
  76. 76.
    J.L. McCrea, K.T. Aust, G. Palumbo, and U. Erb, Mat. Res. Soc. Proc., 581 (2000) and also D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, Appl. Phys. Lett., 83, 2934 (2003)Google Scholar
  77. 77.
    A. Seeger and G. Schottky, Acta Met. 7, 495 (1959) and also K.E. Goodson and Y. Ju, Ann. Rev. Mater. Sci., 29, 261 (1999) and W. Liu and M. Ashegi, IEEE 21st Semicond. Therm. Meas. Management Symp., p. 243, March (2005)Google Scholar
  78. 78.
    M.B. West and C.R. Robenson, Phil. Mag., 19, 887 (1969) and also D.G. Cahil et al., J. Appl. Phys. 93, 793 (2003)Google Scholar
  79. 79.
    N.F. Mott, Adv. Phys. 16, 49 (1967) and also B. Yang and G. Chen, Thermal conductivity, T.M. Tritt (ed.) Pergamon Press, Oxford, (2003) and S. P. Gurrum, PhD thesis, Thermal modeling and characterization of nano-scale metallic interconnects, Georgia Institute of Technology, May (2006)Google Scholar
  80. 80.
    A.K. Jonscher, Nature, 256, 566 (1975), and also L.I. Maissel, Electrical properties of metallic thin films, In L.I. Maissel and R. Glang (eds.) Hand book of thin film technology, McGraw Hill, New York, pp. 11–18 (1983) and Z. Lu, W. Huang, M.Q. Stan, K. Skadron, and J. Lach, IEEE Trans. On VLSI syst., 15 (2), 159 (2007)Google Scholar
  81. 81.
    E. Emin, Adv. Phys., 22, 57 (1973) and also T. Chang and G. Chen, Phonon heat conduction in thin films, J. Heat Transf., 123(1), 340 (2001)Google Scholar
  82. 82.
    Z.A. Weinberg and R.A. Pollak, Appl. Phys. Lett., 27, 254 (1975) and also Annealing disorder, In J.W. Mayer and S.S. Lau (eds.) Electronic materials science, Macmillan Pub. New York., p. 239, (1990)Google Scholar
  83. 83.
    A. Rose, Performance of photoconductors, in Photoconductivity conference, R.G. Breckenridge, B.R. Russel, and E.E. Hahn, Wiley, New York, (1956) and also J.B.D. Soole and H. Schumacher, InGaAs metal semiconductor photodetectors for long wavelength communications, IEEE Quant. Electron., QE-27, 737 (1991) and also M.C.M. Lee and M.C. Wu, J. Microelectron Mech. Syst. 5(2), 338 (2006)Google Scholar
  84. 84.
    J.A. Nucci, R.R. Keller, D.P. Field, and Y.S. Diamond, Grain boundary mis orientation angles and stress induced voiding in oxide passivated copper interconnects, Appl. Phys. Lett., 70 (10), 1242 (1997) and H.J. Lee, H.-N. Han, J.-Y. Sun, and K.-H. Oh, MRS Proc. Symp F, Spring (2006)Google Scholar
  85. 85.
    J.M. Ziman, Principles of the theory of solids, Cambridge University press, Cambridge, London, p. 236 (1964)MATHGoogle Scholar
  86. 86.
    H. Ehrenreich, Optical properties and electronic structure of metals and alloys, F. Abbles (ed.) North Holland, Amsterdam, (1965) and also H.B. Nie et al., Structural and electrical properties of tantalum nitride thin films fabricated by using radio-frequency magnetron sputtering, Appl. Phys. A, 73, 229 (2001)Google Scholar
  87. 87.
    J.A. Nucci, R. Keller, S. Kramer, C.A. Volkert, and M.E. Gross, Localized measurement of strains in damascene copper interconnects by convergent beam electron diffraction, MRS Symp., 612 D 8.5.1, (2000) and also S-H Rhee, C.E. Murray, and P.B. Besser, MRS Proc. Symp. F, spring (2006)Google Scholar
  88. 88.
    S. Kramer and J. Mayer, In O. Kraft, et al., (eds.) Proc. 5th Intl. Workshop on stress induced phenomena in metallization, 491, 289 (1999) and also M. Huang, Z. Suo, and Q. Ma, J. Mech. Phys. Solids 50, 1079 (2002)Google Scholar
  89. 89.
    Y. Shen and U. Ramamurty, Temperature dependent inelastic response of passivated copper films, J. Vac. Sci. Technol., B-21 (4), 1258 (2003)CrossRefGoogle Scholar
  90. 90.
    A. Gangulee, J. Appl. Phys., 45, 867 (1972) and also R. Monig, R.R. Keller, and C.A. Volkert, Thermal fatigue of thin films, Rev. Sci. Instrum. 75 (11), 4997 (2004)Google Scholar
  91. 91.
    M.J. Aus, B. Szpunar, U. Erb, A.M. El-Sherik, G. Palumbo, and K.T. Aust, J. Appl. Phys., 75, 3632, (1994) and also C.U. Kim, J. Park, N. Michael, P. Gillespie, and R.N. Augru, Study of electron scattering mechanism in nano-scale Cu-interconnection, 32 (10), 982 (2003) and J. Bonevich, D. van Heerden, and D. Rossel, J. Mater. Sci. 14, 1977 (1999)Google Scholar
  92. 92.
    A. Zehe, A selection rule for void-resistant crystalline metallic alloys exposed to electromigration, Cryst. Res. Technol., 37(8), 817 (2002)CrossRefGoogle Scholar
  93. 93.
    R. Rosenberg, D.C. Edelstein, C.K. Hu, and K.P. Rodbell, Annu. Rev. Mater. Sci., 30, 229 (2000)Google Scholar
  94. 94.
    S.P. Hau-Riege and C.V. Thompson, J. Mater. Res. 15, 1797 (2000)Google Scholar
  95. 95.
    Z. Suo, In W. Gerberich and W. Yang, (eds.) Comprehensive structural integrity, Elsevier, Amsterdam, Vol. 8, p. 265 (2003)Google Scholar
  96. 96.
    S.P. Hua-Riege, J. Appl. Phys., 91, 2014 (2002)CrossRefGoogle Scholar
  97. 97.
    C.K. Hu et al., Appl. Phys. Lett., 63, 869 (2003)CrossRefGoogle Scholar
  98. 98.
    S.P. Hau-Reige, J. Appl. Phys., 91, 2104 (2002) and also C.S. Hau-Reige, A.P. Marathe, and V. Pham, Proc. 41st Annual IEEE Int. Reliab. Symp., Dalas, p. 173, (2003)Google Scholar
  99. 99.
    J.M. Paik, K.C. Park, and Y.C. Joo, Relationship between grain structures and texture of Cu-damascene liner, J. Electron. Mater., 33 (1) (2004) and also B.C. Valek et al., Combined high voltage and X-ray microdiffraction studies of damascene copper interconnects, LBNL, NIH and DOE funded research, (2000)Google Scholar
  100. 100.
    C. Lingk, M.E. Gross, and W.L. Brown, J. Appl. Phys., 87, 2232 (2000) and also E. Linger, L. Gignac, C.K. Hu, and S. Kaldor, In situ study of void growth kinetics in electroplated Cu-lines, J. Appl. Phys., 92 (4), 1803 (2002)Google Scholar
  101. 101.
    K.N. Tu, Recent advances on electromigration in very large scale integration of interconnects, J. Appl. Phys., 94 (9), 5451 (2003)CrossRefGoogle Scholar
  102. 102.
    N. Michael, C. Kim, P. Gillespie, and R. Augur, Electromigration failure in ultra-fine copper interconnects, J. Electron. Mater. 32 (10), 983 (2003)CrossRefGoogle Scholar
  103. 103.
    A. Gladkikh, Y. Lereah, E. Glickman, A. Karpovski, A. Plevski, and J. Schubert, Hillock formation during electromigration in Cu and Al three dimensional grain growth, Appl. Phys. Lett., 66 (10), 1214 (1995) and also X. Pang, A.M. Kroman, and G.H. Bernstein, Electromigartion in nanometer Al-Cu interconnect lines, J. Electrochem. Soc., 148(2), G-103 (2002)Google Scholar
  104. 104.
    J. He, Z. Suo, T.N. Marieb, and J.A. Maiz, Electromigration lifetime and critical void volume, Appl. Phys. Lett., 85 (20), 4639 (2004)CrossRefGoogle Scholar
  105. 105.
    J.H. Choy, and K.L. Kavanagh, Effects of capillary force on copper/dielectric interfacial void evolution, Appl. Phys. Lett., 84 (25), 5201 (2004)CrossRefGoogle Scholar
  106. 106.
    S.K. Ghandhi, VLSI fabrication principle, Si & GaAs, Wiley, New York, p. 455 (1983) and also F. Braud, G. Tartavel, J. Palleau, J. Torres, A. Perisco, and G. Reimbold, Quality and Reliab. Eng. Intl., 12, 305 (1996) and also C. Chen, 9th Int. Workshop on Stress induced Phenomena in metallization, University of Japan, April 2007Google Scholar
  107. 107.
    J. Cho, K. Mirpuri, D.N. Lee, J.K. An, and J. Szpunar, Texture investigation of copper interconnects with different line width, J. Electron Mater. 34 (2), 53 (2004)Google Scholar
  108. 108.
    A.W. Hunt, S.P. Riege, and J.A. Prybyla, Appl. Phys. Lett., 70, 2541 (1997)CrossRefGoogle Scholar
  109. 109.
    S.P. Hau-Riege and C.V. Thompson, The effects of the mechanical properties of confinement material on electromigration in metallic interconnects, Mat. Res. Soc. Symp. 612, D10.2.1 (2000)Google Scholar
  110. 110.
    C.K. Hu, R. Rosenberg, H. Rathore, D. Nguyen, and B. Agarwala, Scaling effect on electromigration in on-chip Cu-wiring, Proc. Int. Interconnect Technol., IEEE Conf., p. 267 (1999)Google Scholar
  111. 111.
    A. Gladkikh, M. Karpovski, A. Palevski, and Y. Kaganovski, J. Phys. D, 31. 1626 (1998)CrossRefGoogle Scholar
  112. 112.
    O. Kraft and E. Artz, Acta Mater., 45, 1599 (1997) and also, J.M. Paik, K.C. Park, and Y.C. Joo, Relationship between grain structures and texture of damascene Cu-line, J. Electron. Mater., Jan (2004)Google Scholar
  113. 113.
    J. He, Z. Suo, T. N. Marieb, and J. Maiz, Electromigration lifetime and critical void volume, Appl. Phys. Lett., 85 (20), 4539 (2004)CrossRefGoogle Scholar
  114. 114.
    C.K. Hu, L. Gignac, S.G. Malhotra, R. Rosenberg, and S. Boettcher, Mechanisms for very long electromigration lifetime in dual damascene Cu-interconnections, Appl. Phys. Lett., 78 (7), 904 (2001)CrossRefGoogle Scholar
  115. 115.
    E.T. Ogawa, K.D. Lee, V.A. Blasche, and P.S. Ho, Electromigration reliability issues in dual damascene Cu-interconnections, IEEE Trans. On Relib., 51 (4), 403 (2002)CrossRefGoogle Scholar
  116. 116.
    A.C. Damask and G.J. Dienes, Point defects in metals, Gordon Breach, Sci. Pub. New York, (1963) and also V.M. Dwyer, An analysis of the weakest link model for early E-M failure, J. Phys. D, 37, 2935 (2004)Google Scholar
  117. 117.
    V. Vand, Proc. Phys. Soc. Lond. 55, 222 (1943), and also N. Michael, C. Kim, P. Gillespie and R. Odauger, Mechanisms of E-M failure in submicron Cu-interconnect, J. Electron. Mater., 31 (10), 1004 (2002)Google Scholar
  118. 118.
    P.G. Wilkinson, J. App. Phys., 22, 419 (1951) and also P. Kim, L. Shi, P. Pang, and A. Majumdar, Appl. Phys. Lett., 83, 2934 (2003)Google Scholar
  119. 119.
    W. Buckel, R. Hilsch, and Z. Physik., 138, 109 (1954) and also C. Dames and G. Chen, J. Appl. Phys., 95, 682 (2004)Google Scholar
  120. 120.
    W.C. Johnson, P.W. Voorhees, and D.E. Zupon, The effects of elastic stress on the kinetic of Oswald ripening: Two particle problem, Met. Trans. A., (Phys. Met. Mater. Sci.) 20A (7) 1175 (1989) and also A. Raab and G. Springholtz, Oswald ripening and shape transformations of self assembled PbSe quantum dots on PbTe (111) during annealing, Appl. Phys. Lett., 77 (19), 2991 (2000)Google Scholar
  121. 121.
    D.Y. Kim, Ph.D. Thesis, Mat. Sci. Eng., MIT, Dec. (2003)Google Scholar
  122. 122.
    A. Sekiguchi, J. Koike, S. Kamiya, M. Saka, and K. Maruyama, Void formation by thermal stress concentration at twin interfaces in Cu-thin film, Appl. Phys. Letts., 79 (9), 1264 (2001)CrossRefGoogle Scholar
  123. 123.
    M.W. Lane, E.G. Liniger, and J.R. Lloyd, J. Appl. Phys., 93, 1417 (2003)CrossRefGoogle Scholar
  124. 124.
    L.W. Chu, W.K. Chim, K.L. Pey, J.Y.K. Yeo, and L. Chen, J. Electron. Mater., 30 (12) 1513 (2001)CrossRefGoogle Scholar
  125. 125.
    A. Sekiguchi, J. Koike, S. Kamiya, M. Saka, K. Maruyama, Void formation by thermal stress concentration at twin interfaces in Cu-thin films, Appl. Phys. Lett., 79 (9), 1264 (2001) and A. Gouldstone et al., Acta Mater., 55, 4015 (2007)Google Scholar
  126. 126.
    F. Erclessi and J.B. Adams, Europhys. Lett., 26, 583 (1994) and also C.N. Liao, and K.C. Chen, Effect of interfacial resistance and contact size on current crowding at Ni/poly Si junction, Semi. Sci. Technol., 20, 659 (2005)Google Scholar
  127. 127.
    T.O. Odurtani and E.E. Oren, A comparative simulation of the voids dynamics under the action of electromigration and capillary forces in narrow thin interconnects, Adv. Metallization Conf., San Diego, CA, Oct 3–5, (2000)Google Scholar
  128. 128.
    A.P. Sutton and V. Vitek, Phil. Trans. R. Soc. A., 309, 37 (1983) and also T. Wang et al., Stress migration and electromigration improvement for Cu-double damascene interconnections, J. Electrochem. Soc. 152 (1), G-45, (2005)Google Scholar
  129. 129.
    D. Farkas, Fracture mechanism of symmetrical tilt grain boundaries, Phil. Mag. Lett. 80 (4), 229–237 (2000)CrossRefGoogle Scholar
  130. 130.
    F. d ‘ Heurle and R. Rosemberg, Electromigration in thin films, In G. Haas, M. Framcombe, and R. Hoffman (eds.) Physics of thin films, Academic Press, New York, Vol. 7, (1973) and also A. Gladkikh, M. Karpovski, A. Palevski, and Y.S. Kagnovski, Effect of microstructure on electromigration kinetics in Cu-lines, J. Phys. D. Appl. Phys., 31, 1626 (1998)Google Scholar
  131. 131.
    A, Christou, Electromigration and electronic device degradation, Wiley, New York, (1994) and also R. Frankovic, and G.H. Bernstein, IEEE Trans. Electron. Dev., 43, 2233 (1996)Google Scholar
  132. 132.
    E. Jiran and C.V Thompson, Capillary instability in thin films, J. Electron. Mats., 19 (11), 1153 (1990) and also S. Hoffmann et al., Effect of catalyst film thickness on plasma enhanced nanotube growth, J. Appl. Phys., 98, 034308 (2005) and Y.C. Choo and C.V. Thompson, Analytic model for grain structures of near bamboo interconnects, J. Appl. Phys., 76 (11), 7339 (1994)Google Scholar
  133. 133.
    J.R. Lloyd and S. Nakahara, Thin Sold Films, 72, 451 (1988) and also C. Ji, G. Oskam, and P.C. Searson, Electrodeposition of copper on silicon from copper sulfate solution, J. Electrochem. Soc., 148 (1), C746 (2001)Google Scholar
  134. 134.
    R.A. Sigsbee, J. Appl. Phys., 44(6), 2533 (1973) and also A.A. Pasaand and W. Schwarzacher, Phys. Status. Solidi. A, 173, 73 (1999)Google Scholar
  135. 135.
    I.A. Blech and E.S. Meieran, Appl. Phys. Lett., 11, 263 (1967) and also R. Krumin, B. Guel, C. Schmidt, and G. Staikov, Electrochim. Acta, 45, 3255 (2000)Google Scholar
  136. 136.
    I. Blech, H. Sello, and L. V. Gregor, Thin films in integrated circuits, In L.I. Maissel and R. Glang, (eds.) Hand book of thin film technology, McGraw Hill, New York, (1983) and also J.C. Ziegler et al., Surf. Sci., 452, 150 (2000)Google Scholar
  137. 137.
    Y.E. Strausser, B.L. Euzent, R.C. Smith, B.M. Tracy, and K. Wu, 25th annual Proc. Int. Rliab. Symp. IEEE, p. 140, (1987) and also A.A. Volinski et al., Microstructure and mechanical properties of electroplated Cu thin films, Mat. Res. Soc. Symp., 649, Q5.3.1 (2001)Google Scholar
  138. 138.
    J.E. Sanchez, L.T. McKnally, and J.W. Morris, Morphology of electromigration induced damage and failure in alloy thin film conductors, J. Electron. Mats., 19 (11), 1213 (1990)CrossRefGoogle Scholar
  139. 139.
    S. Vaidya, T.T. Sheng, and A.K. Sinha, Appl. Phys. Lett., 36, 464 (1980) and also J.M. Paik, K.C. Park, and Y.C. Joo, Relationship between grain structures and texture of damascene Cu-line, J. Electron. Mater., Jan. (2004)Google Scholar
  140. 140.
    J.Y. Cho, K. Mirpuri, D.N. Lee, J.K. An, and J.A. Szpunar, Texture investigation of Cu-interconnects with different line width, J. Electron. Mater., 34 (1), 53 (2005)CrossRefGoogle Scholar
  141. 141.
    J.W. Mcpherson and C.F. Dunn, J. Vac. Sci. Technol., B5, 1321 (1987) and also C.K. Hu, K.P. Rodbell, T.D. Sulivan, K.Y. Lee, and D.P. Bouldin, Electromigration and stress induced voiding in fine Al and Al-alloy thin films, IBM J. Res. Dev., 39(4) (1995)Google Scholar
  142. 142.
    R.H. Koch, J.R. Lloyd and J. Cronin, Phys. Rev. Lett., 55, 2487 (1985), and also E. Glickman and M. Nathan, J. Appl. Phys., 80, 3782 (1996)Google Scholar
  143. 143.
    S.R. Shatynski, IEEE J. Solid State Circuits, SC-19, 98 (1984) and also H.P. Kong. Y. Wu, Y.Y. Wang, and C.C. Wan, J. Electron. Mater., 32 (1) (2003)Google Scholar
  144. 144.
    D.S. Campbell, The deposition of thin films by chemical methods, In M.I. Maissel and R. Glang (eds.) Hand book of thin film technology, McGraw Hill, New York., pp. 5-5, 5-6 (1983) and also R. Ryu et al., Microstructure and reliability of copper interconnects, IEEE Trans. On Electron Dev., 46 (6), 1113 (1999)Google Scholar
  145. 145.
    D.Y. Kim, Study of Reliability of VLSI interconnection structures, Ph.D. thesis, Stanford University, Stanford, CA, Dec. (2003)Google Scholar
  146. 146.
    C.S. Hau-Riege and C.V. Thompson, Electromigration in Cu-interconnects with very different grain structures, Appl. Phys. Lett., 78 (22), 3451 (2001)CrossRefGoogle Scholar
  147. 147.
    C. Ryu, A.L.S Loke, T. Nogami, and S. Wong, Effect of texture on the electromigration of CVD copper, IEEE Int. Relib. Phys. Symp., Proc. 201–205 (1997)Google Scholar
  148. 148.
    C. Ryu, K.W. Kwon, A.L.S. Loke, V.M. Dubin, R.A. Kavari, G.W. Ray, and S.S. Wong, Electromigration of submicron damascene copper interconnects, 1998 Symp. On VLSI technology, June 8–11 (1998)Google Scholar
  149. 149.
    N.L. Michael, C. Kim, P. Gillespie, and R. Augur, Electromigration failure in ultrafine copper interconnects, J. Electron. Mat., 32 (10) (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Radiation Monitoring Devices, Inc.WatertownUSA

Personalised recommendations