Advertisement

Diffusion and Barrier Layers

  • Tapan Gupta
Chapter

Diffusion is a frequently used technique to incorporate impurities into a semiconductor. Imperfection in a nearly perfect crystal is the prime theme of intentional impurity diffusion in silicon crystals [1] for the formation of p-n junctions, conduction channels, and source drain regions. The performance of the devices depends critically on the impuri-ty concentration and the impurity profile. For this reason the diffusion of various impurities in semiconductors has been studied extensively.

Keywords

Barrier Layer Dielectric Layer Grain Boundary Atomic Layer Deposition Ternary Phase Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H.J. Queisser and E.E. Haller, Defects in semiconductors: Some fatal, some vital, Science, 281, 945 (1998) and also P. Stiffer and E. Krimmel (eds.), Silicon evolution and future of a technology, p. 249, Springer, New York, (2004) and B.I. Boltaks, A treatise on diffusion in semiconductors, Academic, San Diego, CA., (1963) and O. Muscato, Physica, 365 (2), 409 (2006) and IEEE IEDM News, Dec 16, (2007)Google Scholar
  2. 2.
    A.A. Istratov and E.R. Weber, Physics of copper in silicon, J. Electrochem. Soc., 149 (1), G21 (2002) and also T. Heiser, S. McHugo, H. Heislmair, and E.R. Weber, Transient ion drift direction of low level copper contamination in silicon, Appl. Phys. Lett., 70, 3576 (1997) and Z. Xi, J. Chen, D. Yang, A. Lawerenz, and H.J. Moeller, Copper precipitation in large diameter Czocharlski silicon, J. Appl. Phys., 97, 094909 (2005) and also S-H Kim et al., Electrochem. Solid State Lett., 11 (5), H-127 (2008)Google Scholar
  3. 3.
    J. Li, Y.S. Diamond, and J.W. Mayer, Copper deposition and thermal stability issues in Cu-based metallization for ULSI technology, Mater. Sci. Rep., 9, 1 (1992) and also A. Correia, D. Ballutaud, A. Bountry-Forveille, and J-L. Maurice, Effects of copper and oxygen precipitation during thermal oxidation of silicon, J. Appl. Phys., 78, 6543 (1995)Google Scholar
  4. 4.
    K.M. Crosby, Grain boundary diffusion in copper under tensile stress, Cond. Matter., 1, 65 (2003)Google Scholar
  5. 5.
    K. Masu et al., Jpn. J. Appl. Phys., 30 (1), 3642 (1991) and also I. Kaur, Y. Mishin, and W. Gust, Fundamentals of grain and interphase boundary diffusion, Wiley, Chichester, (1995) and also K.F. Vaz et al., Microelectron. J., 34 (5/8), 599 (2003)Google Scholar
  6. 6.
    J.H. Choy and K.L. Kavanagh, Appl. Phys. Lett., 84 (25), 5201 (2004)CrossRefGoogle Scholar
  7. 7.
    E.T. Ogawa, K.D. Lee, V.A. Blaschke, and P.S. Ho, Electromigration reliability issues in dual damascene Cu interconnections, IEEE Trans. Reliab., 51 (4), 403 (2002)Google Scholar
  8. 8.
    J.R. Lyod and J.J. Clement, Thin Solid Films, 262, 135 (1995) and also M.J. Kerr and A. Cuevas, Recombination at the interface between silicon and stoichiometric plasma silicon nitride, Semicond. Sci. Technol., 17, 166 (2002)Google Scholar
  9. 9.
    C.S. Hau-Riege and C.V. Thompson, Appl. Phys. Lett., 78, 3451 (2001)Google Scholar
  10. 10.
    C.K. Hu, R. Rosenberg, and K.Y. Lee, Appl. Phys. Lett., 74, 2945 (1999)Google Scholar
  11. 11.
    M. Nathan et al., Appl. Phys. Lett., 77, 3355 (2000) and also M.R. Sorensen and A.F. Voter, J. Chem. Phys., 112, 9599 (2000)Google Scholar
  12. 12.
    J.H. Choy and K.L. Kavanagh, Appl. Phys. Lett., 84 (25), 5201 (2004)CrossRefGoogle Scholar
  13. 13.
    T. Laurila, K. Zeng, J.K. Kivilathi, J. Molarius, and I. Suni, Chemical stability of Ta diffusion barrier between Cu and Si, Superfices y vacio, 9, 199 (Dec. 1999) and also E.T. Ogawa, K.D. Lee, V.A. Blaschke, and P.S. Ho, Electromigration reliability issues in dual damascene Cu interconnections, IEEE Trans. Reliab., 51 (4), 403 (2002)Google Scholar
  14. 14.
    A.E. Kaloyeros, X. Chen, S. Lane, and H.I. Frisch, Tantalum diffusion barrier grown by inorganic plasma promoted chemical vapor deposition, JMR, 15 (12), 2800 (2000) and M.A. Meyer, Ph.D. Thesis, Brandenburg Univ. of Technol., Cottbus, Germany, (2007)Google Scholar
  15. 15.
    J.D. Torre et al., Microstructure of thin tantalum films sputtered onto inclined substrate: Experiments and atomistic simulations, J. Appl. Phys., 94 (1), 263 (2003) and also P. Klaver and B. Thijsse, Thin Solid Films, 2, 467 (1968)Google Scholar
  16. 16.
    H. Mehr and L. Bornstein (eds.), Diffusion in solid metals and alloys, Gr. III, Vol. 26, Springer, Berlin, (1990)Google Scholar
  17. 17.
    K. Holloway and P.M. Fryer, Appl. Phys. Lett., 57, 1736 (1990) and T. Oku et al., Appl. Surf. Sci., 99, 265 (1996) and C.K. Hu, L. Gignac, and R. Rosenberg, Microelectron. Relib., 46, 213 (2006)Google Scholar
  18. 18.
    D.E. Kramer, A.A. Volinsky, N.R. Moody, and W.W. Gerberich, JMR, 16 (11), 3150 (2001) and D. Chocyk et al., Evolution of stress and structure in Cu thin films, Cryst. Res. Technol., 40 (4/5), 509 (2005)Google Scholar
  19. 19.
    W.W. Gerberich, A.A. Volinsky, N.I. Tymiak, N.R. Moody, Mater. Res. Soc. Symp., 594, 351 (2000) and L. Lu, N.R. Tao, L.B. Wang, B.J. Ding, and K. Lu, Grain growth and strain release in nanocrystalline copper, J. Appl. Phys., 89 (11) 6408 (2001) and also M.A. Meyer and E. Zschek, Proc. 9th Int. Workshop on stress induced phenomena and metallization, AIP Conf. Kyoto, Japan, 4–7 April (2007)Google Scholar
  20. 20.
    M.J. Buehler, A.Hartmaier, and H. Gao, Hierachical multi-scale modeling of plasticity of sub-micron thin metal films, Model. Simul. Mater. Sci. Eng., 12, S391 (2004) and also K. Chen, A. Fan, and R. Reif, J. Electron. Mat., 30, 331 (2001)Google Scholar
  21. 21.
    H. Gao, L. Zhang, W.D. Nix, C.V. Thompson, and E. Artz, Crack like grain boundary (GB) diffusion wedges in thin metal films, Acta. Mater., 47, 2865 (1999) and K. Mohseni, A. Shakouri, R.J. Ram, and M.C. Abraham, Phys. Fluids, 17, 100602 (2005)Google Scholar
  22. 22.
    B.G. Wills and D.V. Lang, Oxidation mechanism of ionic transport of copper in SiO2 dielectrics, Thin Solid Films, 467, 284 (2004) and also V.S.C. Len, R.E. Hurley, N. McCuster, D.W. McNeil, B.M. Armstrong, and H.S Gamble, Solid State Electron., 43, 1045 (1999)Google Scholar
  23. 23.
    J.Y. Kwon, K.S. Kim, Y.C. Joo, and K.B. Kim, Simulation of the copper diffusion profile in SiO2 during bias temperature stress (BTS) test, Jpn. J. Appl. Phys., 41, L99 (2002) and A. Mineji et al., IEEE Int. Workshop Jn. Technol. Paper, S 4–8 (2007)Google Scholar
  24. 24.
    J.D. McBrayer, Ph.D. dissertation, Stanford University, 1983 and P.G. Sverdrup et al., Int. conf. on simulation and semicond. process & devices (SISPAD), p. 54, Sept 6–8, Seattle, WA, (2000)Google Scholar
  25. 25.
    J.C. Lin and C. Leez, Electrochem. solid state Lett., 2 (4), 1812 (1999)CrossRefGoogle Scholar
  26. 26.
    A.L.S. Loke, Ph.D. Dissertation, Stanford university, (1999)Google Scholar
  27. 27.
    H. Miyazaki, K. Hinode, Y. Homma, and N. Kobayshi, Jpn. J. Appl. Phys., 35, 1685 (1996)CrossRefGoogle Scholar
  28. 28.
    V. Hugo, The house in the RUE plumet, Les miserables, Vol. 4, Chapter 235, Book 3rd ed., Signet, New York, (1987)Google Scholar
  29. 29.
    D. Gan, P.S. Ho, R. Haung, J. Len, J. Maiz, and T. Scherban, Isothermal stress relaxation in electroplated Cu-films, J. Appl. Phys., 97, 103531 (2005)CrossRefGoogle Scholar
  30. 30.
    A.A. Volinski et al., Residual stress and microstructure of electroplated Cu fil on different barrier layers, MRS. Symp., 695, L1.11.1 (2002) and also J.J. Tommy, S. Hymes, and S.P. Murarka, Stress effects in thermal cycling copper thin films, Appl. Phys. Lett., 66, 2074 (1995)Google Scholar
  31. 31.
    M. Sorensen, Y. Mishin, and A. Voter, Phys. Rev., B-62, 3658 (2000)CrossRefGoogle Scholar
  32. 32.
    H. Van Swygenhoven, D. Farakas, and A. Caro, Phys. Rev., B-62, 831 (2000)CrossRefGoogle Scholar
  33. 33.
    K.M. Crosby, Grain boundary diffusion in copper under tensile stress, Cond. Mater., 1, 065 (July 2, 2003)and also Y. Mishin, Philos. Mag., A72, 1589 (1995) and M. Hauschudtet al., J. Appl. Phys., 101 (4), 043523 (2007)Google Scholar
  34. 34.
    L.I. Maissel and R. Glang, Handbook of thin film technology, McGraw Hill, New York, (1983)Google Scholar
  35. 35.
    J. Thibault, J.L. Rouviere, and A. Bourret, Grain boundaries in semiconductors, In Hand book of semiconductor technology, K.A. Jackson and W. Schroter, Vol. I, Wiley and VCH, New York, (2000)Google Scholar
  36. 36.
    W.T. Read, Dislocations in crystals, McGraw Hill, New York, (1953)MATHGoogle Scholar
  37. 37.
    J.W. Mayer and S.S. Lau, Electronic materials science for integrated circuits in Si and GaAs, p. 172, Mcmillan Pub., New York, (1990)Google Scholar
  38. 38.
    J. Nucci, R. Keller, D.P. Field, and Y.S. Diamond, Appl. Phys. Lett., 7 (10), 1242 (1999)Google Scholar
  39. 39.
    L. Vanasupa, Y.C. Joo, P.R. Besser, and S. Pramanick, J. Appl. Phys., 85 (5), 2583 (1999)CrossRefGoogle Scholar
  40. 40.
    B.L. Sharma, Diffusion in semiconductors, pp. 87–126, Trans. Tech. Pub., Germany, (1970)Google Scholar
  41. 41.
    B.I. Boltaks, Diffusion in semiconductors, D. Shaw (ed.), Atomic diffusion in semiconductors, Academic Press, New York, (1973)Google Scholar
  42. 42.
    J.C. Tsai, Diffusion, In VLSI Technology, (ed.) S.M. Sze, McGraw Hill, New York,  Chapter 5, (1983)
  43. 43.
    M. Nathan et al., Appl. Phys. Lett., 77, 3355 (2000) and also D. Gupta and P.S. Ho, Some fundamental aspect of diffusion in diffusion phenomena in thin films and microelectronic materials, Noyes Pub., Park Ridge, (1988)Google Scholar
  44. 44.
    J.H. Choy and K.L. Kavanagh, Appl. Phys. Lett., 84 (25), 5201 (2004)Google Scholar
  45. 45.
    A.P. Sutton and V. Viter, Phil. Trans. Roy. Soc. London, A-301, 1–68 (1983)Google Scholar
  46. 46.
    A.P. Sutton and R.W. Ballufi, Interfaces in crystalline Mats., Clarendon Press, London, (1995)Google Scholar
  47. 47.
    A.L. Kolesnikova, I.A. Ovid’ko, and A.B. Reizs, J. Mater. Proc. Manuf. Sci., 7, 5 (1999) and also L. Kuipers, M.S. Hoogeman, and J.W.M. Frenken, Phys. Rev. Lett., 71, 3517 (1993)Google Scholar
  48. 48.
    R.A. Masumura and I.A. Ovid’ko, Enhanced diffusion near amorphous grain boundaries in nano crystalline and polycrystalline solids, Mater. Phys. Mech., 1, 31–38 (2000)Google Scholar
  49. 49.
    N.F. Mott and E.A. Davis, Electronic processes in non-crystalline materials, Clarendon Press, Oxford, London, (1979)Google Scholar
  50. 50.
    U.F. Mayer and G. Simonett, On diffusion-induced grain boundary motion, Contemporary mathematics Am. Math. Soc., 238, 231–240 (1999) and A. Gouldstone et al., Acta Mater., 55, 4015 (2007)Google Scholar
  51. 51.
    J.W. Chan, P.C. Fife, and O. Penrose, A phase field model for diffusion induced grain boundary motion, Acta Mater., 45.(10), 4397–4413 (1997)CrossRefGoogle Scholar
  52. 52.
    R. Gastel, E. Somfai, S.B. Albada, W. Saarloos, and J.W. Frenken, Nothing moves a surface: Vacancy mediated surface diffusion, Phys. Rev. Lett., 86 (8), 1562 (2001)CrossRefGoogle Scholar
  53. 53.
    L. Hansen, P. Stoltze, K.W. Jacobsen, and J.K. Norskov, Phys. Rev., B-44, 6523 (1991) and A. Gouldstone, K.J. Vanviet, and S. Suresh, Nature, 411, 656 (2001)Google Scholar
  54. 54.
    T.Flores, S. Junghans, and M. Wuttig, Atomic mechanism for the diffusion of Mn atoms incorporated in the Cu(100) surface: an STM study, Surf. Sci., 371, 1 (1997)CrossRefGoogle Scholar
  55. 55.
    J.W. Mayer and S.S. Lau, Electronic materials science,  Chapter 7, p. 208, Mcmillan Pub., New York, (1990) and also A.E. Kaloyeros, X. Chen, S. Lane, H.L. Frisch, and B. Arkles, JMR, 15 (12), 2800 (2000) and J. Boreland et al., Int. Workshop on Jn. Transistors, S4–7, 69 (2007)
  56. 56.
    K. Holloway, P.M. Freyer, and C. Cabral, Jr., J. Appl. Phys., 71, 5433 (1992) and C. Nieh et al., IEEE EDL, 27 (12), 969 (2006)Google Scholar
  57. 57.
    K. Nagas, J.B. Neaton, and N.W. Asheroft, Phys. Rev., B68, 125403 (2003) and also S.M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley, NY (1981) and B.G. wills and D.V. Long, Oxidation mechanism of ionic transport of copper in SiO2 dielectric, Thin Solid Films, 467, 284 (2004) and O. Muscato, Physica A, 365 (2), 409 (2006)Google Scholar
  58. 58.
    F. Lanckmans, B, Brijs, and K. Maex, The role of H in Cu+ drift diffusion in plasma deposited a-SiC: H, J. Phys. Cond. Matter., 14, 3565 (2002) and also A.E. Kaloyeros, X. Chen, S. Lane, H.L. Frisch, and B. Arkles, JMR, 15 (12), 2800 (2000)Google Scholar
  59. 59.
    Y. Li, J. Hunter, and T.J. Tate, SIMS study of Cu trapping and migration in low-K dielectric film, Appl. Surf. Sci., 231, 791 (2004)CrossRefGoogle Scholar
  60. 60.
    W. Li. Sung and Bi-S. Chiou, J. Electron. Mater., 31 (5), 472 (2002)CrossRefGoogle Scholar
  61. 61.
    K. Nago, J.B. Neaton, and N.W. Ashcroft, Phys. Rev. B, 68, 125403 (2003)CrossRefGoogle Scholar
  62. 62.
    K.N. Tu, In Thin film interdiffusion &reactions, J.M. Potate, K.N. Tu, and J.W. Mayer (eds.), pp. 360–403, Wiley, New York, (1978), and also E.T. Ogawa, K.D. Lee, V.A. Blaschke, and P.S. Ho, Electromigration reliability issues in dual damascene Cu interconnections, IEEE Trans. Reliab., 51 (4), 403 (2002)Google Scholar
  63. 63.
    R. Hubner et al., Void formation in the Cu layer during thermal treatment of SiNx/Cu/Ta73Si27/SiO2/Si systems, Cryst. Res. Technol., 40 (1/2), 135 (2005)Google Scholar
  64. 64.
    K.N. Tu, J. Appl. Phys., 94, 5451 (2003)CrossRefGoogle Scholar
  65. 65.
    H.B. Nie et al., Appl. Phys., A-73, 229 (2002)Google Scholar
  66. 66.
    S.P. Hau-Riege et al., Mat. Res. Symp. Proc., 612, D2.2.1 (2000) and also A.A. Istratov and E.R. Weber, Electrical properties and recombination activity of copper, nickel and cobalt in silicon, Appl. Phys., A66, 123 (1998)Google Scholar
  67. 67.
    J. Gambino et al., Effect of CoWP cap thickness on via yield and reliability for Cu-interconnect with CoWP-only cap process, IITC, IEEE, (2005) and also A.E. Kaloyeros et al., J. Mater. Res. Soc., 15 (12), 2800 (2000)Google Scholar
  68. 68.
    A.A. Volinsky, J.B. Vella, and W.W. Gerberich, Thin Solid Films, 429 (1/2), 201 (2002)Google Scholar
  69. 69.
    D. Cramer et al., Acta Mater., 47, 333 (1999)CrossRefGoogle Scholar
  70. 70.
    Y. Liu and A.H.W. Ngan, Scripta Mater., 44, 237 (2001)CrossRefGoogle Scholar
  71. 71.
    C.S. Smith, J. Inst. Metals, 40, 359–371 (1928)Google Scholar
  72. 72.
    S. Arrhenius and A. Westgren, Z. Physik. Chem., B-14, 66–79 (1931)Google Scholar
  73. 73.
    K. Schubert and G. Brandauer, Z. Metalkunde, 43, 267–268 (1952) and also M. Seibt, H. Hedeman, A.A. Istratov, F. Riedel, A. Sattler, and W. Schroter, Structural and electrical properties of metal silicide precipitates in silicon, Phys. Status Solidi A 171, 301 (1999)Google Scholar
  74. 74.
    P.M. Hansen, Constitution of binary alloys, 2nd ed., p. 632, McGraw Hill, New York, (1958)Google Scholar
  75. 75.
    A. Loke, C. Ryu, C.P. Yue, J.S. Cho, and S.S. Wong, Kinetics of copper drift in PECVD dielectrics, IEEE Trans. Electron. Device Lett., 17 (2), D549–551 (1996) and also S. Kim et al., Electrochem. Solid State Lett., 10 (6), 193 (2007)Google Scholar
  76. 76.
    R.S. Muller and T.I. Kamins, Device electronics for integrated circuits, pp.11–14, Wiley, New York, (1977)Google Scholar
  77. 77.
    K.H.J. Buschow, R. Cahn, M. Flemings, B.I. Ilschner, E.J. Kramer, and S. Mahajan, Copper alloying, Encyclopedia of materials: Science and technology, Elsevier Science Ltd., Oxford, UK (2000)Google Scholar
  78. 78.
    M. Hansen, Constitution of binary alloys, p. 2000, McGraw Hill, New York, (1958)Google Scholar
  79. 79.
    F. Pawlek and K. Reichel, The effect of impurities on the electrical conductivity of copper, Z. Metallk, 47, 347–356 (1956) and also R. Hoelzl, K.J. Range, and L. Fabry, Modeling of copper gettering in p-and n-type silicon and in polysilicon, Appl. Phys., A75, 525 (2002)Google Scholar
  80. 80.
    A.G. Milnes, Deep level impurities in semiconductors, Wiley, New York, (1973)Google Scholar
  81. 81.
    R.N. Hall and J.H. Racette, Diffusion and solubility of copper in extrinsic and intrinsic germanium, Silicon and gallium arsenide, J. Appl. Phys., 35 (3), 379–385 (1964)CrossRefGoogle Scholar
  82. 82.
    A.L.P. Rotondaro et al., J. Electrochem. Soc., 143 (9), 3014–3018 (1996)CrossRefGoogle Scholar
  83. 83.
    K. Takeda, K. Hinode, I. Oodake, N. Oohashi, and H. Yamaguchi, Enhanced dielectric breakdown life time of the copper silicon nitride/ silicon dioxide structures, IEEE RPS, Proc. p. 36, (1998)Google Scholar
  84. 84.
    M. Vogt, M. Kachel, M. Plotner, and K. Drescher, Dielectric barriers for Cu-metallization systems, Microelectron. Eng., 37/38, 181 (1997)CrossRefGoogle Scholar
  85. 85.
    S.K. Rha, S.Y. Lee, W.J. Lee, Y.S. Hwang, C.O. Park, D.W. Kim, Y.S. Lee, and C.N. Whang, J. Vac. Sci. Technol., B16, 2019 (1998) and also A.A. Istratov and E.R. Weber, Physics of copper in silicon, J. Electrochem. Soc., 149 (1), G-21–G-30 (2002)Google Scholar
  86. 86.
    C.P. Flynn, Point defects and diffusion, Clarendon Press, Oxford, London, (1972)Google Scholar
  87. 87.
    H.F. Wolf, Semiconductors, Chapter 2, p. 147, Wiley, New York, (1971)Google Scholar
  88. 88.
    I. Kaur, Y. Mishin, and G. Ggust, Fundamentals of grain and interphase boundary diffusion, Wiley, Chichester, (1995)Google Scholar
  89. 89.
    M.R. Sorensen, Y. Mishin, and A.F. Voter, Diffusion mechanism in Cu-grain boundaries, Phys. Rev. B, 62 (6), 3658–3673 (2000)CrossRefGoogle Scholar
  90. 90.
    K.N. Tu, Recent advances on electromigration in very large scale integration of interconnects, J. Appl. Phys., 94 (9), 5451 (2003)CrossRefGoogle Scholar
  91. 91.
    J.D. Wiley, J.H. Perepezko, J.E. Nordman, and K.J. Guo, IEEE Trans. Ind. Electron., 29, 154 (1982) and A. Horsfall, A. Curthbertsen, S. Bull, and A.O. Neill, Microelectron. Eng., 84 (11), 2486 (2007)Google Scholar
  92. 92.
    A.L. Greer, In Diffusion phenomena in thin films, (ed.) D. Gupta and H.S. Ho, Noyes Pub. Park Ridge, N.J., (1987)Google Scholar
  93. 93.
    M.A. Nicolet and M. Bartur, J. Vac. Sci. Technol., 19, 786 (1981)CrossRefGoogle Scholar
  94. 94.
    G.S. Chen and S.C. Huang, Intrinsic properties and barrier behaviors of thin films of sputtered deposited single layered and alternate layered tantalum nitrides, J. Electrochem. Soc., 148 (8), G-424 (2001)CrossRefGoogle Scholar
  95. 95.
    A.A. Istratov and E.R Weber, In Copper interconnects, New contact metallurgies /structures, and low-K dielectrics, G.S. Mathad et al. (eds.), p. 90, The Electrochem. Soc. Pub. Pennington, NJ, (2001)Google Scholar
  96. 96.
    J. Stake and W. Brenig (eds.), Amorphous and liquid semiconductors, Vol. 1 and 2, Taylor and Francis, London, (1974) and H.Y. Wong, N.F.M. Shukor, and N. Amin, Microelectron. J., 38 (6/7), 777 (June 2007)Google Scholar
  97. 97.
    J.F. Wagner and C.W. Wilmsen, The deposited insulator/III-V semiconductor interface, In C.W. Wilmsen (ed.), Physics and Chemistry of II-V semiconductor interface, Plenum press, New York, (1985)Google Scholar
  98. 98.
    L.J. Brillson, Advances in understanding metal semiconductor interfaces by surface science technique, J. Phys. Chem. Solids, 44, 703 (1983)CrossRefGoogle Scholar
  99. 99.
    S.P. Kowalcxyk, J.R. Waldrop and R.W. Grant, Interfacial chemical reactivity of metal contacts with thin native oxides of GaAs, J. Vac. Sci. Technol., 19, 611 (1981)CrossRefGoogle Scholar
  100. 100.
    National Center for Manufacturing Sciences (NCMS), The lead free solder project, NCMS Rept. 0401 RE 96 (1997)Google Scholar
  101. 101.
    M.J. Rost, D.A. Quist, and J.W.M. Frenken, Phys. Rev. Lett., 91 (2), 026101-1 (2003)CrossRefGoogle Scholar
  102. 102.
    S. Balakumar et al., Effect of stress on the properties of Cu-lines in Cu-interconnects, J. Electrochem. Soc., 7 (4), G-68 (2004)Google Scholar
  103. 103.
    J.D. Torre et al., Microstructure of thin films sputtered into inclined substrates, experiments and atomistic simulation, J. Appl. Phys., 94, 263 (2003)Google Scholar
  104. 104.
    A.G. Dirks and H.J. Leamy, Thin Solid Films, 47, 219 (1997)CrossRefGoogle Scholar
  105. 105.
    D.E. Hanson, J.D. Kress, A.F. Voter, and X.Y. Liu, Phys. Rev. B, 60 (11), 723 (1999)Google Scholar
  106. 106.
    J. Hopwood (ed.), Ionized Physical Vapor Deposition, Academic Press, San Diego, CA, (2000) and Y Yang, M. Wong, and M. Kushner, IEEE IITC, Burlingame, CA, (April 2008)Google Scholar
  107. 107.
    D.R.F. West and N. Saunders, Ternary phase diagrams in material science, 3rd. ed., Maney Pub., London, (2002)Google Scholar
  108. 108.
    S.P. Murarka and D. Fraser, J. Appl. Phys., 51, 1593 (1980)CrossRefGoogle Scholar
  109. 109.
    C.A. Chang, J. Electrochem. Soc., 127, 1331 (1980)CrossRefGoogle Scholar
  110. 110.
    C.A. Chang, Appl. Phys. Letts., 38, 860 (1981)CrossRefGoogle Scholar
  111. 111.
    C.A. Chang, Reduced Cu-Cr mixing and reduced Pt-Cu interdiffusion by oxygen in Cu/Cr and Pt/Cu/Cr thin films, J. Appl. Phys., 53 (10), 7092 (1982)CrossRefGoogle Scholar
  112. 112.
    J.W. Mayer and S.S. Lau (eds.), Electronic materials for integrated circuits, p. 333, Mcmillan Pub., New York, (1990)Google Scholar
  113. 113.
    M.A. Nicolet, I. Suni, and M. Finetti, Solid State Technol., 26, 129 (Dec. 1983) and also F.W. Saris et al., Proc. MRS., 54, 81 (1986)Google Scholar
  114. 114.
    P.M. Hansen, Constitution of binary alloys, McGraw Hill, New York, (1958)Google Scholar
  115. 115.
    F.J. Humphreys, Y. Haung, I. Brough, and C. Harris, J. Micrelectron. Mater., 195, 212 (1999)Google Scholar
  116. 116.
    T. Muppidi, D.P. Field, J.E. Sanchez, and C. Woo, Barrier layer geometry and alloying effects on the microstructure and texture of electroplated copper thin films and damascene films, Thin Solid Films, 471, 63 (2005)CrossRefGoogle Scholar
  117. 117.
    Z.C. Wu et al., J. Electrochem. Soc., 146, 11 (1999)Google Scholar
  118. 118.
    K.M. Crossby and R.M. Bradley, Phys. Rev., E-59, R-2542 (1999)Google Scholar
  119. 119.
    C.V. Thompson et al., J. Appl. Phys., 67, 4099 (1990)CrossRefGoogle Scholar
  120. 120.
    J.A. Floro et al., MRS. Bull., 27, 19 (2002) and also J.W. Christian, The theory of transformations in metals and alloys, Part 1, 2nd ed. Pargamon Press, Oxford, London, (1975)Google Scholar
  121. 121.
    C.V. Thompson, Annu. Rev. Mater. Sci., 20, 245 (1990)CrossRefGoogle Scholar
  122. 122.
    W.W. Mulins, J. App. Phys., 28, 333 (1957)CrossRefGoogle Scholar
  123. 123.
    W.W. Mulins, Acta Metall., 6, 414 (1958)CrossRefGoogle Scholar
  124. 124.
    R. Dannenberg et al., Thin Solid Films, 370, 54 (2000)CrossRefGoogle Scholar
  125. 125.
    R.D. Doherty et al., Mater. Sci. Eng., A 238, 219 (1997)CrossRefGoogle Scholar
  126. 126.
    M.J. Rost, D.A. Quist, and J.W.M. Frenken, Phys. Rev. Letts., 91 (2), 02601-1 (2003)CrossRefGoogle Scholar
  127. 127.
    Q.T. Jiang et al., Analysis of copper grains in damascene trenches after rapid thermal processing, J. Electron. Mater., 31 (2), (2002)Google Scholar
  128. 128.
    J.F. Whitacre, Z.V. Rek, J.C. Bilello, and S.M. Yalisove, Surface roughness and in plane texturing in sputtered films, J. Appl. Phys., 84 (3), 1346 (1998)CrossRefGoogle Scholar
  129. 129.
    L. Liu, Y. Wang, and H. Gong, J. Appl. Phys., 90, 416 (2001) and J.H. An and P.J. Ferreira, Appl. Phys. Lett., 80, 151919 (2006)Google Scholar
  130. 130.
    M. Stavrev, D. Fisher, F. Praessler, C. Wenzel, and K. Drescher, J. Vac. Sci. Technol., A 17, 993 (1999)CrossRefGoogle Scholar
  131. 131.
    F.A. Baicchi, N. Lifshitz, T. Sheng, and S.P. Murarka, J. Appl. Phys., 64, 6490 (1988)CrossRefGoogle Scholar
  132. 132.
    A.A. Istratov and E.R. Weber, Appl. Phys. A, 66, 123 (1998), and (iii) degradation of the lifetime W.B. Henley, D.A. Ramappa, and L. Jastreszbski, Detection of copper contamination in silicon by surface photovoltage diffusion length measurements, Appl. Phys. Letts., 74, 278–280 (1999)Google Scholar
  133. 133.
    T. Heiser, A.A. Istratov, C. Flink, and E.R. Weber, Electrical characterization of copper related defect reactions in silicon, Mater. Sci. Eng., B58, 149 (1999)CrossRefGoogle Scholar
  134. 134.
    A.A. Istratov, C. Flink, H. Hieslmair, E.R. Weber, and T. Heiser, Intrinsic diffusion coefficient of copper in silicon, Phys. Rev. Lett., 81, 1243 (1998)CrossRefGoogle Scholar
  135. 135.
    L. Arnaud et al., Microelectron. Reliab., 40, 77 (2000)CrossRefGoogle Scholar
  136. 136.
    S. Ragojevic et al., Interactions between silica xerogel and tantalum, J. Vac. Sci. Technol., B 19 (2), 354 (2001) and G.X. Cao and X. Chen, Phys. Rev. B, 73 (15), 155435 (2006)Google Scholar
  137. 137.
    M.D. Thouless, J. Vac. Sci. Technol., A 9 (4), 2570 (1991) and A. Gouldstone et al., Acta Mater., 55, 4015 (2007)Google Scholar
  138. 138.
    J.M.E. Harper and K.P. Rodbell, J. Vac. Sci. Technol., B15, 763 (1997)CrossRefGoogle Scholar
  139. 139.
    M.A. Nicolet, Thin Solid Films, 52, 415 (1978) and S. Donovan and M.J. Moll, IEEE workshop on Microelectron. Dev. Boise, Idaho, (2006)Google Scholar
  140. 140.
    L.P. Buchwalter and J. Adhes, Sci. Technol., 9, 97 (1995)Google Scholar
  141. 141.
    D.S. Campbell, Mechanical properties of thin films, In L.I. Maissel and R. Glang (eds.), Handbook of thin film technology, pp. 12–16, McGraw Hill, New York, (1983)Google Scholar
  142. 142.
    B.Y. Tsui, J. Yang, and T.K. Ku, Micoelctron. Reliab., 41, 1889 (1999) and A. Sakata et al., IEEE IITC, (2006)Google Scholar
  143. 143.
    W.F. Wu et al., Electrochem. Solid State Lett., 2, 342 (1999)CrossRefGoogle Scholar
  144. 144.
    W.F. Wu, K.L. Ou, C.P. Chou, and J.J. Hsu, PECVD-Ti/TiNx barrier with multilayered amorphous structure and high thermal stability for copper metallization, Electrochem. Solid state Lett., 6 (2), G27–G29 (2003)CrossRefGoogle Scholar
  145. 145.
    P. Gallais, J.J. Hantzpergue, and J.C. Remy, Thin Solid Films, 165, 227 (1988) and also H. Kim et al., Material consideration on Ta, Mo, Ru, and Os as glue layer for ultra large scale integration Cu interconnects, Jap. J. Appl. Phys., 45 (4A), 2497 (2006)Google Scholar
  146. 146.
    S.P. Murarka, Silicides for VLSI applications, Academic, New York, (1983) and J. gambino, IEEE IITC, Proc., p. 22, (2007)Google Scholar
  147. 147.
    P.T. Liu, T.C. Chang, S.T. Yan, C.H. Li, and S.M. Sze, Electrical transport phenomena in aromatic hydrocarbon polymers, J. Electrochem. Soc., 150 (2), F-7 (2003) and C-C Huang, J-L Huang, Y.L Wang, and J.J. Chang, J. Vac. Sci. Technol., B, 24 (6), 2621 (2006)Google Scholar
  148. 148.
    A.S. Loke et al., IEEE Trans. Electron Dev., 46, 2178 (1999) and A. Sakata, 9th Int. Workshop on Stress induced phenomena in metallization, 4th April, Kyoto, Japan, (2007)Google Scholar
  149. 149.
    K.P. Yap et al., Integrity of copper tantalum nitride metallization under different ambient conditions, J. Electrochem. Soc., 147 (6), 2312–2318 (2000)CrossRefGoogle Scholar
  150. 150.
    T. Laurila et al., TaC as a diffusion barrier between Si and Cu, J. Appl. Phys., 91, 5391 (2002)CrossRefGoogle Scholar
  151. 151.
    G.B. Alers et al., J. Appl. Phys. Letts., 73 (11), 1517 (1998)Google Scholar
  152. 152.
    M. Yamaguchi, Thermal nitridation of InP, Jpn. J. Appl. Phys., 19, L401 (1980)CrossRefGoogle Scholar
  153. 153.
    G.E. Miller, Tantalum and Niobium, Academic press, London, (1959)Google Scholar
  154. 154.
    R. Pretorius, J. Harris, and M.A. Nicolett, Solid State Electron., 21, 667 (1978)CrossRefGoogle Scholar
  155. 155.
    R. Hubner et al., Void formation in the Cu-layer during thermal treatment of SiNx/Cu/Ta73N27/SiO2/Si systems, Cryst. Res. Technol., 40 (1/2), 135 (2005)CrossRefGoogle Scholar
  156. 156.
    D.Y. Kim, Ph D. Thesis on study on reliability of VLSI interconnection structures, (Dec. 2003) and also S.R. Gess, H. Donohue, K. Buchanan, N. Rimmer, and P. Rich II, Microelectron. Eng., 64, 307 (2002) and H. Ono, T. Nakano and T. Ohta II, Appl. Phys. Lett., 64, 1511 (1994)Google Scholar
  157. 157.
    W.C. Johnson, P.W. Voorhees, and D.F. Zupon, The effect of elastic pressure on the kinetics Oswald ripening: Two particle problem, Met. Trans. A (Physical Met. And Met. Sci.), 20A (7), 1175 (1989)Google Scholar
  158. 158.
    L. Pauling, The nature of chemical bond, 3rd ed. Cornel Univ. Pub., New York, (1960)MATHGoogle Scholar
  159. 159.
    C.A. Chang, Reduced Cu-Cr mixing and reduced Pt-Cu interdiffusion by oxygen in Cu/Cr and Pt/Cu/Cr thin films, J. Appl. Phys., 53 (10), 7092 (1982) and also F. Lanckmans, B. Brijis, and K. Maex, The role of H in Cu+ drift diffusion in plasma deposited a-SiC:H, J. Phys. Cond. Mater., 14, 3665 (2002)Google Scholar
  160. 160.
    H.B. Nie et al., Structural and electrical properties of TaN thin films fabricated by using RF magnetron sputtering, J. App. Phys., A-73, 229 (2001) and B. Predel, Phase equilibria, Crytallographic, and thermodynamic data, electronic Mat. and Semicond., O. Madelung (ed.), Springer Verlag, AG, Germany (2006)Google Scholar
  161. 161.
    M. Takeyma, A. Noya, T. Sasse, and A. Ohta, J. Vac. Sci. Technol., B14, 674 (1996) and also A.E. Kaloyeros, X. Chen, S. Lane, and H.L. Frische, Tantalum diffusion barrier grown by inorganic plasma promoted chemical vapor deposition, J. Mater. Res., 15 (12), 2800 (2000) and M. Stavrev et al., J. Vac. Sci. Technol., A17 (3), 993 (1999)Google Scholar
  162. 162.
    9th Europhysical Conf. On Defects in insulating materials, Wroclan, Poland, (June30–July5, 2002) and J. Gambine et al., IEEE Proc. On IITC, p. 22, (2007)Google Scholar
  163. 163.
    E. Weiser et al., Thin Solid Films, 410, 121 (2002) and T. Murata et al., Jap. J. Appl. Phys., 47, 2488 (2008)Google Scholar
  164. 164.
    D. Edelstein et al., Int. Interconnect. Tech. Conf., San Fransisco, CA, (June 4–6, 2001) and also L.I. Maissel and R. Glang, Hand book of thin film technology, Chapter 2, 4, 5 and 19, McGraw Hill, New York, (1983)Google Scholar
  165. 165.
    D. Fischer et al., Surf. Interface Anal., 25, 522 (1997) and H. Sakai et al., Adv. Metal. Conf., Univ. of Tokyo, Japan, (Sept. 26, 2006)Google Scholar
  166. 166.
    Y.S. Diamond, (Tutorial), On advanced matellization conference (AMC) San Diego, CA, (Oct. 3–5, 2000)Google Scholar
  167. 167.
    G. Beyer et al., Development of sub-100 nm ALD barrier for Cu-low-K interconnects, Microelectron. Eng., 64, 233 (2000)CrossRefGoogle Scholar
  168. 168.
    C.W. Chang, B.C. Regan, W. Mickelson, R.O. Ritche and A. Zettl, Probing structural phase transitions of crystalline C60 resistivity measurements of metal film over layers, Solid State Commun., 128, 359 (2003) and S.O. Gurrum, Ph.D. Thesis, G.W. Woodruff, School of mechanical engineering, Gerogia Tech., (May 2006)Google Scholar
  169. 169.
    C. Wen et al., App. Phys. Lett., 61, 2162 (1992) and also K. Ramkrishna, M. Gall, P. Justison, and H. Kawasaki, Prediction of maximum allowed rms currents for electromigration design guidelines, Proc 7th Int. Workshop on stress induced phenomena in metallization, Vol. 741, pp. 156–164, Melville, New York, AIP, (2004)Google Scholar
  170. 170.
    M.M. Yovanovich, Theory and applications of construction and spreading resistance concepts for microelectronic thermal management, cooling techniques for computers, W. Aung (ed.), p. 277, Hemisphere Pub., Boulder, CO (1991)Google Scholar
  171. 171.
    M.M. Yovanovich and V.W. Antonetti, Application of thermal contact resistance theory to electronic packages, Advance thermal modeling of electronic components and systems, Vol. 1, A. Barcohen and A. Kraus (eds.) , p. 79, Hemisphere Pub., Boulder, CO (1988)Google Scholar
  172. 172.
    J. Bonevich, D. Van Heerden, and D. Rossell, J. Mater. Res., 14, 1977 (1999)CrossRefGoogle Scholar
  173. 173.
    D. Josell, A. Cezairliyan, and J.E. Bonevich, Int. J. Thermophys., 19, 525 (1998) and also B. Clemens, G.L. Eesly, and C.A. Paddock, Phys. Rev., B-37, 1085 (1988)Google Scholar
  174. 174.
    J.Bonevich, D. Van Heerden, and D. Rosell, J. Mater. Res., 14, 1977 (1999)CrossRefGoogle Scholar
  175. 175.
    T.K. Gupta, Hand book of thick and thin film hybrid microelectronics, Wiley, NJ, (2003)CrossRefGoogle Scholar
  176. 176.
    M. Wittmer, J. Vac. Sci. Technol., A2 (2), 273 (Aprl./June 1983)Google Scholar
  177. 177.
    J.M. Potate, K.N. Tu, J.W. Mayer (eds.), Thin Film—inter diffusion and reactions, Wiley, New York, (1978)Google Scholar
  178. 178.
    L. Loth, Transition metal carbide and nitrides, Academic Press, New York, (1971) and also H.L. Goldschmidt, Interstitial alloys, Plenum Press, New York, (1967)Google Scholar
  179. 179.
    P. Schwartzkopf and R. Kieffer, Refractory hard metals, MacMillan, New York, (1967)Google Scholar
  180. 180.
    M.A. Nicolett, Solid State Technol., 26 (2), 129 (Dec. 1983) and also T. Laurila, Tantalum-based diffusion barriers for copper metallization, Ph.D. Thesis dissertation at Helsinki University of Tech., Helsinki, Finland, (Dec. 2001)Google Scholar
  181. 181.
    S. Braun, H. Mai, M. Ross, R. Scholz, and A., Leson, Mo/Si multilayers with different barrier layers for applications as extreme ultra violet mirrors, Jpn. J. Appl. Phys., 41 (6B), 4074 (2002)Google Scholar
  182. 182.
    H. Kattelus et al., Microelectronics Eng., 60, 97 (2002)CrossRefGoogle Scholar
  183. 183.
    M.A. Nicolet and P.H. Giauque, Microelectron. Eng., 55, 357 (2001)CrossRefGoogle Scholar
  184. 184.
    S. Ganguly, L. Chen, T. Levine, B. Zeng, and M. Chang, Development of tungsten nitride film as a barrier layer for copper metallization, J. Vac. Sci. Technol., B 18, 237 (2000)CrossRefGoogle Scholar
  185. 185.
    J.S. Becker and R. Gordon, Diffusion barrier properties of tungsten nitride films grown by atomic layer deposition (ALD) from bis (tert-butylimido) bis (dimethylamido) tungsten and ammonia, J. Appl. Phys. Lett., 82 (4), 2239 (2003)Google Scholar
  186. 186.
    J.D. Torre et al., Microstructure of thin Ta-film sputtered onto inclined substrate, J. Appl. Phys., 94 (1), 263 (July 2003)MathSciNetCrossRefGoogle Scholar
  187. 187.
    A.G. Dirks and H.J. Lemy, Thin Solid Films, 47, 219 (1997)CrossRefGoogle Scholar
  188. 188.
    K. Radhakrishanan, Ng. Geok, R. Gopalkrishnan, Mat. Sci. Eng., B-57, 224 (1999)CrossRefGoogle Scholar
  189. 189.
    J.C. Lin, G. Len, and C.Lee, J. Electrochem. Soc., 146, 1835 (1999)CrossRefGoogle Scholar
  190. 190.
    M.H. Tai, S.C. Sun, H.T. Chiu, C.E. Tsai, and S.H. Chung, Appl. Phys. Lett., 67, 1128 (1995)CrossRefGoogle Scholar
  191. 191.
    K. Baba, H. Hatada, K. Udoh, K. Yasuda, Nucl. Inst. Method. Phys. Res., B127/28, 841 (1997)CrossRefGoogle Scholar
  192. 192.
    F. Weiser et al., Improvement of Ta-based thin film barrier for Cu-metallization by ion implantation of nitrogen and oxygen, Adv. Met. Conf. (AMC), Orlando, FL, (Sept. 28–30 1999)Google Scholar
  193. 193.
    J.J. Boland and J.H. Weaver, A surface view of etching, Phys. Today, 51, 34 (1998) and T. Oku, E. Kwakami, M. Uekebo, K. Takahiro, S. Yamaguchi, and M. Murakami, Diffusion barrier property of TaN between Si and Cu, Appl. Surf. Sci., 99, 265 (1995)Google Scholar
  194. 194.
    H.O. Pierson, Hand book of refractory carbides and nitrides, Properties characteristics, processing and applications, Noyace, NJ., (1996) and N-H. Kim, S-Y. Kim, W-S. Lee, and E. Chang, Microelectron. Eng., 84 (11), 2663 (2007)Google Scholar
  195. 195.
    K. Hollowway and P.M. Fryer, Appl. Phys. Lett., 57, 1736 (1990)CrossRefGoogle Scholar
  196. 196.
    K.H. Min, K.C. Chun, and K.B. Kim, J. Vac. Sci. Technol., B14, 3263 (1996), and also J.C. Lin and C. Lee, Electrochem. Soild State Lett., 2, 181 (1999)Google Scholar
  197. 197.
    J.O. Olowilfe, J. Li, and J.W. Mayer, Appl. Phys. Lett., 58, 469 (1991)CrossRefGoogle Scholar
  198. 198.
    T. Laurila et al., Tantalum carbide and nitride diffusion barriers for Cu metallization, Microelectron. Eng., 60, 71 (2001)CrossRefGoogle Scholar
  199. 199.
    M. Hansen, Constitution of binary alloys, McGraw Hill, New York, (1958)Google Scholar
  200. 200.
    J. Chen and J.L. Wang, Diffusion barrier properties of sputtered TiB2 between Copper and Silicon, J. Electrochem. Soc., 147 (5), 1940–1944 (2000)CrossRefGoogle Scholar
  201. 201.
    H.Y. Tsai, S.C. Shun, and S.J. Wang, Characterization of sputtered tantalum carbide barrier layer for copper metallization, J. Electrochem. Soc., 147 (7), 2766–2772 (2000) and A. Sakata et al., IEEE Proc. On IITC, (2006)Google Scholar
  202. 202.
    J. Lu, H. Hsu, Q.H. Dixit, J. Luttmer, R. Havemann, and L. Magel, A novel process for fabricating conformal and stable TiN-based barrier films, J. Electrochem. Soc., 143, L279 (1996) and also F.A. Cotton and G. Wilkinson, Advanced Inorganic chemistry, p. 807, Wiley, New York, (1972)Google Scholar
  203. 203.
    D.S. Yoon, J.S. Roh, S.M. Lee, and H.K. Baik, Acta Matter. 51 (9), 2531–2538 (2003)Google Scholar
  204. 204.
    A. Westerheim et al., Integration of CVD titanium nitride for 0.25 μm contacts and vias, J. Vac. Sci. Technol., B-16 (5), 2729 (1998)Google Scholar
  205. 205.
    B. Weiller and S. Adamson, Effect of dimethylamine on CVD of TiN from Tetrakis (dimethylamido), J. Electrochem. Soc., 144, L40 (1997)CrossRefGoogle Scholar
  206. 206.
    K.E. Elers et al., Diffusion barrier deposition on a Cu-surface by ALD, Wiley Intersci., NJ (Jan 2002)Google Scholar
  207. 207.
    K. Tao, D. Mao, and J.P. Hopwood, J. Appl. Phys., 91 (7), 4040 (2002)CrossRefGoogle Scholar
  208. 208.
    S.J. Wang, H.Y. Tsai, and S.C. Sun, Characterization of sputtered titanium carbide as diffusion barrier for copper metallization, J. Electrochem. Soc., 148 (8), C563 (2001)CrossRefGoogle Scholar
  209. 209.
    B. Borovski, M. Krueger, E. Ganz, Phys. Rev., B59, 1598 (1999) and T. Zhong, V. Dubin, and M. Fang, US Patent, 7416980, (Aug. 2008)Google Scholar
  210. 210.
    B.S. Swartzentruber, Phys. Rev. Lett., 76, 459 (1996)CrossRefGoogle Scholar
  211. 211.
    D.T. Shaw, DOE 2003 Wire Development Workshop, St. Petersburg, FL, E.K. Broadbent, Tungsten and other refractory metals for VLSI applications, (ed.) R.S. Blewer, Materials Res. Soc. Pub. Pittsburgh, PA, (1986)Google Scholar
  212. 212.
    G. Beyer and M. Bavel, Using atomic layer deposition to prepare future generation copper diffusion barrier, Micro. 20 (9), 51–58 (2002)Google Scholar
  213. 213.
    Z. Li, R.G. Gordon, D.B. Farmer, Y. Lin, and J. Vlassak, Nucleation and adhesion of ALD copper on cobalt adhesion layers and tungsten nitride diffusion barriers, Electrochem. Solid-State lett., 8 (7), G182 (2005)CrossRefGoogle Scholar
  214. 214.
    J.R. Creighton and J.W. Rogers, Jr., Tungsten and other refractory metals for VLSI applications III, p. 63, Proc. Mater. Res. Soc., V.A. Wells (ed.), MRS Pub., Warrendale, PA (1988), and also K.N. Tu, Surface and interfacial energies of CoSi, and Si films, IBM. J. Res. Dev., 34 (6), 868 (1990)Google Scholar
  215. 215.
    M. Kleinschmit, M. Yeadon, and J.M. Gibson, Appl. Phys. Lett., 75 (21), 3288 (1999)CrossRefGoogle Scholar
  216. 216.
    S. Kal, I. Kasko, and H. Ryssell, J. Electron. Mater., 24 (10), 1349 (Oct. 1995)Google Scholar
  217. 217.
    N. Petrov, Y. Sverdlov, and Y.S. Diamond, Electrochemical study of the electroless of Co(P) and Co(W,P) alloys, J. Electrochem. Soc., 149 (4), C-187 (2002)CrossRefGoogle Scholar
  218. 218.
    A. Khon, M. Eizenberg, Y. Diamond, B. Israel, and Y. Sverdlov, J. Micrelectron. Eng., 55, 297 (2001)CrossRefGoogle Scholar
  219. 219.
    C.K. Hu et al., Reduced Cu-interface diffusion by CoWP surface coating, Microelectron. Eng. 70 (2/4), 506–511 (Nov. 2003) and J. Gambino et al., IPFA, p. 59, (2007)Google Scholar
  220. 220.
    M.J. Kobrinski, C.V. Thompson, and M.E. Gross, J. Appl. Phys., 89 (1), 91 (2001) and G.C. Schwartz et al. (eds.), Hand book of Semicond. Interconn., p. 326, CRC Press, Boca Raton, FL, (2006)Google Scholar
  221. 221.
    V.G. Weizer and N.S. Fatemi, Metal-silicon reaction rates—the effects of capping, J. Electron. Mater., 18 (1), 7 (1989)CrossRefGoogle Scholar
  222. 222.
    N. Petrov, Y. Sverdlov, and Y.S. Diamond, Electrochemical study of electroless deposition of Co (P) and Co (WP) alloys, J. Electrochem. Soc., 149 (4), C187 (2002) and K. Chattopadhya et al., IEEE Int. Reliab. Phys. Symp., p. 128, (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Radiation Monitoring Devices, Inc.WatertownUSA

Personalised recommendations