Dielectric Materials

Chapter
Copper (Cu) has higher conductivity and resistance to electromigration (EM) than aluminum (Al) and has been the choice of the semiconductor industry for interconnecting metal in sub-100 nm devices. With rapidly decreasing feature sizes and more demand for circuit speed, low-K and passivation materials have been inserted with Cu-interconnects to address the additional RC delay reduction [1, 2]. Unfortunately, as the thickness of the gate oxide becomes very thin because of the scaling down of channel length, quantum mechanical tunneling occurs for voltages below the Si/SiO2 barrier height which is approximately 3.1 eV [3, 4] (Fig. 2.1).
Fig. 2.1

The effect of gate oxide on channel length and its consequences on the oxide-tunneling limit (Reprinted with permission, IBM Research [3])

Keywords

TiO2 Titanium Porosity Ozone Pyrolysis 

References

  1. 1.
    S.P. Murarka,M. Eizenbergh, and A.K. Sinha (eds.), Interlayer dielectrics for semiconductor technologies, Elsevier/Academic press, Amsterdam, Boston, 2003 and M. Chudzik et al., IEEE VLSI Tech Dig., Issue 12–14, 194, (2007)Google Scholar
  2. 2.
    P.S. Ho, W.W. Lee, and J. Leu, Low dielectric constant materials for IC applications, Springer, New York, 2002 and E.P. Gusev, V. Narayan, and M.M. Frank, IBM J. Res. Dev., 50 (4/5), 387 (2006)Google Scholar
  3. 3.
    T. Taur et al., CMOS scaling into the 21st century, IBM J. Res. Dev., 39 (1/2), 245 (1995) and F. Fiorenza, R.L. Nigro, V. Raineri, and D. Slinas, Microelectron Eng., 84 (3), 441 (2007)CrossRefGoogle Scholar
  4. 4.
    S. Momose, M. Ono, T. Yoshitomi, S. Nakamura, M. Saito, and H. Iwai, IEEE Trans. Electron. Dev. ED, 43, 1233 (1996) and M. Koh et al., Threshold voltage fluctuation induced by direct tunnel leakage current through 1.2-2.8 nm thick gate oxide for sealed MOSFETs, IEDM 98-919-34.2.1 (1998)CrossRefGoogle Scholar
  5. 5.
    M.A. Alam, A critical examination of the mechanics of dynamic NBTI for PMOSFETs, IEEE Int. Electron. Dev. Mtg., 345, (8–10 Dec. 2003) and G. Chen et al., Dynamic NBTI of PMOS transistors and its impact on device life time, IEEE 41st Annual Int. Reliab. Phys. Symp., p. 196, April 2003Google Scholar
  6. 6.
    J.W. Mayer and S.S. Lau, Electronic materials science, Chapter 9, Macmillan Pub., New York, 1990 and G.C. Chen et al., Dynamic NBTI of PMOS transistor and its impact on device lifetime, IEEE 41st Annual Int. Reliab. Phys. Symp., p. 196, April 2003 and A. Shiekova et al., NBTI Relib. Microelectron Reliab., 47 (4/5), 505 (2007)Google Scholar
  7. 7.
    M.T. Bohr and Y.A. El-Mansy, Technology for high performance microprocessors, IEEE Trans. Electron. Dev., 45 (3), 620 (1998) and T.K. Gupta, Hand -book of thick and thin film hybrid microelectronics, Chapter 6, Wiley, NJ, 2003 and R.H. Havemann and J.A. Hutchby, High performance Interconnects, IEEE Proc., 89 (5), 586 (2001) and also S. Sankaran et al., IEEE IEDM Tech. Dig., Issue 21 (2006)CrossRefGoogle Scholar
  8. 8.
    N. Kawakami et al., Jpn. J. Appl. Phys. Part-II, 39, L182 (2000) and also R.P. Feynman, R.B. Leighton, and M. Sands, Lecture on physics, Wiley, New York, Chapter 10, p. 811 (1993)CrossRefGoogle Scholar
  9. 9.
    M. Morgan, E.T. Ryan, J. Zaho, C. Hu, and P.S. Ho, Annu. Rev. Mater. Sci., 30, 645 (2000) and D.W. Hess, A century of dielectric science and technology, J. Electrochem. Soc., 150 (1), S-1 (2003)CrossRefGoogle Scholar
  10. 10.
    L.C. Chen, Y.H. Xu, B. Dunn, K.N. Tu, Appl. Phys. Lett., 73, 2944 (1998) and H. Park and C.R. Helms, J. Electrochem. Soc., 139, 2042 (1992) and also S.C. Lee, A.S. Oates, and K.M. Chang, IEEE IITC Conf., SanFrancisco, CA (June 2008)CrossRefGoogle Scholar
  11. 11.
    H.J. Lee, E.K. Lin, H. Wang, W.L. Wu, W. Chen, and E.S. Moyer, Chem. Mater., 14, 1845 (2002) and also D.J. Dumin, Int. J. High speed Electron. Syst., 11, 617 (2001)CrossRefGoogle Scholar
  12. 12.
    A. Gill and V. Patel, Appl. Phys. Lett., 79, 803 (2001)CrossRefGoogle Scholar
  13. 13.
    G.N. Taylor and T.M. Wolf, Polym. Eng. Sci., 20, 1086 (1980) and B. Kastenmeier, K. Pfeifer, and A. Knorr, Effective-K, Semicond. Int., 27 (8), 87 (July 2004)CrossRefGoogle Scholar
  14. 14.
    H. Kitoh, M. Mroyama, M. Sasaki, M. Iwasawa, and H. Kimura, Jpn. J. Appl. Phys., 35, 1464 (1996)CrossRefGoogle Scholar
  15. 15.
    A. Gill and V. Patel, Interaction of hydrogen plasma with extreme low-K SiCOH dielectrics, J. Electrochem. Soc., 151 (6), 133 (2004)CrossRefGoogle Scholar
  16. 16.
    S.V. Nitta et al., J. Vac. Sci. Technol., B 17, 205 (1999) and also B. Peng, W.F. Yu, P.Lee, and M. Naik, A new CVD process for damascene low k application, Semicond. Fab. Tech. 10th ed., ICG Pub., UK, 285 (2000)CrossRefGoogle Scholar
  17. 17.
    M. Bohr, Low dielectric constant material for ULSI interlayer dielectric applications, Proc. IEEE, Int. Electronic Device meeting, 10–13 Dec., Washington DC, pp. 241–244 (1995), and MRS Bull. Oct.1997 and also G.D. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys., 89, 5243 (2001)Google Scholar
  18. 18.
    P. Nunan, The challenge of low-K, KLA-Tencor corp., Yield management solutions, Spring, San Jose, CA, p. 17 2000 and also S. Yang et al., Chem. Mater., 14, 368 (2002) and N. Nakamura et al., IEEE IITC June 4, SanFransisco, CA, (2008)Google Scholar
  19. 19.
    H.F. Wolf, Semiconductors, Wiley, New York, p. 336 (1971) and also B. Tareev, Physics of dielectricmaterials, Permittivity of mixtures,MIR Pub., Moscow, p. 116 (1975) and X. Zhao, D. Ceresoli, and D. Vanderbilt, Phys. Rev., B71, 085107 (2005)Google Scholar
  20. 20.
    S.M. Sze, VLSI technology, McGraw Hill, New York, p. 259 (1988) and also A.T. Kohl et al., Low-K porous methyli silsesquinoxane and spin on glass, J. Electrochem. Solid State Lett., 2 (2), 77 (1999)Google Scholar
  21. 21.
    S. Rogojevic et al., Interactions between silica xerogel and tantalum, J. Vac. Sci. Technol., B-19 (2), 354 March/April, p. 354 (2001) and also X. Ziang, K.S. Chen, R. Ghoddsi, A.A. Ayon, and S.M. Spearing, Residual stress and fracture in thick tetraethylorthosilicate (TEOS) and silane based PECVD oxide films, Sens. Actuators A, 91, 373 (2001)CrossRefGoogle Scholar
  22. 22.
    B. Tareev, Physics of dielectric materials, Mir Pub., Moscow, p. 119 (1975) and also X. Gonze and C. Lee, Phys. Rev., B55 (10), 355 (1997) and P. Pulay, Chem. Phys. Lett., 73, 393 (1980)Google Scholar
  23. 23.
    U. Russow, Optical characterization of porous materials, Phys. Status Solidi. (a) 184 (1), March (2001) and also B. Shieh, K. Saraswat, M. Deal, and J. McVittie, Solid State Technol., 42, 51 (1999)Google Scholar
  24. 24.
    K. Maex, M.K. Baknalov, D. Shamiryan, F. Lacopi, S.H. Brongersma, and Z.S. Yanovitskaya, Low dielectric constant materials for microelectronics, J. Appl. Phys., 93 (11), 8793 (2003)CrossRefGoogle Scholar
  25. 25.
    F. Iacopi, Z S. Tokei, M. Stucchi, S. Brongersma, D. Vanhaeren, and K. Maex, Microelectron. Eng., 65, 123 (2003)CrossRefGoogle Scholar
  26. 26.
    S. Yang, P. Mirau, J. Sun, and D.W. Gidley, Characterization of nanoporous ultra low-K thin films templated by copolymers with different architectures, Radiation Phys. Chem., 68, 351 (2003) and H. Miyoshi et al., Jap. J. Appl. Phys., 43 (2), 498 (2004) and also R. Hoofman, R. Daamen, J.Michelon, and V. Nguyenhoang, SST, Alternatives to low-K nanoporous materials, 49 (8), 21 (2006)CrossRefGoogle Scholar
  27. 27.
    C. Hu et al., Appl. Phys. Lett., 77, 145 (2000) and K. Maex et al., J. Appl. Phys., 93 (11), 8793 (2003)CrossRefGoogle Scholar
  28. 28.
    K.W. Gerstenberg and M. Grischke, J. Appl. Phys., 69, 736 (1991) and F. Iacopi et al., J. Appl. Phys., 92, 1548 (2002) and also S. Narashimha et al., High performance 45 mn technology, IEEE IEDM Tech. Dig., 16 (1), 689 (2006)CrossRefGoogle Scholar
  29. 29.
    E. Schaffer, Fracture mechanics of thin film dielectrics, The dow chemical co. sept. 2000 and also R.D. Miller, Science, 286, 421 (1999)Google Scholar
  30. 30.
    W.G.M. Van den, Solid State Technol., 48 (11), pp. 56–65 (Nov. 2005) and D.W. Gidley et al., Appl. Phys. Lett., 76, 1282 (2000)Google Scholar
  31. 31.
    J.G. Ryan et al., Copper and low-k dielectric integration challenges, Low-K dielectric materials Seminar, Semicon West 2000 and also T. Sui et al., Technology and reliability for advanced interconnects and low-K dielectrics, Mat. Res. Soc. Proc., 612, D1.2.1–D1.2.5 (2001)Google Scholar
  32. 32.
    C. Jin, S. Lia, and J.T. Wetzel, Evaluation of ultra low-K dielectric materials, J. Electron. Mater., 30 (4), 284–289 (2001) and P.D. Rouffignac, Z. Li, and R.G. Gordon, Sealing porous low-K dielectrics with silica, Electrochem. Solid-State Lett., 7 (12), p. G306 (2004)CrossRefGoogle Scholar
  33. 33.
    D.W. Gidley, W.E. Frieze, T.L. Dull, A.F. Yee, E.T. Ruan, and H.M. Ho, Phys. Rev., B 60, 5157 (1999) and C. Gueds et al., Microelectron Reliab., 47 (4), 764 (2007)CrossRefGoogle Scholar
  34. 34.
    M.E. Mills, P. Townsend, D. Castillo, S. Martin, and A. Achen, Benzocyclobutane (DVSBCB) polymer as an interlayer dielectric (ILD) material, Microelectron. Eng., 33, 327 (1997)CrossRefGoogle Scholar
  35. 35.
    C.M. Whelan et al., Sealing porous low-K dielectrics, Electrochem. Solid State Lett., 7 (2), F8–F10 (2004)CrossRefGoogle Scholar
  36. 36.
    V. Jousseaume et al., Pore sealing of a porous dielectric by using a thin PECVD a-SiC:H conformal liner, J. Electrochem. Soc., 152 (10), F156 (2005)CrossRefGoogle Scholar
  37. 37.
    J.J. Senkevich et al., Molecular caulk: A pore sealing technology for ultra low-K dielectrics, Mater. Res. Soc. Symp., 812, F1.2.1 (2004)MathSciNetGoogle Scholar
  38. 38.
    L. Peters, Is pore sealing key to ultra low-K adoption?, Semicond. Int., 28 (10), 49 Oct. (2005)Google Scholar
  39. 39.
    F. Iacopi, M.R. Baklanov, E. Sleeckx, T. Conard, H. Bender, H. Meynen, and K. Maex, J. Vac. Sci. Technol., 20, 109 (2002)CrossRefGoogle Scholar
  40. 40.
    J.N. Sun, D.W. Gidley, W.E. Frieze, T.L. Dull, A.F. Yee, E.T. Ruan, S. Lin, and Z. Witzel, Probing diffusion barrier integrity on porous silica low-K thin films using positron anhilation spectroscopy, J. Appl. Phys., 89 (9), 5138 (2001)CrossRefGoogle Scholar
  41. 41.
    J. Ning, Y. Hu, W.E. Frieze, W. Chen, And D. Gidley, How pore size and surface roughness affect diffusion barrier continuity on porous low-K films, J. Electrochem. Soc., 150 (5), F97 (2003)CrossRefGoogle Scholar
  42. 42.
    A. Jain et al., Effects of processing history of modulus of xerogel films, J. Appl. Phys., 90 (11), 5832–5834 (2001)CrossRefGoogle Scholar
  43. 43.
    J.B. Zhao et al., Reliability and electrical performance of low-K dielectric constant interlevel dielectric for high performance, Proc. IRPS, 156 (1996)Google Scholar
  44. 44.
    S.S. Prakash, T.J. Brinker, and A.J. Hurd, J. Non Cryst. Solids, 190, 264 (1995)CrossRefGoogle Scholar
  45. 45.
    B.S. Martin, J.P. Godschalx, M.E. Mills, E.O. Shaffer II, and P.H. Townsend, Adv. Mater., 12, 1769 (2000)CrossRefGoogle Scholar
  46. 46.
    C.J. Brinker, G.W. Scherer, Sol gel, Science Academic Pub., San Diego, CA , p. 507, (1999)Google Scholar
  47. 47.
    J. Hedrick et al., IEEE Int. Interconnect Tech. Conf. Proc., p. 261, (2000) and J.-P. Pascault, H. Sautereau, J. Verdu, and R.J.J. Williams, Thermosetting polymers, Marcell Dekker, New York, (Feb. 2002)Google Scholar
  48. 48.
    P.S. Foster, E. Ecker, E. Rutter Jr., and E.S. Moyer, US Patent 5,882,836 (1999) and also K. Mosig, T. Jacobs, K. Brenan, M. Rasco, J. Wolf, and R. Augur, Microelectron. Eng., 64, 11 (2002)Google Scholar
  49. 49.
    N. Aoi, Jpn. J. Appl. Phys., 36, 1355 (1997) and also G. Passemard, P. Fugier, P. Noel, F. Piresand, O. Demolliens, Microelectron. Eng., 33, 335 (1997)CrossRefGoogle Scholar
  50. 50.
    US Patent, Dow Corning, #5,045592 (1975)Google Scholar
  51. 51.
    A. Modafe, N. Ghalichechian, B. Kleber, and R. Ghodssi, Electrical characterization of benzocyclobutene polymers for electrical micromachines, IEEE Trans. Dev. and Mater. Reliab., 4 (3), 495 (2004)CrossRefGoogle Scholar
  52. 52.
    M. Morgan, E.T. Ryan, J.H. Zaho, C. Hu, T. Cho, and P.S. Ho, Annu. Rev. Mater. Sci., 30, 645 (2000)CrossRefGoogle Scholar
  53. 53.
    C.V. Nguyen et al., Chem. Matter., 11, 3080 (1999)CrossRefGoogle Scholar
  54. 54.
    M.E. Mills, P. Townsend, D. Castillo, S. Martin, and A. Achen, Benzocyclobutene (DVSBCB) polymer as an interlayer dielectric (ILD) material, Microelectron. Eng., 33, 327 (1997)CrossRefGoogle Scholar
  55. 55.
    M. Ikeda et al., Integration of organic low-K material with Cu-damascene employing novel process, IEEE Intl. Interconnect Tech. Conf. p. 131, (June 1998)Google Scholar
  56. 56.
    S.W. Chung, S.T. Kim, J.H. Sin, J.K. Kim, and J.W. Park, Comparative study of hydroorgano siloxane polymer and hydrogen silsesquioxane, Jap. J. Appl. Phys. Part I, 39, 5809–5815 (2000)CrossRefGoogle Scholar
  57. 57.
    P.S. Ho, W.W. Lee, and J. Leu, Low dielectric constant materials for IC applications, Thermal properties, p. 43, Springer, New York (2002)Google Scholar
  58. 58.
    C.T. Chu, G. Sarkar, and X. Hu, J. Electrochem. Soc., 145, 4007 (1998)CrossRefGoogle Scholar
  59. 59.
    M.J. Laboda, C.M. Grove, and R.F. Schneider, J. Electrochem. Soc., 145, 2861 (1998)CrossRefGoogle Scholar
  60. 60.
    J.P. Godschalx et al., Polyphenylene oilgomers and polymers, US Patent 5965679, 1999Google Scholar
  61. 61.
    M. Padovani et al., Electrochem. Solid State Lett., 4, F25 (2001)CrossRefGoogle Scholar
  62. 62.
    S.T. Martin et al., Development of low dielectric constant polymers for the fabrication of integrated interconnects, Adv. Mater., 12, 1769 (2000)CrossRefGoogle Scholar
  63. 63.
    P.A. Kohl et al., Electrochem. Solid State Lett., 1, 49 (1998)CrossRefGoogle Scholar
  64. 64.
    P.S. Ho, W.W. Lee, and J. Leu, Low dielectric constant materials for IC applications, Moisture uptake, Springer, New York, p. 46, 2002 and R.D. Miller, Science, 286, 421 (1999)Google Scholar
  65. 65.
    S.W. Chung, J.H. Shin, N.H. Park, and J.W. Park, Dielectric properties of hydrogen silsesquioxane films degraded by heat and plasma treatment, Jpn. J. Appl. Phys. Part-1, 38, 5214 (1999)CrossRefGoogle Scholar
  66. 66.
    C.T. Coua, G. Sarkar, and X. Hu, J. Electrochem. Soc., 145, 4007 (2000)Google Scholar
  67. 67.
    K.G. Pruden, K. Sinclair, and S. Beaudoin, Characteristics of parylene N and parylene C photo-oxidation, J. Poly. Sci. Part-I, Poly-Chem., 41 (10), 1486–1496, Wiley, (2003)CrossRefGoogle Scholar
  68. 68.
    Y.S. Yeh, W.J. James, and H. Yashuda, J. Poly. Sci. B, 28 (4), 545–568 (2003)CrossRefGoogle Scholar
  69. 69.
    S.C. Selbrede and M.L. Zucker, Characterization of parylene-N thin films for low-K VLSI applications, MRS spring meeting, San Francisco, CA, spring 1997 and also A.J. Flewitt, A.P. Dyson, J. Robertson, and W.I. Milne, Thin Solid Films, 383, 172 (2001)Google Scholar
  70. 70.
    K. Taylor, M. Eissa, J. Gaynor, S.P. Jeng, and H. Nguyen, Parylene co-polymers, MRS spring meeting, San Francisco, CA (Spring 1997) and also R.L. Opila and D.W. Hess, A century of dielectric science and technology, J. Electrochem. Soc., 150 (1), S4 (2003)Google Scholar
  71. 71.
    G. Chen, Z. Xia, Y. Zang, and H. Zang, Preparing and polarizing stability of Teflon AF nonlinear optical polymer electret double layer thin film system, IEEE Trans. Dielect. Elect. Insulation, 6 (6), 929 (Dec. 1999)CrossRefGoogle Scholar
  72. 72.
    P.T. Dao, D.J. Williams, and K.G. Berarduce, Constant current corona charging as a technique for poling organic non-linear optical thin film and the effect of ambient gas, J. Appl. Phys., 73, 2043 (1993) and also A.F. Teflon, Amorphous Fluoropolymer, Technical Pub. DuPont Speciality Polymers Div., Wilmington, DE (1990)CrossRefGoogle Scholar
  73. 73.
    P.W. May, Diamond thin films: A 21st century material, Phil. Trans. Royal Soc. Lond. A, 358, 473 (2000)CrossRefGoogle Scholar
  74. 74.
    M. Ashman, J. Heberlin, and E. Pfender, Diamond Relat. Mater., 8, 1 (1999)CrossRefGoogle Scholar
  75. 75.
    A. Gill, Plasma deposited diamond like carbon and related materials, IBM J. Res. Dev., 43 (1/2), 39 (1999)Google Scholar
  76. 76.
    E. Riedo, F. Comin, J. Chevier, F. Schmittisen, S. Decossas, and M. Sancrotti, Surface Coat. Technol., 125, 124 (2000)CrossRefGoogle Scholar
  77. 77.
    E. Riedo, F. Comin, J. Chevior, and A.M. Bonnot, J. Appl. Phys., 88, 4365 (2000) and also A.Y. Liu and M.L. Cohen, Phys. Rev., B 41, 10727 (1990)CrossRefGoogle Scholar
  78. 78.
    A.M. Campos, J. Torres, and J.J. Giraldo, Porous silicon dielectric function modeling from effective medium theories, Surface Rev. Lett., 9 (5/6), 1631 (2002)CrossRefGoogle Scholar
  79. 79.
    D.A. Burggeman, Ann. Phys., 5, 636 (1935)CrossRefGoogle Scholar
  80. 80.
    L. Lang, Y. Xia, M. Zhang, and W. Shi, Letter to the editor, Semi. Sci. Tech., 19 (3), L35, March (2003)Google Scholar
  81. 81.
    A.K. Sikdar, F. Giglio, J. Wood, A. Kumar, and J.M. Anthony, J. Electron. Mater., 30, 1522 (2002) and S. Gall et al., IEEE IITC, San Francisco, CA (June 2008)Google Scholar
  82. 82.
    K. Mosig, T. Jacobs, K. Brenan, M. Rasco, J. Wolf, and R. Augur, Micrelectron. Eng., 64, 11–24 (2002)CrossRefGoogle Scholar
  83. 83.
    G.R. Yang, D. Mathur, X.M. Xu, S. Dabral, J.F. McDonald, and T.M. Liu, J. Electron. Matter., 25, 1778 (1996)CrossRefGoogle Scholar
  84. 84.
    J.P. Chang, Y.S. Lin, S. Berger, A. Kepten, R. Bloom, and S. Levy, Ultra thin zirconium oxide films as alternative gate dielectric, J. Vac. Sci. Technol., B19 (6), 2571 (2001) and also H.J. Massoud, I. Baumvol, M. Hirose, and E.H. Pointdexter (eds.), The physics and chemistry of SiO2 and the Si-SiO2 interface, The electrochem. Soc. Pub., Pennington, NJ (2000), PV2000-2Google Scholar
  85. 85.
    D.A. Buchanon, J.H. Sathis, E. Cartier, and D.J. Maria, Microelectron. Eng., 36, 329 (1997) and P.D. Krisch et al., Mobility enhancement of high-K gate stacks, IEEE IEDM Tech. Dig., pp. 1–4, Dec. (2006)CrossRefGoogle Scholar
  86. 86.
    A.T. Kohl et al., Low K porous MSQ and spin on glass, Electrochem. Solid State Lett., 2 (2), 77 (1999)CrossRefGoogle Scholar
  87. 87.
    B. Pang, W.F. Yu, P. Lee, and M. Naik, A new CVD process for damascene low k applications, Semicond. Fabr. 10th ed. ICG Pub., UK (2000)Google Scholar
  88. 88.
    J.J. Senkevich and S.B. Desu, Poly (tetra-fluoro-p-xylylene), a low dielectric constant chemical vapor polymerized polymer, Appl. Phys. Lett., 72, 258 (1998)CrossRefGoogle Scholar
  89. 89.
    R. Leung et al., Porous and nonporous poly (arylene ether) thin films, Suitability as extra low-K dielectrics for microelectronics applications, Proc. 9th meeting of the symp. on polymers for microelectronics, Wilmington, DE (May 2000)Google Scholar
  90. 90.
    K. Postava, T. Yamaguchi, and T. Nakano, Characterization of organic low-dielectricconstant materials using optical spectroscopy, Opt. express, 9 (3), pp. 144–151 July (2001)CrossRefGoogle Scholar
  91. 91.
    G.D. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys., 89, 5243 (2001) and C.S. Park et al., Achieving low Vt and thin EOT, IEEE Proc. On VLSI-TSA, 12, p. 154, (2008)CrossRefGoogle Scholar
  92. 92.
    R.M.A. Azzam and N.M. Bashara, Ellipsometry and polarized light, Elsevier Pub., Amsterdam (1977)Google Scholar
  93. 93.
    G. Bersuker et al., Interface induced mobility degradation in high-K transistors, Jap. J. Appl. Phys., 43, 7899 (2004) and J. Barnett et al., Cleaning role in high-K /metal gate substrate, Semicond. Int., 29 (2), 45 Feb. (2006)CrossRefGoogle Scholar
  94. 94.
    B.H. Lee et al., Intrinsic characteristics high-K devices and implications of fast transient charging effects, Int. Electron. Dev. Meeting, (IEDM) Tech. Digest, 859–862 (2004)Google Scholar
  95. 95.
    D.Y. Cho et al., Control of silicidation in HfO2/Si (100) interfaces, Appl. Phys. Letts., 86, 041913 (2005)Google Scholar
  96. 96.
    G.B. Alers et al., Appl. Phys. Lett., 72, 1308 (1998) and also D.J. Dumin, Int. High Speed Electron. Syst., 11, 617 (2001) and I. Kume et al., IEEE IITC, SanFrancisco, CA (June 2008)CrossRefGoogle Scholar
  97. 97.
    L. Machenda et al., IEEE Tech. Dig. Int. Electron. Dev. Meet, (IEDM) 605 (1998)Google Scholar
  98. 98.
    J.P. Chang, Y.S. Lin, Y.M. Sun, J. Lozano, H. Ho, H.J. Park, S. Veldman, and J.M. White, Appl. Surf. Sci., 161, 115 (2000)CrossRefGoogle Scholar
  99. 99.
    M. Copel, M. Gribelyuk, and E. Gusev, Appl. Phys. Lett., 76, 436 (2000)CrossRefGoogle Scholar
  100. 100.
    L. Kang et al., Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric, IEEE Dev. Lett., 21 (4), 181 (2000) and also M. Ritala, M. Leskelain, H.S. Nalwa (ed.), Hand book of thin film materials, Vol. 234, Academic press, Orlando, FL, p. 183 (2002)CrossRefGoogle Scholar
  101. 101.
    M.M. Frank et al., Hafnium oxide gate dielectric grown from an alkoxide precursor, Mater. Sci. Eng., B 109, 6 (2004)CrossRefGoogle Scholar
  102. 102.
    B. Van Dover, L.F. Schneemeyer, and R.M. Fleming, Nature, 392, 162 (1998)CrossRefGoogle Scholar
  103. 103.
    R.A. Mckee, F.J. Walker, and M.A. Chrisholm, Phys. Rev. Lett., 81, 3014 (1998)CrossRefGoogle Scholar
  104. 104.
    J.P. Han and T.P. Ma, Appl. Phys. Lett., 72, 1185 (1998)CrossRefGoogle Scholar
  105. 105.
    W.J. Qi et al., Appl. Phys. Lett., 77, 1704 (2000) and E.P. Gusev, V. Narayanan, and M.M. Frank, IBM J. Res. Dev., 90 (4/5), 387 (2006)CrossRefGoogle Scholar
  106. 106.
    B.H. Lee, L. Kang, W.J. Qi, and J.C. Lee, Appl. Phys. Lett., 76, 1926 (2000)CrossRefGoogle Scholar
  107. 107.
    G.D. Wilk and R.M. Wallace, Appl. Phys. Lett., 74, 2854 (1999) and M.V. Fischetti, D.A. Neumayer, and E.A. Cartier, J. Appl. Phys., 90 (9), 4587 (2001)CrossRefGoogle Scholar
  108. 108.
    R. Puthenkovilakam, E.A. Carter, and J.P. Chang, First principles exploration of alternative gate dielectrics: Electronic, structure of ZrO2/Si/ZrSiO4/Si interfaces, Phys. Rev., B-69, 155–329 (2004)Google Scholar
  109. 109.
    J.L. Hedrick et al., Templating nanoporosity in thin film dielectric insulators, Adv. Mater., 10, 1049 (1988)CrossRefGoogle Scholar
  110. 110.
    K.R. Carter et al., Process for manufacturing integrated circuit devices, US Patent 3895263 (1999)Google Scholar
  111. 111.
    C.J. Hawker, J.L. Hedrick, and R. Miller, Integrated circuit process for its manufacture, US Patent 5767014 (1998)Google Scholar
  112. 112.
    W.D. Gray and M.J. Laboda, New barrier layers can help Cu-low-K integration, Solid State Technol., 45 (3), 37 (2002)Google Scholar
  113. 113.
    X. Zhao and D. Venderbilt, Phys. Rev., B-65, 075105 (2002) and B-65, 233106 (2002)Google Scholar
  114. 114.
    X. Zhao and D. Vanderbilt, MRS. Fall Meeting, 745, N 7.2.1 (2003)Google Scholar
  115. 115.
    X. Zhao, D. Ceresoli, and D. Vanderbilt, Structural, electronic, and dielectric properties of amorphous ZrO2 ab initio molecular dynamics, Phys. Rev., B-71, 085107 (2005)CrossRefGoogle Scholar
  116. 116.
    P. Xu et al., BLOK-A Low-K dielectric barrier/etch stop film for copper damascene applications, Proc. IEEE Int. Conn. Technol. Conf. p. 109, (1999)Google Scholar
  117. 117.
    G. Lucovsky, J. Vac. Sci. Technol., A-16, 356 (1998)CrossRefGoogle Scholar
  118. 118.
    T.P. Ma, IEEE Trans. Electron. Dev., 45, 680 (1998)CrossRefGoogle Scholar
  119. 119.
    G. Lucovsky et al., Electronic structure of high-K transition metal oxides and their silicate and aluminate alloys, J. Vac. Sci. Technol., B-20 (4), 1739 (2002)CrossRefGoogle Scholar
  120. 120.
    G. Wilk, R.W. Wallace, and J.M. Anthony, Micrelectron. Eng., 59, 329 (2001)CrossRefGoogle Scholar
  121. 121.
    K.J. Wynne and R.W. Rice, Annu. Rev. Matter., 14, 297 (1984) and G.D. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys., 87, 484 (2000)CrossRefGoogle Scholar
  122. 122.
    M.J. Laboda, New solutions for interconnect dielectrics using trimethyl silane based PECVD processes, Pro Euro.Workshop on Mats. For Adv. Metallization, Oostende, Belgium (1999), Microelectron. Eng., 50, 15–23 (2000) and also G. Baccanari, M.R. Wordeman, and R.H. Dennard, IEEE Trans. Electron. Dev., 31, 452 (1984)Google Scholar
  123. 123.
    F.R. Ley, J. Am. Ceram. Soc., 83 (2), 245 (2000) and also W.A.P. Claassen, W.G.J.N. Valkenborg, M.F.C. Willemsen, and S.W. Haszko, J. Electrochem. Soc., 132, 893 (1995)MathSciNetGoogle Scholar
  124. 124.
    M.J. Hofmann, Si3N4 ceramics structure & properties of encyclopedia of materials science & technology, Elsevier Sci., NY, 4–5, 8469 (2001)Google Scholar
  125. 125.
    M.V. Fischeti and S.E. Laux, Long range Coulomb interactions in small Si-devices, J. Appl. Phys., 89, 1205 (2001)CrossRefGoogle Scholar
  126. 126.
    J.R. Brews, W. Fichtner, E.H. Nicollian, and S.M. Sze, Generallized guide for MOSFET miniaturization, IEEE Electron Dev. Lett., 1, 2 (1980)CrossRefGoogle Scholar
  127. 127.
    S. Wolf, Silicon processing for VLSI Era, Chapter 4, Vol. 4, Lattice press, Sunset beach, CA, pp. 145–180, 2004 and also A.C. Adams, Dielectric and polysilicon film deposition, in S.M.Sze (ed.), VLSI Technology, McGraw Hill, New York, p. 233 (1988)Google Scholar
  128. 128.
    C.M. Osburn et al., Vertically scaled MOSFET gate stacks and junctions, IBM J. Res. Dev., 46, 299–315 March/May (2002)CrossRefGoogle Scholar
  129. 129.
    R. Sharma, A. Kumar, and J. Anthony, Advances in high-K dielectric gate materials for future ULSI Devices, JOL, Microelectron. Processing, 53, pp. 53–55 June (2001)Google Scholar
  130. 130.
    S.H. Lo, D.A. Buchanon, Y. Taur, and W. Wang, Quantum mechanical modeling of electron tunneling current from inversion layer of ultra thin oxide of n-MOSFET’s, IEEE Electron. Dev. Lett., 18, 209 (1997)CrossRefGoogle Scholar
  131. 131.
    C.A. Ritcher, A.R. Hefner, and E.M. Vogel, A comparision of quantum mechanical capacitance voltage simulation, IEEE Electron. Dev. Lett., 22, 35 (2001)CrossRefGoogle Scholar
  132. 132.
    J. Robertson, Band offsets of wide-band-gap oxides and implantation for future electronic devices, J. Vac. Sci. Technol., B-18, 1785 (2000)CrossRefGoogle Scholar
  133. 133.
    G. Lucovsky, J. Vac. Sci. Technol., A-19, 1553 (2001)CrossRefGoogle Scholar
  134. 134.
    International Technology Roadmap for Semiconductors (ITRS), Int. SEMATECH, Austin, TX, 2001Google Scholar
  135. 135.
    T. Yamaguchi, H. Satake, N. Fukushima, and A. Toriumi, Band diagram and carrier conduction mechanism in ZrO2/Zr - silicate/Si MIS structure fabricated by pulsed laser ablation deposition, IEEE IEDM Tech. Digest, pp. 31–34 (2000)Google Scholar
  136. 136.
    L. Manchanda et al., Gate quality doped high-K films for CMOS beyond 100-nm, IEEE Int. Electron. Dev. Meeting (IEDM) Tech Digest, 9, 149 (2000)Google Scholar
  137. 137.
    L. Kang et al., Electrical characteristics of highly reliable ultrathin hafnium oxide gate dieelectric, IEEE Dev. Lett., 21 (4), 181–183 (2000) and E. Atnassova and A. Paskaleva,Microelectron. Reliab., 47 (6), 913 (2007)CrossRefGoogle Scholar
  138. 138.
    J. Robertson, J. Vac. Sci. Technol., B-18, 1785 (2000) and also G. Lucovsky, J.L. Whiten, and Y. Zang, Microelectron. Eng., 59, 329 (2001) and K. Okada et al., IEEE Sym. On Int. Relib. Phys., April 27, Phoenix, AZ (2008)CrossRefGoogle Scholar
  139. 139.
    M.V. Fischetti, Long range Coulomb interactions in small Si-devices, Part II: Effective electron mobility in thin-oxide structures, J. Appl. Phys., 89, 1232 (2001)CrossRefGoogle Scholar
  140. 140.
    B.H. Lee et al., Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric applications, IEEE IEDM Tech. Dig., 133 (1999)Google Scholar
  141. 141.
    M.M. Frank et al., Hafnium oxide gate dielectrics grown from alkoxide precursor,Mater. Sci. Eng.–, 6 (2004) and also G.D.Wilk, R.M.Wallace, and J.M. Anthony, J. Appl. Phys., 87, 484 (2000)Google Scholar
  142. 142.M. Ritla M. Leskela in H.S. Nalwa (ed.), Hand book of thin film materials, Vol. 234, Academic Press, Boca Raton, FL, p. 183 (2002)Google Scholar
  143. 143.
    M.R. Visokay et al., Appl. Phys. Lett., 80, 3183 (2002)CrossRefGoogle Scholar
  144. 144.
    M. Kkoyama et al., Int. Electron. Dev. Meeting (IEDM), 849 (2002) and also J. Barnett et al., Cleaning’s role in high-K/ metal gate success, Semicond. Int., 29 (2), 45 (Feb. 2006)Google Scholar
  145. 145.
    D.S. Hausmann, E. Kim, J. Becker, and R.G. Gordon, Chem. Mater., 14, 4350 (2002)CrossRefGoogle Scholar
  146. 146.
    S.K. Ghandhi, VLSI fabrication principles, Wiley, New York (1983) and also P. O’Brien, N.L. Pickett, and D.J. Otway, Development of CVD delivery systems: Achemist’s perspective on chemical and physical interactions between precursors, Adv. Mater., Wiley-VCH, Weinheim, Germany, 14 (23), 237 (2002)Google Scholar
  147. 147.
    D.A. Buchanan, IBM J. Res. Dev., 43 (3), 245 (1999)CrossRefGoogle Scholar
  148. 148.
    S.A. Campbell et al., IEEE Trans. Electron. Dev., 44, 104 (1977)CrossRefGoogle Scholar
  149. 149.
    C. Chaneliere, J.L. Autran, R.A. Devine, B. Balland, Mater. Sci. Eng., R22, 269 (1998)CrossRefGoogle Scholar
  150. 150.
    L. Kang et al., Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric, IEEE Dev. Lett., 21 (4), 181–183 (2000)CrossRefGoogle Scholar
  151. 151.
    H. Yang and G. Lucovsky, Integration of ultra-thin (1.6-2.0 nm) RPECVD oxynitride gate submicron C-MOSFETs, IEEE IEDM Tech. Digest, 245 (1999) and S. Kubicek et al., Low VT CMOS using doped Hf-based oxides, IEEE IEDM Tech Dig. (2007)Google Scholar
  152. 152.
    E.H. Kisi and C.J. Howard, Crystal structure of zirconia phases and interrelation, Key. Eng. Mater.,–, 1–36 (1998)Google Scholar
  153. 153.
    J.P. Chang, Y.S. Lin, S. Berger, A. Kepten, R. Bloom, and S. Levy, Ultrathin zirconium oxide films as alternative gate dielectric, J. Vac. Sci. Technol., B19 (6) 2212 (2001)Google Scholar
  154. 154.
    J.P. Chang, Y.S. Lin, Y.M. Sun, J. Lozano, H. Ho, H.J. Park, S. Veldman, and J.M. White, Appl. Surf. Sci., 161, 115 (2000)CrossRefGoogle Scholar
  155. 155.
    M. Copel, M. Gribelyuk, and E. Gusev, Appl. Phys. Lett., 76, 436 (2000)CrossRefGoogle Scholar
  156. 156.
    G. Lucovski, J.L. Whitten, and Y. Zhang, Microelectron. Eng., 59, 329 (2001)CrossRefGoogle Scholar
  157. 157.
    W.A. Harrison, Elementary electronic structure, World Scientific, Singapore, Chapter 17 (1999)Google Scholar
  158. 158.
    P.W. Peacock and J. Robertson, J. Appl. Phys., 92, 4712 (2002) and also L.F. Edge et al., Measurements of band offset between amorphous LaAlO3 and Si, MRS Symp., Dec. 1–4, 786, (2002)CrossRefGoogle Scholar
  159. 159.
    Y. Xu, Ferroelectric materials and their applications, Amsterdam, North Holland (1991)Google Scholar
  160. 160.
    Y.S. Lin, R. Puthenkovilakam, and J. Chang, Appl. Phys. Lett., 81, 2041 (2002)CrossRefGoogle Scholar
  161. 161.
    D.M. Hausmann, E. Kim, J. Becker, and R.G. Gordon, Chem. Mater., 14, 4350 (2002)CrossRefGoogle Scholar
  162. 162.
    J.P. Chang, Y.S. Lin, and K. Chu, J. Vac. Sci. Technol., B-19, 1319–1327 (2001)CrossRefGoogle Scholar
  163. 163.
    M. Putkone and L. Ninisto, J. Mater. Chem. Roy. Soc. Chem. London, 11, 3141 (2001)Google Scholar
  164. 164.
    J. Chang et al., J. Vac. Sci. Technol., B-19 (6), 2131 (2001)Google Scholar
  165. 165.
    J.P. Hopwood, (ed.), Ionized physical vapor deposition, Academic Press, New York (2000)Google Scholar
  166. 166.
    M. Hatmanova et al., J. Mater. Sci., 6 (11), 2387 (1996) and S. Pae et al., IEEE Symp. On Int. Reliab. Phys. April 27, Phoenix, AZ (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Radiation Monitoring Devices, Inc.WatertownUSA

Personalised recommendations