Advertisement

Deposition Technologies of Materials for Cu-Interconnects

  • Tapan Gupta
Chapter

Scaling of the feature size from 250 nm to sub-100 nm has restricted the use of aluminum (Al) interconnects. At the same time demands for higher speed, better performance of the scaled circuits, and thinner gate material need better dielectric materials other than silicon dioxide (SiO2). As a result, copper has replaced Al-interconnect and low-K interlayer and high-K gate dielectric materials have replaced SiO2. Deep submicron copper interconnects cannot be formed by using the conventional cloisonné approach which is ubiquitous in Al metallization. Experimental evidence shows that dry etching of Cu is difficult and photoresist work cannot withstand the temperatures required for Cu-etching (>200 ºC). Moreover, wet etching and lift-off techniques of Cu have been attempted without much success. So a new process technology known as the damascene process has been introduced to integrate Cu-interconnects in modern integrated circuits (ICs).

Keywords

Barrier Layer Atomic Layer Deposition Seed Layer Physical Vapor Deposition Plasma Enhance Chemical Vapor Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    International technology roadmap for semiconductors (ITRS), (2001) and also S.R. Riedel, S.E. Schulz, and T. Gessner, Microelectron. Eng., 50, 503 (2000), N.F. Wu et al., PECVD Ti-TiNx barrier with multilayered amorphous structure of high thermal stability for Cu-metallization, Electrochem. Solid State Lett., 6 (2), 6–27 (2003), and Y.J. Mei et al., Thin Solid Films, 308, 594 (1997), and J. Hu et al., Thin Solid Films, 308, 589 (1997)Google Scholar
  2. 2.
    R. Roger et al., J. Electrochem. Soc., 146 (9), 3248–3256 (1999) and also B. Chin, Solid State Technol., 41, 141 (1998)Google Scholar
  3. 3.
    J. Hopwood (ed.), Ionized physical vapor deposition, Academic Press, San Diego, CA, (2000) and S.-H. Kim et al., Electrochem. Solid State Lett., 11 (5), H-127 (2008)Google Scholar
  4. 4.
    J. Werner, H.P. Strunk, and H.W. Schock (eds.), Low Temperature deposition of microcrystalline silicon by microwave plasma enhanced sputtering in polycrystalline semiconductors, Schwabisch Gmund, Germany, (1998)Google Scholar
  5. 5.
    L. Chin and T. Ritzdorf, Semicond. Fabr., 12th ed. (July, 2000) and also M.H. Tsai, S.C. Sun, H.T. Chiu, C.E. Tsai, and S.H. Chuang, Appl. Phys. Lett., 67, 1128 (1995)Google Scholar
  6. 6.
    L.B. Freund and S. Suresh, Thin Film materials,  Chapter 1, Cambridge university Press, London, (2003) and J.W. Christian, The theory of transformation in metals and alloys, Pergamon Press, London, (1965) and also K. Maex et al., J. Appl. Phys., 98, 8793 (2003)
  7. 7.
    C.V. Thompson, Structural evolution during processing of polycrystalline films, Annu. Rev. Mater. Sci., 30, 159–190 (2000) and also A.R. Grone, Current induced marker motion in copper, J. Phys. Chem. Solids, 28, 347–350 (1962)Google Scholar
  8. 8.
    H.H. Yu, M.Y. He, and J.W. Hutchinson, Edge effects in thin film delamination, Acta Mater., 49, 93–107 (2001) and also D.S. Campbell, Mechanical properties of thin films, In L.I. Maissel and R. Glang (eds.),  Chapter 12, McGraw Hill, New York, (1983)
  9. 9.
    R.H. Dauskardt, M. Lane, Q. Ma, and N. Krishna, Adhesion and de-bonding of multilayer thin film structures, Eng. Fract. Mech., 61, 141–162 (1998) and also K.L. Chopra, Thin film phenomena, McGraw Hill, New York, (1969)Google Scholar
  10. 10.
    L.B. Freund and S. Suresh, Thin film materials, p. 571, Cambridge University Press, London, (2003) and also G.A. Bassett, J.W. Menter, and D.W. Pashley, In C.A. Neugebaur, J.B. Newkirk and D.A. Vermilyea (eds.), Structure and properties of thin films, John Wiley, New York (1959) and also V. Sukarev, E. Zschech, and W.D. Nix, J. Appl. Phys., 102, 053505-1-14 (2007)Google Scholar
  11. 11.
    S. Wolf and R.N. Tauber, Silicon processing for VLSI era Vol-I, p. 185, Lattice Press, Sunset Beach, CA, (1986)Google Scholar
  12. 12.
    M.L. Green and R.A. Levy, Chemical vapor deposition for metals for integrated circuit applications, J. Met., 37, 63 (1985) and also J.M.E. Harper, C. Cabral, P.C. Andricacos, L. Gignac, I.C. Noyan, K.P. Rodbell, and C.K. Hu, J. Appl. Phys., 86, 2516 (2000)Google Scholar
  13. 13.
    T.P. Moffat et al., Superconformal electrodeposition of copper in 500–90 nm features, J. Electrochem. Soc., 147 (12), 4524–4535 (2000) and also T.P. Moffat, J.E. Bonevich, W.H. Huber, A. Stanishevski, D.R. Kelly, G.R. Stafford.Google Scholar
  14. 14.
    J.M. Poate, K.N. Tu, and J.W. Mayer, Thin films interdiffusion and reactions, Wiley, New York, (1978)Google Scholar
  15. 15.
    J.A. Nucci, R.R. Keller, J.E. Sancez, Jr., and Y.S. Diamond, Local crystallographic texture and voiding in passivated interconnects, Appl. Phys. Lett., 69 (26), 4017 (1996)CrossRefGoogle Scholar
  16. 16.
    T.K. Gupta, Hand book of thick and thin film microelectronics,  Chapter 5, Wiley, Hoboken, NJ, (2003)CrossRefGoogle Scholar
  17. 17.
    J.A. Hopwood, Ionized Physical Vapor Deposition, Academic Press, San Diego, (2000) and also D.M. Mattox, Hand book of physical vapor deposition, W. Andrew Pub./Noyes, Park Ridge, NJ, (1998)Google Scholar
  18. 18.
    K.L. Lai, Ionized hollow cathode magnetron sputtering, p. 95, In J.A. Hopwood, Ionized physical vapor deposition, Academic Press, San Diego, (2000) and also R.F. Bunshah, Hand book of deposition technology and applications, 2nd ed. Noyes Pub., Park ridge, NJ, (1994)Google Scholar
  19. 19.
    M.D. Allendorf, F. Maury, and F. Teyssandier, Chemical vapor deposition, Vol. 14, The electrochemical Soc. Pub. Pennigton, NJ, (2003)Google Scholar
  20. 20.
    D.C. Bradley, R.C. Mehrotra, and D.P. Gaur, Metal alkoxides, Academic Press, New York, (1998)Google Scholar
  21. 21.
    J. Huo and R. Solanki, Characteristics of copper films produced via atomic layer deposition, J. Mater. Res., 17 (9), 2394 (2002) and also P.K. Roy and I.C. Kizilyalli, Appl. Phys. Lett., 72, 2835 (1998)Google Scholar
  22. 22.
    S.A. Campbell, D.C. Glimmer, X. Wang, M.T. Hsich, H.S. Kim, W.L. Glandfelter, and J.H. Yan, IEEE Trans. Electron Dev., 44, 104 (1997)CrossRefGoogle Scholar
  23. 23.
    M. Copel, M.A. Gribelyuk, and E. Gusev, Appl. Phys. Lett., 76, 436 (2000)CrossRefGoogle Scholar
  24. 24.
    B.H. Lee, L.Kang, R. Nich, W.J. Qi, and J.C. Lee, Appl. Phys. Lett., 76, 1926 (2000)CrossRefGoogle Scholar
  25. 25.
    J. Sundqvist, H. Hogberg, and A. Harsta, Atomic layer deposition of Ta2O5 using the TaI5 and O2 precursor combination, Adv. Mater., 15 (20), 245–248 (2003)Google Scholar
  26. 26.
    A.J. Bard and L.R. Faulkner, Electrochemical methods, 2nd ed. Wiley, New York, (2001) and also G.M. Milazzo, Electrochemistry, Elsevier Pub., Amsterdam, (1963)Google Scholar
  27. 27.
    P.M. Hoffman, A. Radisic, and P.C. Searson, Growth Kinetics for copper Deposition on Si (100) from Pyrophosphate Solution, J. Electrochem. Soc., 147 (7), 2576 (2000) and also F.A. Lowenheim, Modern electroplating, Wiley, New York, (1963)Google Scholar
  28. 28.
    Y. Cao, P. Taephaisitphongse, R. Chalupa, and A. West, Three additive model of superfilling, J. Electrochem. Soc. 148(7), C466 (2001) and also A. Brenner, Electrodeposition of alloys, Vol. 1, 2, Academic press, New York, (1963)Google Scholar
  29. 29.
    J.M. West, Electrodeposition and corrosion processes, D. Van Nostrand, Co., Princeton, NJ, (1965) and also T. Moffat et al., Superconformal electrodeposition of copper in 500–90 nm features, J. Electrochem. Soc., 147 (12), 4524 (2000)Google Scholar
  30. 30.
    M. Faraday, Experimental relations of gold to light, Phil. Trans., 147, 145 (1857)CrossRefGoogle Scholar
  31. 31.
    J. Duffy, L. Pearson, and M. Paunovic, The effect of pH on electroless copper deposition, J. Electrochem. Soc., 130 (4), 876 (1983)CrossRefGoogle Scholar
  32. 32.
    H.S. Nalwa (ed.), Encyclopedia of nanoscience and nanotechnology, Am. Scientific Pub., Stevenson Ranch, CA, (2003)Google Scholar
  33. 33.
    H. Hu, J. Jacobs, L. Su, and D. Antoniadis, A study of deep submicron MOSFET scaling based on experiment and simulation, IEEE Trans. Electron. Dev., ED-43 (4), 669 (1996)Google Scholar
  34. 34.
    C.A. Neugebauer, Condensation, nucleation and growth of thin films, In Hand book of thin film technology, L.I. Maissel and R. Glang (eds.),  Chapter 8, McGraw Hill, New York, (1983) and also C. Ji, G. Oskam, and P.C. Searson, Electrochemical nucleation and growth of copper on Si (111), Surf. Sci., 492, 115 (2001)
  35. 35.
    S.M. Rossnagel, Thin solid films, 263, 1–12 (1995) and H. Sakai et al., Adv. Meter. Conf. September 26, The University of Tokyo, Japan (2006)Google Scholar
  36. 36.
    S.N. Wolf and R.N. Tauber, Silicon processing, Vol. I, p. 368, Lattice Press, Sunset Beach, CA, (1886) and also I.A. Bleach, Step coverage by vapor deposited thin aluminum films, Solid State Technol., 26 (12), 123 Dec. (1983)Google Scholar
  37. 37.
    S.J. Lee et al., IEEE Tech. Dig. Int. Div. Meet., 31, (2000) and also A.E. Kaloyeros, A. Feng, J. Garhart, K.C. Brooks, S.K. Ghosh, A.N. Saxena, and F. Luehrs, Low temperature MOCVD of device quality copper films for microelectronic applications, J. Electron. Mater., 19, 271 (1990)Google Scholar
  38. 38.
    S.M. George, A.W. Ott, and J.W. Klaus, Surface chemistry for atomic layer growth, J. Phys. Chem., 100, 1321 (1996) and S.H. Kim et al., J. Electrochem. Soc., 154, D-435 (2007)Google Scholar
  39. 39.
    J.W. Klaus, S.J. Ferro, and S.M. George, Atomic layer deposition of tungsten using sequential surface chemistry with sacrificial stripping reactions, Thin Solid Films, 360, 145 (2000)CrossRefGoogle Scholar
  40. 40.
    K. Ueno, T. Ritzorf, and S. Grace, J. Appl. Phys., 86 (9), 4930 (1999) and also A.A. Volinsky et al., Mater. Res. Soc. Symp. Proc., 649, (2000) and H. Lee and S.D. Lopatin, Thin Solid Films, 192 (1–2), 279 (Dec, 2005)Google Scholar
  41. 41.
    R.A. Schwartz, Chem. Mater., 9, 2325 (1997)CrossRefGoogle Scholar
  42. 42.
    R. Krumm, J.G. Long, A. Natarajan, and P.C. Pearson, J. Appl. Phys. D: Appl. Phys., 31, 1 (1998), and also C.A. Neugebauer, Condensation, nucleation, and growth of thin film, In L.I. Maissel and L.I. Glang (eds.), Handbook of Thin Film Technology,  Chapter 8, p. 5, McGraw Hill, New York, (1983)
  43. 43.
    E.K. Broadbent, Nucleation and growth of chemically vapor deposited tungsten on various substrate materials: A review, J. Vac. Sci. Technol., B5 (6), 1661 (Nov. Dec., 1987) and also H. Dobberstein and R.W. Schwartz, Modeling the nucleation and growth behavior of solution derived thin films, Symp. On Adv. Mater. For next generation, Integrated materials, AIST Chubu, Nagoya, Japan, (May 27, 2002)Google Scholar
  44. 44.
    D.M. Brown D. Gorowitz, P. Piacente, R. Saia, R. Willson, and D. Woodruff, IEEE Trans. Electron. Dev. Lett., 8, 55 (1987)CrossRefGoogle Scholar
  45. 45.
    R.S. Blewer (ed.), Tungsten and other refractory metals for VLSI applications, Mat. Res. Soc., MRS Pub., Pittsburgh, PA, (1986) and also T. Smy, K.L. Westra, and M.J. Brett, IEEE Trans. Electron. Dev., 37 (3), 591 (1990)Google Scholar
  46. 46.
    S. Swirhun, K.C. Saraswatand, and R.M. Swanson, IEEE Trans. Electron. Dev. Lett., 5, 209 (1984)CrossRefGoogle Scholar
  47. 47.
    S.S. Chen, S. Sivaram, and R.K. Shukla, Properties of TiSi2 as an encroachment barrier for the growth of selective tungsten on Si, J. Vac. Sci. Technol., B5 (6), 1730–1735 (Nov./Dec., 1987)Google Scholar
  48. 48.
    W.K. Burton, N. Cabrera, and F.C. Frank, Phil. Trans. R. Soc., A243, 299–358 (1951) and also M.K. Gobbert, T. Merchant, L.J. Borucki, and T.S. Cale, J. Electrochem. Soc., 1444 (1), 3945 (1997)Google Scholar
  49. 49.
    J.W. Cahn, Acta Metal., 8, 534–561 (1960), and also L.J. Friedick, S.K. Dew, M.J. Brett, and T. Smy, Thin Solid Films, 266, 83 (1995)Google Scholar
  50. 50.
    G.W. Sears, Acta. Metal., 12, 1421–1439 (1964) and also Z. Wong, Y. Li, and J.B. Adams, Kinetic lattice monte Carlo simulation of facet growth rate, Surf. Sci., 450, 51 (2000)Google Scholar
  51. 51.
    S.P. Murarka and M.C. Peckerar, Electronic material science and technology, p. 363, Academic press, San Diego, CA, (1989)Google Scholar
  52. 52.
    M.H. Grabow and G.H. Gilmer, Surf. Sci., 194, 333 (1988)CrossRefGoogle Scholar
  53. 53.
    B. Lewis and A.C. Anderson, Nucleation and growth of thin films, Academic press, New York, (1978)Google Scholar
  54. 54.
    W.A. Tiller, Fundamental aspects of film nucleation and growth, J. Vac. Sci. Tech., A7 (3), 1353, (May/June, 1989) and also R.W. Schwartz, J.A. Voigt, B.A. Tuttle, R.S. DaSalla, and D.A. Pyne, J. Mater. Res., 12, 444 (1997)Google Scholar
  55. 55.
    R.A. Broglia, The color of metal clusters and atomic nuclei, Contemporary Phys., 35 (2), 95–104 (1994) and also M. Bernath, C. Yannouleas, and R.A. Brogila, Phys. Rev. Lett., A156, 307 (1991)Google Scholar
  56. 56.
    W.A. de Heer, Rev. Mod. Phys., 65, 611 (1993) and also H. Haberland, Clusters of atoms and molecules, Springer, Berlin, (1994) and E. Barborini, P. Peseri, A. Li, Bassi, A.C. Ferrari, C. Bottani, and P. Milani, Chem. Phys. Lett., 300, 633 (1999)Google Scholar
  57. 57.
    T.P. Martin, In Elemental and molecular clusters, G. Benedek, T.P. Martin and G. Pacchioni (eds.) , p. 2, Springer, Berlin, (1988) and also M. Bruzzi, P. Piseri, E. Barborini, G. Benedek, and P. Milani, Diam. Relat. Mater., 10, 989 (2001)Google Scholar
  58. 58.
    A. Bohr and B.R. Mottleson, Nuclear structure Vol. II, Benjamin, Reading, MA, (1997)Google Scholar
  59. 59.
    I. Goldhirsch and G. Zanette, Phys. Rev. Lett., 70, 1619 (1993)CrossRefGoogle Scholar
  60. 60.
    F. Crick, What a mad pursuit, A personal view of science, Basic books Pub., NY (1988)Google Scholar
  61. 61.
    C. A Neugebauer, Condensation, nucleation, and growth of thin films, pp. 8–26, In L.I. Maissel and R. Glang, Handbook of thin films, McGraw Hill , New York, (1983) and also A.J. Melmed, J. Appl. Phys., 37, 275 (1966)Google Scholar
  62. 62.
    S.M. Hu, Defects in silicon substrate, J. Vac. Sci. Technol., 14 (1), 17–31 (Jan/Feb., 1977) and also M. Borner, S. Landau, S. Metz, and B.O. Kolbersen, In Crystalline defects and contamination: Their impact and control in device manufacturing II, B.O. Kolbersen, C. Claeys, P. Stallhofer, and F. Tardiff (eds.), PV 97-22, The Electrochemical Soc. Pub. Pennington, NJ, (1998)Google Scholar
  63. 63.
    W.A. Johnson and R.F. Mehl, Trans. AMIE, 135, 416 (1939) and also R.W. Schwartz, Chem. Mater., 9, 2325 (1997)Google Scholar
  64. 64.
    M. Avrami, J. Chem. Phys., 8, 212 (1940) and also M. Avrami, J. Chem. Phys., 9, 177 (1941)Google Scholar
  65. 65.
    K.N. Tu, IBM J. Res. Dev., 34 (6), 2671–2674 Nov. (1990) and also S.P. Murarka and M.C. Peckrar, Nucleation and growth, pp. 306, and 358 in Electronic materials for science and technology, Academic, San Diego, CA, (1989)Google Scholar
  66. 66.
    A. Bondi, Chem. Rev., 52, 417 (1953) and also B. Lewis and J.C. Anderson, Nucleation and growth of thin films, Academic, London, (1978)Google Scholar
  67. 67.
    C.A. Neugerbauer, Condensation, nucleation and growth of thin films, In L.I. Maissel and R. Glang, Hand book of thin film technology,  Chapter 8, pp. 8–29, McGraw Hill, New York, (1983) and also C. Ratsch, A.P. Seitsonen, and M. Scheffler, Phys. Rev. B, 55, 6750 (1997)
  68. 68.
    J.P. Hirth and G.M. Pound, J. Chem. Phys., 26, 1216 (1957), and also H. Brune, Surf. Sci. Rep., 31, 121 (1998)Google Scholar
  69. 69.
    R. Glang, Vacuum evaporation, In Hand book of thin film technology, L.I. Maissel and R. Glang, (eds.),  Chapter 1, McGraw Hill, New York, (1983) and also K.A. Fichthorn and M. Scheffler, In Collective Diffusion on surfaces: Collective behavior and role of adatom interactions, M.C. Tringides and Z. Chvoj (eds.), Kluwer Pub., Dordrecht, Netherlands, (2001)
  70. 70.
    J.P. Hirth and G.M. Pound, Condensation, and evaporation, nucleation and growth kinetics, The Macmillan Company, New York, (1963) and also D.M. Saylor, A. Morawiec, and G.S. Rohrer, Acta Mater., 51, 3663 (2003)Google Scholar
  71. 71.
    W. Primak, Phys. Rev., 100, 1677 (1955) and also X.W. Zhou and H.N.D. Wasley, J. Appl. Phys., 84, 2301 (1998) and D.L. Windt et al., Mater. Res. Soc. Symp. Proc., 564, 307 (1999)Google Scholar
  72. 72.
    M.M. Mandurah, K.S. Saraswat, and T. Kamins, Appl. Phys. Letts., 36, 683 (1980) and also F. Nouvertne et al., Phys. Rev. B, 60, 14382 (1999)Google Scholar
  73. 73.
    V. Vand, Proc. R.. Soc. Lond., 55, 222 (1943) and also S. Hamaguchi and S.M. Rossnagel, J. Vac. Sci Technol., B14, 2603 (1994)Google Scholar
  74. 74.
    T.F. Retajczyk and A.K. Sinha, Thin Solid Films, 70, 241 (1980) and also K. Rajan, R. Roy, J. Trogolo, and J.J. Cuomo, Lowenergy ion beam assisted grain size evolution in thin film deposition, J. Electron. Mater., 26 (11), 1270 (1997)Google Scholar
  75. 75.
    J.E. Mahan, Physical vapor deposition of thin films, Wiley, New York, (2000)Google Scholar
  76. 76.
    S. Schiller, U. Heisg, and S. Panzer, Electron beam technology, 2nd ed. Verlag Technik GmbH, Berlin, (1955) and also J. Fu, P. Ding, F. Dorleans, Z. Xu, and F. Chen, J. Vac. Sci. Technol., 17 (5), 2830–2834 (1999)Google Scholar
  77. 77.
    B. Chapman, Glow discharge processes, Wiley, New York, (1980) and also J.P. Hopwood, Phys. Plasmas, 5, 1624 (1998)Google Scholar
  78. 78.
    G. Carter and J.S. Colligon, Ion bombardment of solids, Elsevier Pub., New York., (1968) and also T. Karabacak and T.M. Lu, Enhanced step coverage by oblique angle physical vapor deposition, J. Appl. Phys., 97, 124504 (2005)Google Scholar
  79. 79.
    E.S. Lame and K.T. Compton, Science, 80, 541 (1934) and also G.S. Chen et al., Evaluating substrate bias on phase forming behavior of tungsten thin films deposited by diode and ionized magnetron sputtering, Thin Solid Films, 484 (1–2), 83 (2005)Google Scholar
  80. 80.
    P. Clarke, US Patent No. 3616450, (26 Oct., 1971) and also E.S. Machlin, Materials science in microelectronics, Giro Pub., New York, (1995)Google Scholar
  81. 81.
    B. Chapman, Sputtering  Chapter 6, In Glow discharge process, p. 201, Wiley, New York, (1980) and also J.A. Hopwood, Ionized physical vapor deposition, Thin Films, Vol. 27, Academic, Boston, MA (2000)
  82. 82.
    S.N. Wolf and R.N. Tauber, Sputter deposition equipment, In Silicon Processing for VLSI era, Vol. I, p. 359, Lattice Press, CA, (1986) and also M. Malac, R. Egerton, and M. Brett, Vac. Technol. Coat, 2, 48 (2001)Google Scholar
  83. 83.
    I.A. Blech, D.B. Fraser, and S.E. Haszko, Optimization of Al-step coverage through computer simulation and SEM, J. Vac. Sci. Technol., 15, 1856 (1978) and also R.N. Tait, S.K. Dew, T. Smy, and M.J. Brett, J. Appl. Phys., 70, 4295 (1991)Google Scholar
  84. 84.
    W.D. Gill and E. Kay, Efficient low pressure sputtering in large inverted magnetron suitable for film synthesis, Rev. Sci. Instr., 36, 277 (1965) and also E. Klawuhn, G.C. D’Couto, K.A. Asthani, P. Rymer, M.A. Biberger, and K.B. Levy, Ionized physical vapor deposition using hollow-cathode magnetron source for advanced metallization, J. Vac. Sci. Technol., 18 (4), 1546 (2000)Google Scholar
  85. 85.
    G.K. Wehner and G.S. Anderson, The nature of physical sputtering, In Handbook of thin film technology, L.I. Maissel and R. Glang (eds.),  Chapter 3, McGraw Hill, New York, (1970) and also J.A. Hopwood, The role of ionized physical vapor deposition in integrated circuit fabrication, Thin Films, 27, 1 (2000)
  86. 86.
    K.N. Tu, Surface and interfacial energies of CoSi2 and Si films, IBM J. Res. Dev., 34 (6), 868 (Nov., 1990)CrossRefGoogle Scholar
  87. 87.
    J.A. Thorton and A.S. Penfold, Cylindrical magnetron sputtering in thin film processes, J.L. Vossen and W. Kern (eds.), p. 73, Academic Press, New York, (1978) and also J.C. Helmer, K.F. Lai, and R.L. Anderson, US patent 5482611, (Jan. 9, 1996) and also V. Girault, 9th Int. Workshop on Stress Induced Phenomena in Metallization, Kyoto, Japan, (April, 2007)Google Scholar
  88. 88.
    R.K. Waits, Planar magnetron sputtering in thin film processes, J.L. Vossen and W. Kern (eds.), p. 131, Academic Press, New York, (1978) and also F.B.D. Mongeot et al., Nanocrystalline formation and faceting instability, Phys. Rev. Lett., 91 (1), 016102-1 (2003)Google Scholar
  89. 89.
    C.Y. Ting, V.J. Vivalda, and M.G. Schaefer, J. Vac. Sci. Technol., 15, 1105 (1978) and also S.J. Liu, H.C. Huang, and C.H. Woo, Appl. Phys. Lett., 80, 3295 (2002)Google Scholar
  90. 90.
    S.M. Rossangel, C. Nichols, S. Hamaguchi, D. Ruzic, and R. Turkot, J. Vac. Sci. Technol., 14 (3), 1846–1852 (1996)Google Scholar
  91. 91.
    J.A. Hopwood, Phys. Plasmas, 5 (5), 1624 (1998) and also J.A. Hopwood, The role of ionized physical vapor deposition in integrated circuit fabrication, In J.A. Hopwood (ed.), Ionized Physical Vapor Deposition, Academic Press. San Diego, CA, (2000)Google Scholar
  92. 92.
    J. Forster, Applications and properties of ionized physical vapor deposition films, In J.A. Hopwood (ed.), Ionized physical vapor deposition, Academic Press, San Diego, CA, (2000) and also K. Tao, D. Mao, and J.A. Hopwood, J. Appl. Phys., 91 (7), 4040 (2002)Google Scholar
  93. 93.
    C.A. Nichols, S.M. Rossnagel, and S.Hamaguchi, J. Vac. Sci. Technol., B-14, 3270 (1996) and also C.F. Yeh, T.J. Chen, C.L. Fan, and J.S. Kao, J. Appl. Phys., 83, 1107 (1998)Google Scholar
  94. 94.
    H. Seifarth, R. Grotzschel, A. Markwitz, W. Matz, P. Nitzsche, and L. Rebohle, Thin Solid Films, 330, 202 (1998) and also B. Sun. Proc. MRS, on Adv. Metal. on ULSI applications, 137 (1977)Google Scholar
  95. 95.
    J. Mendonca et al., Proc. MRS on Adv. Metal. on ULSI applications, 741 (1977) and also E. Klawuhn et al., J. Vac. Sci. Technol., 18(4), 1546 (2000)Google Scholar
  96. 96.
    K.F. Lai, Ionized hollow cathode magnetic sputtering, In J.P. Hopwood (ed.), Ionized physical vapor deposition, Academic Press, San Diego, CA, (2000)Google Scholar
  97. 97.
    S.M. Rossnagel et al., J. Vac. Sci. Technol., B-14, 1819 (1996) and also E. Main, T. Karabacak, and T.M. Lu, Continum model for nanocolumn growth during oblique angle deposition, J. Appl. Phys., 95(8), 4346 (2004)Google Scholar
  98. 98.
    S.M. Rossangel and J.P. Hopwood, Appl. Phys. Lett., 63, 3285 (1993)CrossRefGoogle Scholar
  99. 99.
    S. Wickramanayaka, Y. Nakagawa, Y. Sago, and Y. Numaswa, J. Vac. Sci. Technol., A18, 823 (2000) and S-H. Kim et al., Electrochem. Solid State Lett., 11 (5), H-127 (2008)Google Scholar
  100. 100.
    K.H. Min, K.C. Chun, and K.B. Kim, J. Vac. Sci. Technol., B14 (5), 3263–3269 (1996)Google Scholar
  101. 101.
    G.S. Chen et al., Thin Solid Films, 484 (1–2), 83 (2005)CrossRefGoogle Scholar
  102. 102.
    S.M. Rossangel, C. Nichols, S. Hamaguchi, D. Ruzic, and R. Turkot, J. Vac. Sci. Technol., 14 (3), 1846–1852 (1996)Google Scholar
  103. 103.
    D.R. Cote et al., IBM J. Res. Dev., 43 (1/2), 5 (1999), and also S.R. Burgess, K.E. Buchanan, J. Cresswell, and I. Moncrief, Deposition and characterization of ionised PVD Ta and TaN barrier films for Cu-interconnects, Trikon Tech, Newport South WalesGoogle Scholar
  104. 104.
    M. Schieber et al., Thick film of X-ray polycrystalline mercuric iodide detectors, J. Cryst. Growth, 225, 118–123 (2001), and IEEE Trans. Nucl. Sci. T-NS 44, 2571 (1997) and also C.H. Kim et al., IEEE IITC, San Francisco, CA, (June, 2008)Google Scholar
  105. 105.
    C.H. Heimer and J.D. Lockard, Life, p. 6, Charles E. Merril Pub. Columbus, OH., (1977) and also M.L. Hitchman and E. Levy (eds.), Chemical vapor deposition, Wiley-VCH, Weinham, Germany, (2002)Google Scholar
  106. 106.
    M.S. Bishop, P.G. Lewis, and B. Sutherland, Earth history, p. 70, Charles E. Merril Pub. Columbus, OH., (1976) and also Y.P. Zhao, D.X. Ye, G.C. Wang, and T.M. Lu, Nano Lett., 2, 351 (2002)Google Scholar
  107. 107.
    W. Kern and V. Ban, Chemical vapor deposition of inorganic thin films, In thin film processes, J.L. Vossen and W. Kern (eds.), pp. 257–331, Academic Press. New York, (1978), and also H. Wolf, J. Rober, S. Riedel, R. Streiter, and T. Gessner, Process and equipment simulation of copper chemical vapor deposition using Cu (hfac) vtms, Microelectron. Eng., 45, 15 (1999)Google Scholar
  108. 108.
    W.A. Johnson, and R.H. Mehl, Trans. AMIE, 135, 416 (1939) and also K. Radhakrishnan, Ng. Geok-Ing, R. Gopalkrishnan, Mater. Sci. Eng., B-57, 224 (1999)Google Scholar
  109. 109.
    M. Avrami, J. Chem. Phys., 8, 212 (1940), 9, 177 (1941) and also J.C. Lin, G. Chen, H.T. Chin, C.E. Tsai, S.H. Chung, Aool., Phys. Lett., 67, 1128 (1995)Google Scholar
  110. 110.
    W. Kern and G.L. Schnable, Low pressure vapor deposition for VLSI processing, A review, IEEE Trans. Electron Dev., ED-26, 647 (1979) and also C. Klein, Chemical vapor deposition processes, In M. Meyyappan (ed.), Computational modeling in semiconductor processing, Artech House, Boston, MA (1995)Google Scholar
  111. 111.
    A. Learn, Modeling the reaction of low pressure chemical vapor deposition of SiO2, J. Chem. Soc., 132, 390 (Feb., 1985) and D.R. Cote et al., IBM J. Res. Dev., 43 (1/2), 5 (1999) and also S. Sankaran et al., IEEE IEDM Tech. Dig., Issue 6, p. 26 (2006)Google Scholar
  112. 112.
    G. Herbeke et al., Growth and physical properties of LPCVD polycrystalline Si- film, J. Electrochem. Soc., 131, 675 (1984) and also C.R. Klein and C. Werner, Modeling of chemical vapor deposition of tungsten films, Birkhauser, Basel, (1993)Google Scholar
  113. 113.
    N. Matsuki, J. Ohta, H. Fujika, M. Oshima, M. Yoshimoto, and H. Koinuma, Fabrication of oxide gate thin film transistors using PECVD/PLD multichamber system, Sci. Tech. Adv. Mater., 1, 187 (2000) and also M. Tesauro et al., AVS Symp. No. 54, Seattle, WA, (Oct., 2007)Google Scholar
  114. 114.
    F. Ay and A. Aydinli, Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical wave guides, Opt. Mater., 26, 33 (2004)Google Scholar
  115. 115.
    E. Eisenbraun et al., Gelest Inc. PA, and J. Sullivan, Integration of CVD-W and Ta based liners for Cu-metallization MKS Instr. Pub., Wilmington, MA 2000, and also Y. Golan, N.A. Alcantar, T.L. Kuhl, and J. Israelachrili, Langmuir, 16, 6955 (2000) and H.J. Wu, US Patent, 10/98007, (June, 2008)Google Scholar
  116. 116.
    W.F. Wu, K.L. Ou, C.P. Chou, and J.L. Hsu, PECVD-Ti/TiN barrier layer with multilayered amorphous structure and high thermal stability for copper metallization, Electrochem. Solid State Lett., 6 (2), G-27 (2003)CrossRefGoogle Scholar
  117. 117.
    A.L.S. Lok, C. Ryu, C.P. Yue, J.S. Cho, and S.S. Wong, Kinetics of copper drift in PECVD dielectrics, IEEE Electron. Dev. Lett., 17 (12), 549 (1996)CrossRefGoogle Scholar
  118. 118.
    W. Kern and V. Ban, Chemical vapor deposition of inorganic thin films, In thin film processes, J.L. Vossen and W. Kern, (eds.), pp. 257–331, Academic Press, New York, (1978) and also P. O’Brian, N.L. Pickett and D.J. Otway, Development of CVD delivery systems, Chem. Vapor Depos. Adv. Mater., 8 (6), 237 (2002), Wiley-VCH, Weinham, GermanyGoogle Scholar
  119. 119.
    H.B. Nie et al., Structural and electrical properties of tantalum nitride thin films fabricated by using reactive radio-frequency magnetron sputtering, Appl. Phys., A73, 229 (2001) and also S. Wolf and R.N. Tauber, Silicon processing for VLSI era,  Chapter 6, Lattice press, Sunset CA, (1986)
  120. 120.
    M. Rand, Plasma promoted deposition of thin inorganic films, J. Vac. Sci. Technol., 16, 420 (1979) and also M. Rossnagel and J.P. Hopwood, Appl. Phys. Lett., 63, 3285 (1993) and J. Lu and M. Kushner, J. Appl. Phys., 89, 878 (2001)Google Scholar
  121. 121.
    E.K. broad bent, tungsten and other refractory metals for VLSI applications, Vol. 1&2, Mater. Res. Soc. Pub. Pittsburgh, PA, (1987), and also M.Y. Kwak, D.H. Sin, T.W. Kang, and K.N. Kim, Characteristics of WN diffusion barrier layer for copper metallization, Phys. Stat. Solids (a), 174, R5 (1999)Google Scholar
  122. 122.
    Y.S. Diamond and A. Dedhia, J. Electrochem. Soc., 140, 2427 (1993) and also R. Nokogaki, S. Nakai, S. Yamada, and T. Wada, J. Vac. Sci. Technol., A 16, 2827 (1998)Google Scholar
  123. 123.
    N. Kobayashi et al., J. Appl. Phys., 73 (9), 4637–4643 (2001)CrossRefGoogle Scholar
  124. 124.
    T.B. Gorczyea and B. Gorowitz, PECVD of dielectrics, In VLSI electronics microstructure science, N. Einspruch (ed.), Vol. 8,  Chapter 4, Academic Press, New York, (1984)Google Scholar
  125. 125.
    M.H. Tsai, S.C. Sun, H.T. Chim, C.E. Tsai, and S.H. Chung, Appl. Phys. Lett., 67, 1128 (1995) and also C. Blaauw, Preparation and characterization of PECVD silicon nitride, J. Electrochem., 131, 1114 (May, 1984) and C.Y. Li et al., Thin Solid Films, 47 (1–2), 270–279 (2005)Google Scholar
  126. 126.
    C.H. Tseng et al., IEEE Electron Dev. Lett., 23, 333 (2002)CrossRefGoogle Scholar
  127. 127.
    J. Yota, M. Janani, L.E. Camilletti, A. Kar-Roy, Q.Z. Liu, C. Nguyen, and M.D. Woo, Proc. IEEE Electron Dev. Conf. San Francisco, CA, (2000) and also C.H. Hoon and Y.T. Kim, The effects of processing conditions and substrate on copper MOCVD using liquid injection of (hfac) Cu (vtmos), J. Electron. Mater., 30 (1), 27 (2001)Google Scholar
  128. 128.
    P. O’Brien, N.L. Pickett, and D.J. Otway, Developments in CVD delivery systems: A chemist prospective on the chemical and physical interactions between precursors, Adv. Mater., 8 (6), 237 (2002)Google Scholar
  129. 129.
    A.C. Jones and P. O’Brien, CVD of compound semiconductors, Wiley-VCH, Weinheim, (1997) and also C. Dubourdiu, M. Rosina, H. Roussel, F. Weiss, J.P. Senateur, and J.L. Hodeau, Appl. Phys. Lett., 79, 1246 (2001)Google Scholar
  130. 130.
    H.C. Aspinall et al., Growth of praseodymium oxide films by liquid injection MOCVD using a novel praseodymium alkoxide precursor, Chem. Vapor Depos. Adv. Mater., 15 (20), 235 (2003), Wiley-VCU Pub., Weinheim, GermanyCrossRefGoogle Scholar
  131. 131.
    P.A. Pecan, Science, 285, 2079 (1999) and J. Senawiratne et al., MRS Proc. Fall Symp. FF, (2005)Google Scholar
  132. 132.
    G.D. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys., 89, 5243 (2001)CrossRefGoogle Scholar
  133. 133.
    A.C. Jones, J. Mater. Chem., 12, 2576 (2002)CrossRefGoogle Scholar
  134. 134.
    R. Kroger, M. Eizenberg, D. Cong, N. Yoshida, L. Chen, R. Ramaswami, and D. Carl, Properties of copper film prepared by Chemical vapor deposition for advanced metallization of microelectronics devices, J. Electrochem. Soc., 146 (9), 3248–3252, 1999CrossRefGoogle Scholar
  135. 135.
    K.K. Choi and S.W. Rhee, Effect of carrier gas on CVD of copper with hfac and DMB, J. Electrochem. Soc., 146(7), C-473–478 (2001)Google Scholar
  136. 136.
    H. Wolf, J. Rober, S. Riedel, R. Streiter, and T. Gessner, Process and equipment simulation of copper chemical vapor deposition using Cu (hfac) vtms, Micron. Eng., 45, 15 (1999)CrossRefGoogle Scholar
  137. 137.
    G.A. Person et al., J. Electrochem. Soc., 142 (3), 939 (1995) and K.K. Choi et al., Jpn. J. Appl. Phys., 41, 2902 (2002)Google Scholar
  138. 138.
    A.K. Jain, K.M. Chi, T.T. Kodas, and M.J. Hampdensmith, J. Electrochem. Soc., 140 (5), 1434 (1993) and also Y.K. Ko, B.S. Seo, D.S. Park, H.J. Jang, W.H. Lee, P.J. Reucroft, and J.G. Lee, Semicond. Sci. Technol., 17, 978 (2002)Google Scholar
  139. 139.
    H. Wolf, J. Rober, S. Riedd, R. Streiter, and T. Gessher, MOCVD Cu-films using hexafluoroactylactone venyl tetramethylsilane and argon, Microelectron. Eng., 45, 15 (1999)CrossRefGoogle Scholar
  140. 140.
    W.H. Lee et al., The effect of carrier gas and H (hfac) on MOCVD Cu-films using (hfac) Cu (1,5-COD) as a precursor, J. Electron. Mater., 30 (8), 3367–3369 (2000)Google Scholar
  141. 141.
    C.H. Jun and Y.T. Kim, The effects of process conditions and substrate on copper MOCVD using liquid injection of (hfac) Cu (vtmos), J. Electron Mater., 30 (1), 27–34 (2001)Google Scholar
  142. 142.
    J.B. Rem, J. Holleman, and J.F. Verweij, J. Electrochem. Soc., 144 (6), 2101 (1997)CrossRefGoogle Scholar
  143. 143.
    D.C. Bradley, R.C. Mehrotra, and D.P. Gaur, Metal alkoxides, Academic Press, New York, (1978)Google Scholar
  144. 144.
    D.B. Beach, F.K. LwGoues, and C.K. Hu, Chemical vapor deposition of high purity copper an organometallic source, Chem. Matter., 3, 216 (1990) and also P.M. Jefferies and G.S. Girolami, Chemical vapor deposition of copper and copper oxide thin films from copper (I) teri-butoxide, Chem. Matter., 1, 8 (1989)CrossRefGoogle Scholar
  145. 145.
    M. Schumacher, J. Lindner, P. Strzyzewski, M. Dauelsberg, and H. Juergensen, MOCVD processed ceramic thin film layers for future memory applications, Semicond. Fabtech, 11th ed., ICG Pub., UK, p. 227 (2000) and also C. Dubourdiu, M. Rosina, M. Audier, F. Weiss, J.P. Senateur, E. Dooryhee, and J.L. Hodeau, Thin Solid Films, 81, 400 (2001)Google Scholar
  146. 146.
    D.B. Beach, Design of low temperature thermal chemical vapor deposition processes, IBM J. Res. Dev., 34 (6), 800 (Nov., 1990) and also A.E. Kaloyeros et al., Low temperature metal-organic chemical vapor deposition (LTMOCVD) of device quality copper films for microelectronics applications, J. Electron. Mater., 19, 271 (1990)Google Scholar
  147. 147.
    J.M. Janiski, B.S. Meyerson, and B.A. Scott, Mechanistic studies of chemical vapor deposition, Annu. Phys. Chem., 38, 109 (1987) and also F.A. Cotton and T.J. Marks, Systematic preparation and characterization of pentahaptocyclopentadienyl, copper (I) compounds, J. Am. Chem. Soc., 92, 5114 (1970)Google Scholar
  148. 148.
    Preparation of alkylcopper compounds, J. Organomet. Chem., 12, 225 (1968) and also G. Dennler, A. Houdauer, Y. Segui, and M.R. Wertheimer, J. Vac. Sci. Technol., A 19, 2320 (2001)Google Scholar
  149. 149.
    D. Hausmann, J. Becker, S. Wang, and G. Gordon, Rapid vapor deposition of highly conformal silica nanolaminates, Science, 298, 402 (2002) and M.W. Thomson, Philos. Mag., 18, 377 (1968) and also S-H. Kim et al., Electrochem. Solid State Lett., 9, C54 (2006)Google Scholar
  150. 150.
    M. Lapedus, Support grows for atomic layer deposition schemes, EE Times, (Nov. 24, 2003)Google Scholar
  151. 151.
    M. Yamashita, J. Vac. Sci. Technol., A7, 151 (1989) and S.M. Rosengel, A. Sherman, and F.A. Turner, J. Vac. Sci. Technol., B-18, 2016 (2000) and also O.K. Kwon, H.S. Park, and S-W. Kang, J. Electrochem. Soc., 151 (12), C-753 (2004)Google Scholar
  152. 152.
    B.S. Lim, A. Rahtu, and R.G. Gordon, Atomic layer deposition of transition metals, Nature, 2, 749–754 (Nov., 2003)CrossRefGoogle Scholar
  153. 153.
    T. Sutola and M. Simpson (eds.), Atomic layer epitaxy, Blackie, Glasgow, (1990), and also C.Y. Li et al., Electron. Lett., 38, 1026 (2002)Google Scholar
  154. 154.
    M. Leskelä and M. Ritla, Angew. Chem. Int. Ed., 42, 5548 (2003), and also J.S. Park, M.J. Lee, C.S. Lee, and S.N. Kang, Electrochem. Soc. Solid State Lett., 4, C-17 (2001)Google Scholar
  155. 155.
    R.G. Gordon, D. Hausnann, E. Kim, and J. Shepard, Chem. Vap. Dep., 9, 73 (2003)CrossRefGoogle Scholar
  156. 156.
    J. Huo, R. Solank, and J.McAndrew, J. Mater. Res., 17(9), 2394 (2002) and also J.A. Hopwood, Ionized vapor deposition of integrated circuit interconnects, Phys. Plasmas, 5 (5), 1624 (May, 1998) and K. Ichinose et al., Adv. Metal. Conf. Sept-26, The Univ. of Tokyo, Japan, (2006)Google Scholar
  157. 157.
    T.K. Kodas and M.J. Hampdon-Smith, The Chem. Of Metal CVD,  Chapter 4, VCH, New York, (1994), and also S. Lynne et al., Electrical and physical characterization of Atomic layer deposited thin films in copper barrier applications, Proc. Adv. Metal. Conf. Mater. Res. Soc., PA, (2002)
  158. 158.
    J.D. Klaus, A.W. Ott, J.M. Johnson, and S.M. George, Atomic layer controlled growth of SiO2 films using binary reaction sequence chemistry, Appl. Phys. Lett., 70, 1092 (1997) and H. Kim et al., J. Appl. Phys., 98, 14308 (2005)Google Scholar
  159. 159.
    C.H. Peng et al., A 90 nm generation copper dual damascene technology with ALD TaN barrier, IEDM Proc. (2002) and C.H. Peng, C-H. Hsieh, and S. Lishue, US Patent 20050277, (Dec., 2005)Google Scholar
  160. 160.
    R.L. Puurunen, Growth per cycle in atomic layer deposition: A theoretical model, Adv. Mater., 15 (20), 243 (2003), Wiley-VCH Pub., Weinheim, Germany and D. Jeoung, H. Inoue, and H. Shinriki, IEEE IITC San Francisco, CA, (June, 2008)Google Scholar
  161. 161.
    S.M. George, A.W. Ott, and J.W. Klaus, Surface chemistry for atomic layer growth, J. Phys. Chem., 100, 1321–1331 (1996)Google Scholar
  162. 162.
    J. Huo, R. Solanki, and J. McAndrew, Characteristics of copper films produced via atomic layer deposition, J. Mater. Res., 17 (9), 2398 (2002)Google Scholar
  163. 163.
    R.G. Gordon, D. Hausmann, E. Kim, and J. Shepard, Kinetic model for step coverage by alternating layer deposition (ALD) in narrow hole and trenches, Chem. Vapor Depos., 9, 73–78 (2003)CrossRefGoogle Scholar
  164. 164.
    T.K. Gupta, Hand book of thick and thin film hybrid microelectronics, p. 2, Wiley, NJ., (2003)CrossRefGoogle Scholar
  165. 165.
    M. Ritala, P. Kalsi, D. Riihela, K. Kukli, M. Leskela, and Jokinen, J. Chem. Mater., 11, 1712 (1999) and S. Maitrejean et al., Adv. Metal. Conf. Sept. 26, The University of Tokyo, Japan, (2006)Google Scholar
  166. 166.
    J.S. Par, M.J. Lee, and S.W. Kang, Electrochem. Solid State Lett., 4, C-17 (2001)CrossRefGoogle Scholar
  167. 167.
    V.G. Levich, Physicochemical hydrodynamics, Prentice Hall, Englewood Cliff, NJ, (1962)Google Scholar
  168. 168.
    K.R. Lawless, J. Vac. Sci. Technol., 2, 1 (1965), and also S. Goldbach, B.V. Den Bossche, T. Daenen, J. Deconinck, and F. Lapicque, Copper deposition on micro-patterned electrodes from an industrial acid copper plating bath, J. Appl. Chem., 30 (1), 1 (2000)Google Scholar
  169. 169.
    P.C. Andricacos, Electroplated copper wire on IC chips, The Electrochem. Soc. Interface Spring, p. 2, (1998) and W.S. Shue, IEEE IITC, p. 175, (2006)Google Scholar
  170. 170.
    D. Edelstein et al., International Electron. Dev. Meeting (IEDM), Washington DC, USA, (7–10 Dec.1997)Google Scholar
  171. 171.
    C.J. Coomb, Jr., Printed circuit board, 2nd ed. McGraw Hill, New York, (1988) and also J. Lee and J.B. Talbot, Simulation of particle incorporation during electrodeposition process, J. Electrochem. Soc., 152 (10), C706 (2005)Google Scholar
  172. 172.
    T.W. Dini, In Modern Electroplating, 3rd ed. F.A. Lowenheim (ed.), Wiley, New York, (1974), and also H.S. Ratore, G.S. Mathad, C.Plougonven, and C.C. Schukert (eds.), Interconnect and contact metallization, The Electrochem Soc. Pub. Pennington, NJ, (1997)Google Scholar
  173. 173.
    J. Reid et al., Proc. IEEE Int’l Interconnect Technology Conference (IITC) 1999, 284–286 (May 24–26, 1999)Google Scholar
  174. 174.
    S. Mayer et al., Electrochem. Soc. Proc. 732, (Oct. 17–22, 1999)Google Scholar
  175. 175.
    Y. Shacham-Diamond and V. Dubin, Microelectron. Eng., 33, 47 (1997)CrossRefGoogle Scholar
  176. 176.
    T. Nguyen, Y. Ono, D. Evans, Y. Senzaki, M. Kobayshi, L. Charneski, B. Ulrich, and S. Hsu, Electron Chem. Soc. Proc., 97, 120 (1997)Google Scholar
  177. 177.
    D. Denning, G. Braeckelmann, J. Zang, B. Fiordalice, and R. Venkatramen, VLSI Tech. Digest Tech. Papers, Issue 9–10, 22–23 (June 1998)Google Scholar
  178. 178.
    J.M. Huth, H.L. Swinney, and W.D. McCormick, Role of convection in thin layer electrodeposition, Phys. Rev., E-51, 3444 (1995) and also L. Chen and T. Ritzdorf, Semicond. Feb.Tech., 12th ed., ICG Pub., UK, p. 267 (July 2000)Google Scholar
  179. 179.
    M. Goodenough and K.J. Whitelaw, Trans. Inst. Met. Fin., 67, 57 (1989) and also W. Ruythooren et al., Electrodeposition for synthesis of microsystems, J. Micromech. Microeng., 10, 101 (2000)Google Scholar
  180. 180.
    K.S. Oldham, J. Electroanal. Chem., 420, 53 (1997) and also T.P. Moffat et al., Super conformal electrodeposition of copper in 500–90 nm features, J. Electrochem. Soc., 147 (12), 4524–4535 (2000)Google Scholar
  181. 181.
    J. Newman, Electrochemical system, pp. 196–197, Prentice Hall, Englewood, NJ, (1991)Google Scholar
  182. 182.
    P.E. Hoffmann, A. Radisic, and P.C. Searson, Growth kinetics for copper deposition on Si (100) from pyrophosphate solution, J. Electrochem. Soc., 147 (7), 2576 (2000) and also S.C. Goldbach et al., Copper deposition on micro-patterned electrodes from an industrial acid copper plating bath, J. Appl. Electrchem., 30 (1), 1 (2000)Google Scholar
  183. 183.
    P.C. Andricacos and L.T. Romankiw, Magnetically soft materials: Their properties and electrochemistry, In Advances in electrochemical science and engineering, H. Gerischer and C.W. Tobias (eds.), Vol. 3, pp. 227–321, VCH Pub., New York, (1994), and also P.C. Andricacos, C. Uzoh, J.C. Dukovic, J. Horkans, and H. Deligiani, Damascene copper electroplating for chip interconnections, IBM. J. Res. Dev., 42 (5), 567 (Sept., 1998)Google Scholar
  184. 184.
    J. O’M Bockris and M. Enyo, Trans. Faraday Soc., 58, 1187 (1962) and also M.G. Legally and Z.Y. Zhang, Nature, 417, 907 (2002)Google Scholar
  185. 185.
    R.D. Mikkola, Q.T. Jiang, and B. Carpenter, Copper electroplating for advanced interconnect technology, Plat. Surf. Finish., Issue 6, 81–85 (March, 2000)Google Scholar
  186. 186.
    M. Datta et al., Electrochemical fabrication of mechanically robust PbSn C4 interconnections, J. Electrochem. Soc., 142, 3779 (1995)CrossRefGoogle Scholar
  187. 187.
    J.M.E. Harper, C. Carbral, P.C. Andricacos, L. Gignal, I.C. Noyan, K.P. Rodbell, and C.K. Hu, J. Appl. Phys., 86, 2516 (1999)CrossRefGoogle Scholar
  188. 188.
    C.K. Lingk and M.E. Gross, J. Appl. Phys., 84, 557 (1998)CrossRefGoogle Scholar
  189. 189.
    Y. Cao, P. Taephaisitphongse, R. Chalupu, and A.C. West, Three additive model of superfilling of copper, J. Electrochem. Soc., 148 (7), C466 (2001) and also T.P. Moffat et al., Superconformal electrodeposition of copper in 500-90 nm features, J. Electrochem. Soc., 147 (12), 4524 (2000)CrossRefGoogle Scholar
  190. 190.
    J. Tafel and Z. Physik, Chem., 50A, 641 (1905) and also C. Mad, M. Matlosz, and D. Landolt, J. Electrochem. Soc., 143, 3936 (1996)Google Scholar
  191. 191.
    V.M. Dublin et al., Int’l. Interconnect Tech. Conf. IEEE Cat No. O1EX461, p. 271, San Francisco, CA, (2001)Google Scholar
  192. 192.
    R.A. Bistead, J. Wu, R. Mikola, and J.M. Calvert, ECS meeting Philadelphia, PS, (2002)Google Scholar
  193. 193.
    E. Farndon, F.C. Walsh, and S.A. Campbell, J. Appl. Electrochem., 25, 572 (1995)CrossRefGoogle Scholar
  194. 194.
    P.C. Andricacos, C. Uzoh, J.O. Dukovic, J. Horkans, and H. Deligianni, Damascene copper electroplating for chip interconnections, IBM J. Res. Dev., 42 (5), 567 (Sept., 1998)Google Scholar
  195. 195.
    K.J. Vetter, Electrochemical kinetics, Chapter 2 , Academic Press, San Diego, CA, (1967)Google Scholar
  196. 196.
    K.I. Popov, M.G. Pavlovic, and D.T. Lukic, J. Appl. Electrochem., 10, 299 (1980)CrossRefGoogle Scholar
  197. 197.
    M.M. Chow et al., Method for producing coplanar multilevel metal/insulator film on a substrate and for forming patterned conductive lines simultaneously with stud vias, US Patent, 4789648, (Dec. 6, 1988)Google Scholar
  198. 198.
    C.K. Hu and J.M.E. Harper, Copper interconnections and reliability, Mater. Chem. Phys., 52, 5 (1998)Google Scholar
  199. 199.
    H. Deligianni, J.O. Dukovic, P.C. Andricacos, and E.G. Walton, Electrochem. Soc. Proc., 267 May, 2–6, (1999)Google Scholar
  200. 200.
    H. Talieh, Method and apparatus for electrochemical mechanical process, U.S. Patent 6, 176, 992 (2001)Google Scholar
  201. 201.
    B.M. Basol, Plating method and apparatus that creates a differential between additive deposited on a top surface and a cavity surface of a work piece using an indirect external influence, U.S. Patent Pub. 2002/002068 A1, (Feb.21, 2002)Google Scholar
  202. 202.
    B.M. Basal, C. Uzoh, H. Taleih, D. Young, P. Lindquist, T. Wang, and M. Cornejor, Microelectron. Eng., 64, 43 (2002) and also W.H. Yu, E.T. Kang, and K.G. Neoh, J. Electrochem. Soc., 149 (11), C592 (2002)CrossRefGoogle Scholar
  203. 203.
    C. Ji, G. Oskam, and P.C. Pearson, Electrodeposition of copper on silicon from sulfate solution, Electochem. Soc., 148 (11), C746–752 (2001)CrossRefGoogle Scholar
  204. 204.
    E.J. O’Sullivan et al., Electrolessly deposited different barrier for microelectronics, IBM J. Res. Dev., 42 (5), 607–620 (1998) and also J. Duffy, L. Pearson, and M. Paunovic, The effect of pH on electroless copper deposition, J. Electrochem. Soc., 130 (4), 876 (1983)Google Scholar
  205. 205.
    S.S. Tzeng, and F.Y. Chang, Mater. Sci. Eng., A-302, 258 (2001) and also J. Newman, Electrochemical systems, pp. 314–315, Prentice Hall Inc. Englewood Cliff, NJ, (1973)Google Scholar
  206. 206.
    C.Dew et al., Nano Lett., 3, 143 (2003) and also M.A. Leveque, Annals des mines memoires, Ser. 12, 13, 201–239, 305–362, 381–415 (1928)Google Scholar
  207. 207.
    F.A. Lowenheim (ed.), Modern electroplating, 3rd ed. John Wiley, NJ, (1974), and also A.K. Graham (ed.), Electroplating engineering handbook, 3rd ed. Van Nostrad Reinhold Co., New York, (1971)Google Scholar
  208. 208.
    G. Oskam, J.G. Long, A Natarajan, and P.C. Searson, J. Phys. D, 31, 1927 (1998)CrossRefGoogle Scholar
  209. 209.
    Y. Sacham Diamand and M. Angyal, Thin Solid Films, 262, 93–103 (1995)CrossRefGoogle Scholar
  210. 210.
    M. Paunovic, Plating, 55, 1161 (1968) and also H.P. Fong, Y. Wu, Y.Y. Wong, and C.C. Wan, Electroless Cu deposition process on TiN for ULSI interconnect fabrication via Pd/Sn colloid activation, J. Electron. Mater., 32 (1), 9 (2003)Google Scholar
  211. 211.
    H. Ebneth, In Metallizing of plastics, Handbook of theory and practice, R. Suchentrunk (ed.), ASM International, Materials Park, OH, (1993)Google Scholar
  212. 212.
    H.P. Fong, Y. Yu, Y.Y. Wang, and C.C. Wan, Electroless deposition process on TiN for ULSI interconnect fabrication via Pd/Sn colloid activation, J. Electron. Mater., 32 (1), 9 (2003)Google Scholar
  213. 213.
    N. Petrov, Y. Severdlov, and Y.S. Diamond, Electrochemical study of electroless deposition of Co (P) and Co (W,P) alloys, J. Electrochem. Soc., 149 (4), C187 (2002)CrossRefGoogle Scholar
  214. 214.
    S. Balakumar et al., Effect of stress on the properties of copper lines in Cu interconnects, Electrochem. Solid State Lett., 7(4), G68 (2004)CrossRefGoogle Scholar
  215. 215.
    T. Hara, K. Kakata, and Y. Yoshida, Electrochem determine grain size of the EP-Cu. Solid State Lett., 5, C41 (2002) and also Z. Suo, Reliability of interconnect structures, Interfacial and nanoscale failure, W. Gerberich, and W, Wang (eds.), Vol. 8, pp. 263–324, Elsivier, Amsterdam, (2003)Google Scholar
  216. 216.
    T. Hara and K. Sakata, Stress in copper seed layer employing in copper interconnection, Electrochem Solid State Lett., 4(10), G-77 (2001)CrossRefGoogle Scholar
  217. 217.
    D.Y. Kim, PhD Dissertation, Stanford University, Stanford (Dec., 2003)Google Scholar
  218. 218.
    J.J. Toomy, S. Hymes, and S. Murarka, Stress effects in thermal cycling of copper (magnesium) thin films, Appl. Phys. Lett., 2074–2076 (April 1995)Google Scholar
  219. 219.
    A.A. Volinsky, Mat. Res. Soc. Symp. Proc., 649, (2000)Google Scholar
  220. 220.
    D.E. Kramer, A.A. Volinsky, N.R. Moody, and W.W. Gerberich, J. Mater. Res., 16 (11), 3150 (2001)CrossRefGoogle Scholar
  221. 221.
    P.A. Flinn and G.A. Waychuns, A new X-ray diffractometer design for thin film texture, strain, and phase characterization, J. Vac. Sci. Technol., B-6, 1749 (1988)CrossRefGoogle Scholar
  222. 222.
    H.B. Nie et al., Structural and electrical properties of tantalum nitride thin films fabricated by using reactive radiofrequency magnetron sputtering, Appl. Phys. A, 73, 229 (2001)CrossRefGoogle Scholar
  223. 223.
    Y. Liu and H. Huang, Phil. Mag., 84 (19), 1919 (2004)CrossRefGoogle Scholar
  224. 224.
    R.L. Cohen and R.I. Meek, J. Colloid Interf. Sci., 55, 156 (1976) and also R.L. Cohen and K.W. West, J. Electrochem. Soc., 120, 502 (1973)Google Scholar
  225. 225.
    R.L. Jackson, Initiation of electroless copper plating using Pd+2 poly acrylic acid films, J. Electrochem. Soc., 135 (12), 3172 (Dec., 1988)CrossRefGoogle Scholar
  226. 226.
    W.J. Dressick, C.S. Dulcey, J.H. Georger, G.S. Calabrese, and J.M. Calvert, J. Electrochem. Soc., 141, 210 (1994)CrossRefGoogle Scholar
  227. 227.
    E. Budevski, G.S. Staikov, and W.J. Lorenz, Electrochemical phase transfomation and growth, VCH, Weinheim, Germany, (1996)CrossRefGoogle Scholar
  228. 228.
    D.M. Kolb, R. Ullmann, T. Will, Science, 275, 1097 (1997)CrossRefGoogle Scholar
  229. 229.
    R.M. Stiger, S. Gorer, B. Craft, and R. Renner, Langmuir, 75780 (1999)Google Scholar
  230. 230.
    K. Maex et al., Low dielectric constant materials for microelectronics, J. Appl. Phys., 93, 8793 (2003)Google Scholar
  231. 231.
    F. Lacopi et al., Impact of LKD5109 low-K interfaces in single damascene process and performance, Micrelectron. Eng., 65, 293 (Nov., 2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Radiation Monitoring Devices, Inc.WatertownUSA

Personalised recommendations