Advertisement

Auditory Cortical Organization: Evidence for Functional Streams

  • Josef P. Rauschecker
  • Lizabeth M. Romanski
Chapter

Abstract

Understanding auditory cortex functional organization lags far behind the current understanding of visual cortex. One reason may be that auditory research has traditionally taken a bottom-up approach dealing first with cochlear and brain stem mechanisms of auditory coding. However, to understand how complex sounds are processed, stored, and recognized, we must understand how auditory cortex functions. In the cortex, the primary auditory cortex (AI) has long received the most attention. Physiological and anatomical studies in cats and monkeys find that multiple auditory areas surround AI, just as multiple representations of the visual world surround primary visual cortex (VI). It is reasonable to propose that these multiple fields support unique specialized functions in the complex behavioral repertoire of higher mammals.

Keywords

Auditory Cortex Superior Temporal Gyrus Superior Temporal Sulcus Ventral Stream Complex Sound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AI

primary auditory cortex

AL

anterior region of the lateral belt

BBW

best bandwidth

BPN

band pass noise

CL

caudolateral area

CM

caudal medial area

CPB

caudal parabelt region

DLPFC

dorsolateral prefrontal cortex

FM

frequency modulation

fMRI

functional magnetic resonance imaging

Ig

granular insula

L

lateral region

LB

lateral belt

Lim

limitans

MB

medial belt

MC

monkey call

MCPI

monkey call preference index

MGad

anterodorsal division of the medial geniculate complex

MGC

medial geniculate complex

MGd

dorsal division of the medial geniculate complex

MGm

magnocellular division of the medial geniculate complex

MGpd

dorsoposterior division of the medial geniculate complex

MGv

ventral division of the medial geniculate complex

ML

mediolateral area

PET

positron emission tomography

PFC

prefrontal cortex

PM

medial pulvinar

Po

posterior nucleus of the multisensory thalamic complex

R

rostral field

Ri

retroinsular cortex

RM

rostromedial belt region

RPB

rostral parabelt region

RT

rostral temporal field

RTL

lateral rostrotemporal belt region

RTM

medial rostrotemporal belt region

Sg

suprageniculate

STG

superior temporal gyrus

STP

superior temporal plane

STS

superior temporal sulcus

TAa

anterior temporal area

TE

inferior temporal lobe region

TEO

inferior temporal lobe region

TPO

temporal polysensory area

Tpt

temporo-parietal area

TS1,2

rostral areas of the superior temporal gyrus

VI

primary visual cortex

VLPFC

ventro-lateral prefrontal cortex

References

  1. Ahveninen J, Jääskeläinen IP, Raij T, Bonmassar G, Devore S, Hamalainen M, Levanen S, Lin FH, Sams M, Shinn-Cunningham BG, Witzel T, and Belliveau JW (2006) Task-modulated “what” and “where” pathways in human auditory cortex. Proceedings of the National Academy of Sciences of the United States of America 103:14608–14613.PubMedCrossRefGoogle Scholar
  2. Alain C, Arnott SR, Hevenor S, Graham S, and Grady CL (2001) “What” and “where” in the human auditory system. Proceedings of the National Academy of Sciences of the United States of America 98:12301–12306.PubMedCrossRefGoogle Scholar
  3. Arnott SR, Binns MA, Grady CL, and Alain C (2004) Assessing the auditory dual-pathway model in humans. Neuroimage 22:401–408.PubMedCrossRefGoogle Scholar
  4. Averbeck BB and Romanski LM (2006) Probabilistic encoding of vocalizations in macaque ventral lateral prefrontal cortex. Journal of Neuroscience 26:11023–11033.PubMedCrossRefGoogle Scholar
  5. Averbeck BB and Romanski LM (2004) Principal and independent components of macaque vocalizations: constructing stimuli to probe high-level sensory processing. Journal of Neurophysiology 91:2897–2909.PubMedCrossRefGoogle Scholar
  6. Azuma M and Suzuki H (1984) Properties and distribution of auditory neurons in the dorsolateral prefrontal cortex of the alert monkey. Brain Research 298:343–346.CrossRefGoogle Scholar
  7. Barbas H (1992) Architecture and cortical connections of the prefrontal cortex in the rhesus monkey. Advances in Neurology 57:91–115.PubMedGoogle Scholar
  8. Barraclough NE, Xiao D, Baker CI, Oram MW, and Perrett DI (2005) Integration of visual and auditory information by superior temporal sulcus neurons responsive to the sight of actions. Journal of Cognitive Neuroscience 17:377–391.PubMedCrossRefGoogle Scholar
  9. Baylis GC, Rolls ET, and Leonard CM (1987) Functional subdivisions of the temporal lobe neocortex. Journal of Neuroscience 7:330–342.PubMedGoogle Scholar
  10. Belin P, Zatorre RJ, Lafaille P, Ahad P, and Pike B (2000) Voice-selective areas in human auditory cortex. Nature 403:309–312.PubMedCrossRefGoogle Scholar
  11. Benevento LA, Fallon J, Davis BJ, and Rezak M (1977) Auditory-visual interaction in single cells in the cortex of the superior temporal sulcus and the orbital frontal cortex of the macaque monkey. Experimental Neurology 57:849–872.PubMedCrossRefGoogle Scholar
  12. Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Springer JA, Kaufman JN, and Possing ET (2000) Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex 10:512–528.PubMedCrossRefGoogle Scholar
  13. Binder JR, Liebenthal E, Possing ET, Medler DA, and Ward BD (2004) Neural correlates of sensory and decision processes in auditory object identification. Nature Neuroscience 7:295–301.PubMedCrossRefGoogle Scholar
  14. Bodner M, Kroger J, and Fuster JM (1996) Auditory memory cells in dorsolateral prefrontal cortex. Neuroreport 7:1905–1908.PubMedCrossRefGoogle Scholar
  15. Bon L and Lucchetti C (2006) Auditory environmental cells and visual fixation effect in area 8B of macaque monkey. Experimental Brain Research 168:441–449.CrossRefGoogle Scholar
  16. Broca P (1861) Remarques su le siege defaulte de langage articule suivies d’une observation d’aphemie (perte de la parole). Bulletin de la Societe’ d’Anthropologie 2:330–337.Google Scholar
  17. Bruce C, Desimone R, and Gross CG (1981) Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. Journal of Neurophysiology 46:369–384.PubMedGoogle Scholar
  18. Brugge JF and Merzenich MM (1973) Responses of neurons in auditory cortex of the macaque monkey to monaural and binaural stimulation. Journal of Neurophysiology 36:1138–1158.PubMedGoogle Scholar
  19. Brunetti M, Belardinelli P, Caulo M, Del Gratta C, Della Penna S, Ferretti A, Lucci G, Moretti A, Pizzella V, Tartaro A, Torquati K, Olivetti Belardinelli M, and Romani GL (2005) Human brain activation during passive listening to sounds from different locations: an fMRI and MEG study. Human Brain Mapping 26:251–261.PubMedCrossRefGoogle Scholar
  20. Buckner RL, Raichle ME, and Petersen SE (1995) Dissociation of human prefrontal cortical areas across different speech production tasks and gender groups. Journal of Neurophysiology 74:2163–2173.PubMedGoogle Scholar
  21. Bushara KO, Weeks RA, Ishii K, Catalan MJ, Tian B, Rauschecker JP, and Hallett M (1999) Modality-specific frontal and parietal areas for auditory and visual spatial localization in humans. Nature Neuroscience 2:759–766.PubMedCrossRefGoogle Scholar
  22. Chavis DA and Pandya DN (1976) Further observations on corticofrontal connections in the rhesus monkey. Brain Research 117:369–386.PubMedCrossRefGoogle Scholar
  23. Chevillet MA, Riesenhuber M, and Rauschecker JP (2007) Functional localization of the auditory “what” stream hierarchy. Society for Neuroscience Abstracts 33:174.9.Google Scholar
  24. Degerman A, Rinne T, Salmi J, Salonen O, and Alho K (2006) Selective attention to sound location or pitch studied with fMRI. Brain Research 1:123–134CrossRefGoogle Scholar
  25. Demb JB, Desmond JE, Wagner AD, Vaidya CJ, Glover GH, and Gabrieli JD (1995) Semantic encoding and retrieval in the left inferior prefrontal cortex: a functional MRI study of task difficulty and process specificity. Journal of Neuroscience 15:5870–5878.PubMedGoogle Scholar
  26. Deouell LY, Heller AS, Malach R, D’Esposito M, and Knight RT (2007) Cerebral responses to change in spatial location of unattended sounds. Neuron 55:985–996.PubMedCrossRefGoogle Scholar
  27. Desimone R (1991) Face-selective cells in the temporal cortex of monkeys. Journal of Cognitive Neuroscience 3:1–8.CrossRefGoogle Scholar
  28. Desimone R and Schein SJ (1987) Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. Journal of Neurophysiology 57:835–868.PubMedGoogle Scholar
  29. Doupe AJ (1997) Song- and order-selective neurons in the songbird anterior forebrain and their emergence during vocal development. Journal of Neuroscience 17:1147–1167.PubMedGoogle Scholar
  30. Ehret G and Schreiner CE (1997) Frequency resolution and spectral integration (critical band analysis) in single units of the cat primary auditory cortex. Journal of Comparative Physiology A 181:635–650.CrossRefGoogle Scholar
  31. Esser K-H, Condon CJ, Suga N, and Kanwal JS (1997) Syntax processing by auditory cortical neurons in the FM-FM area of the mustached bat Pteronotus parnellii. Proceedings of the National Academy of Sciences of the United States of America 94:14019–14024.PubMedCrossRefGoogle Scholar
  32. Fecteau S, Armony JL, Joanette Y, and Belin P (2005) Sensitivity to voice in human prefrontal cortex. Journal of Neurophysiology 94:2251–2254.CrossRefGoogle Scholar
  33. Fiez JA, Raife EA, Balota DA, Schwarz JP, Raichle ME, and Petersen SE (1996) A positron emission tomography study of the short-term maintenance of verbal information. Journal of Neuroscience 16:808–822.PubMedGoogle Scholar
  34. Formisano E, Kim DS, Di Salle F, van de Moortele PF, Ugurbil K, and Goebel R (2003) Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40:859–869.PubMedCrossRefGoogle Scholar
  35. Friederici AD, Ruschemeyer SA, Hahne A, and Fiebach CJ (2003) The role of left inferior frontal and superior temporal cortex in sentence comprehension: localizing syntactic and semantic processes. Cerebral Cortex 13:170–177.PubMedCrossRefGoogle Scholar
  36. Gabrieli JDE, Poldrack RA, and Desmond JE (1998) The role of left prefrontal cortex in language and memory. Proceedings of the National Academy of Sciences of the United States of America 95:906–913.PubMedCrossRefGoogle Scholar
  37. Ghazanfar AA, Chandrasekaran C, and Logothetis NK (2008) Interactions between the superior temporal sulcus and auditory cortex mediate dynamic face/voice integration in rhesus monkeys. Journal of Neuroscience 28:4457–4469.PubMedCrossRefGoogle Scholar
  38. Gifford GW, III, Hauser MD, and Cohen YE (2003) Discrimination of functionally referential calls by laboratory-housed rhesus macaques: Implications for neuroethological studies. Brain Behavior and Evolution 61:213–224.CrossRefGoogle Scholar
  39. Goldman-Rakic, PS (1996). The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Philosophical Transactions of the Royal Society, London. B Biological Sciences 351:1445–1453.CrossRefGoogle Scholar
  40. Goldman PS and Rosvold HE (1970) Localization of function within the dorsolateral prefrontal cortex of the rhesus monkey. Experimental Neurology 27:291–304.PubMedCrossRefGoogle Scholar
  41. Gross CG (1963) A comparison of the effects of partial and total lateral frontal lesions on test performance by monkeys. Journal of Comparative Physiological Psychology 56:41–47.CrossRefGoogle Scholar
  42. Gross CG and Weiskrantz L (1962) Evidence for dissociation of impairment on auditory discrimination and delayed response following lateral frontal lesions in monkeys. Experimental Neurology 5:453–476.PubMedCrossRefGoogle Scholar
  43. Hackett TA, De La Mothe LA, Ulbert I, Karmos G, Smiley J, and Schroeder CE (2007) Multisensory convergence in auditory cortex, II. Thalamocortical connections of the caudal superior temporal plane. Journal of Comparative Neurology 502:924–952.PubMedCrossRefGoogle Scholar
  44. Hackett TA, Stepniewska I, and Kaas JH (1999) Prefrontal connections of the parabelt auditory cortex in macaque monkeys. Brain Research 817:45–58.PubMedCrossRefGoogle Scholar
  45. Hackett TA, Stepniewska I, and Kaas JH (1998a) Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. Journal of Comparative Neurology 394:475–495.PubMedCrossRefGoogle Scholar
  46. Hackett TA, Stepniewska I, and Kaas JH (1998b) Thalamocortical connections of the parabelt auditory cortex in macaque monkeys. Journal of Comparative Neurology, 400:271–286.PubMedCrossRefGoogle Scholar
  47. Hauser MD (1996) The Evolution of Communication. MIT Press, Cambridge.Google Scholar
  48. Hikosaka K, Iwai E, Saito H, and Tanaka K (1988) Polysensory properties of neurons in the anterior bank of the caudal superior temporal sulcus of the macaque monkey. Journal of Neurophysiology 60:1615–1637.PubMedGoogle Scholar
  49. Howard MA, Volkov IO, Abbas PJ, Damasio H, Ollendieck MC, and Granner M (1996) A chronic microelectrode investigation of the tonotopic organization of human auditory cortex. Brain Research 724:260–264.PubMedCrossRefGoogle Scholar
  50. Howard MA, Volkov IO, Mirsky R, Garell PC, Noh MD, Granner M, Damasio H, Steinschneider M, Reale RA, Hind JE, and Brugge JF (2000) Auditory cortex on the human posterior superior temporal gyrus. Journal of Comparative Neurology 416:79–92.PubMedCrossRefGoogle Scholar
  51. Hubel DH and Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology (London) 160:106–154.Google Scholar
  52. Gifford GGW, Maclean KA, Hauser MD, and Cohen YE (2005) The neurophysiology of functionally meaningful categories: macaque ventrolateral prefrontal cortex plays a critical role in spontaneous categorization of species-specific vocalizations. Journal of Cognitive Neuroscience 17:1471–1482.PubMedCrossRefGoogle Scholar
  53. Ito SI (1982) Prefrontal unit activity of macaque monkeys during auditory and visual reaction time tasks. Brain Research 247:39–47.PubMedCrossRefGoogle Scholar
  54. Iversen SD and Mishkin M (1970) Perseverative interference in monkeys following selective lesions of the inferior prefrontal convexity. Experimental Brain Research 11:376–386.CrossRefGoogle Scholar
  55. Jääskeläinen IP, Ahveninen J, Bonmassar G, Dale AM, Ilmoniemi RJ, Levänen S, Lin FH, May P, Melcher J, Stufflebeam S, Tiitinen H, and Belliveau JW (2004) Human posterior auditory cortex gates novel sounds to consciousness. Proceedings of the National Academy of Sciences of the United States of America 101:6809–6814.PubMedCrossRefGoogle Scholar
  56. Jones EG, Dell’Anna ME, Molinari M, Rausell E, and Hashikawa T (1995) Subdivisions of macaque monkey auditory cortex revealed by calcium-binding protein immunoreactivity. Journal of Comparative Neurology 362:153–170.PubMedCrossRefGoogle Scholar
  57. Kaas JH and Hackett TA (2000) Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences of the United States of America 97:11793–11799.PubMedCrossRefGoogle Scholar
  58. Kaas JH and Hackett TA (1998) Subdivisions of auditory cortex and levels of processing in primates. Audiology & Neuro-Otology 3:73–85.CrossRefGoogle Scholar
  59. Kikuchi Y, Horwitz B, and Mishkin M (2007) Auditory response properties in the rostral and caudal stations of the auditory stimulus processing stream of the macaque superior temporal cortex. Society for Neuroscience Abstracts 33:278.16.Google Scholar
  60. Kikuchi Y, Horwitz B, and Mishkin M (2004) A patch of neurons in the monkey’s rostral superior temporal gyrus are activated by conspecific calls. Society for Neuroscience Abstracts 30:650:10.Google Scholar
  61. Kikuchi Y, Rauschecker JP, Mishkin M, Augath M, Logothetis NK, and Petkov CI (2008) Voice region connectivity in the monkey assessed with microstimulation and functional imaging. Society for Neuroscience Abstracts 34:850.2.Google Scholar
  62. Kikuchi-Yorioka Y and Sawaguchi T (2000) Parallel visuospatial and audiospatial working memory processes in the monkey dorsolateral prefrontal cortex. Nature Neuroscience 3:1075–1076.PubMedCrossRefGoogle Scholar
  63. Knudsen EI (1983) Subdivisions of the inferior colliculus in the barn owl (Tyto alba). Journal of Comparative Neurology 218:174–186.PubMedCrossRefGoogle Scholar
  64. Kosaki H, Hashikawa T, He J, and Jones EG (1997) Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys. Journal of Comparative Neurology 386:304–316.PubMedCrossRefGoogle Scholar
  65. Krumbholz K, Schonwiesner M, Rübsamen R, Zilles K, Fink GR, and von Cramon DY (2005a) Hierarchical processing of sound location and motion in the human brainstem and planum temporale. The European Journal of Neuroscience 21:230–238.PubMedCrossRefGoogle Scholar
  66. Krumbholz K, Schonwiesner M, von Cramon DY, Rübsamen R, Shah NJ, Zilles K, and Fink GR (2005b) Representation of interaural temporal information from left and right auditory space in the human planum temporale and inferior parietal lobe. Cerebral Cortex 15:317–324.PubMedCrossRefGoogle Scholar
  67. Kusmierek P and Rauschecker JP (2006) Selectivity for environmental sounds and conspecific vocalizations in the anterolateral auditory belt cortex of the awake rhesus monkey. Society for Neuroscience Abstract 32:798.10.Google Scholar
  68. Kusmierek P and Rauschecker JP (2007) Response properties of medial belt neurons in rhesus monkey auditory cortex. Society for Neuroscience Abstracts 33:174.8.Google Scholar
  69. Leaver A, Chevillet MA, Renier L, Purcell JJ, and Rauschecker JP (2007) Visualization of multiple tonotopic fields in human auditory cortex. Society for Neuroscience Abstracts 33:174.1.Google Scholar
  70. Leinonen L, Hyvärinen J, and Sovijarvi AR (1980) Functional properties of neurons in the temporo-parietal association cortex of awake monkey. Experimental Brain Research 39:203–215.CrossRefGoogle Scholar
  71. Lomber SG and Malhotra S (2008) Double dissociation of ‘what’ and ‘where’ processing in auditory cortex. Nature Neuroscience 11:609–616.PubMedCrossRefGoogle Scholar
  72. Lucchetti C, Lanzilotto M, and Bon L (2008) Auditory-motor and cognitive aspects in area 8B of macaque monkey’s frontal cortex: a premotor ear-eye field (PEEF). Experimental Brain Research 186:131–141.CrossRefGoogle Scholar
  73. Maeder PP, Meuli RA, Adriani M, Bellmann A, Fornari E, Thiran JP, Pittet A, and Clarke S (2001) Distinct pathways involved in sound recognition and localization: a human fMRI study. Neuroimage 14:802–816.PubMedCrossRefGoogle Scholar
  74. Margoliash D and Fortune ES (1992) Temporal and harmonic combination-sensitive neurons in the zebra finch’s HVc. Journal of Neuroscience, 12:4309–4326.PubMedGoogle Scholar
  75. Merzenich MM and Brugge JF (1973) Representation of the cochlear partition of the superior temporal plane of the macaque monkey. Brain Research 50:275–296.PubMedCrossRefGoogle Scholar
  76. Morel A, Garraghty PE, and Kaas JH (1993) Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. Journal of Comparative Neurology 335:437–459.PubMedCrossRefGoogle Scholar
  77. Movshon JA and Newsome WT (1996) Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. Journal of Neuroscience 16:7733–7741.PubMedGoogle Scholar
  78. Newman JD and Lindsley DF (1976) Single unit analysis of auditory processing in squirrel monkey frontal cortex. Experimental Brain Research 25:169–181.CrossRefGoogle Scholar
  79. Obleser J, Boecker H, Drzezga A, Haslinger B, Hennenlotter A, Roettinger M, Eulitz C, and Rauschecker JP (2006) Vowel sound extraction in anterior superior temporal cortex. Human Brain Mapping 27:562–571.PubMedCrossRefGoogle Scholar
  80. Obleser J, Boecker H, Drzezga A, Haslinger B, Hennenlotter A, Roettinger M, Eulitz C, and Rauschecker JP (2005) Vowel sound extraction in anterior superior temporal cortex. Human Brain Mapping 7:562–571.Google Scholar
  81. Ohl FW and Scheich H (1997) Orderly cortical representation of vowels based on formant interaction. Proceedings of the National Academy of Sciences of the United States of America 94:9440–9444.PubMedCrossRefGoogle Scholar
  82. O’Scalaidhe SP, Wilson FA, and Goldman-Rakic PS (1997) Areal segregation of face-processing neurons in prefrontal cortex. Science 278:1135–1138.CrossRefGoogle Scholar
  83. O’Scalaidhe SP, Wilson FA, and Goldman-Rakic PG (1999) Face-selective neurons during passive viewing and working memory performance of rhesus monkeys: evidence for intrinsic specialization of neuronal coding. Cerebral Cortex 9:459–475.CrossRefGoogle Scholar
  84. Pandya DN, Hallett M, and Mukherjee SK (1969) Intra- and interhemispheric connections of the neocortical auditory system in the rhesus monkey. Brain Research 14:49–65.PubMedCrossRefGoogle Scholar
  85. Pandya DN and Kuypers HGJM (1969) Cortico-cortical connections in the rhesus monkey. Brain Research 13:13–36.PubMedCrossRefGoogle Scholar
  86. Petkov CI, Kayser C, Augath M, and Logothetis NK (2006) Functional imaging reveals numerous fields in the monkey auditory cortex. Public Library of Science Biology 4:e215.Google Scholar
  87. Petkov CI, Kayser C, Steudel T, Whittingstall K, Augath M, and Logothetis NK (2008) A voice region in the monkey brain. Nature Neuroscience 11:367–374.PubMedCrossRefGoogle Scholar
  88. Petrides M (1986) The effect of periarcuate lesions in the monkey on the performance of symmetrically and asymmetrically reinforced visual and auditory go, no-go tasks. Journal of Neuroscience 6:2054–2063.PubMedGoogle Scholar
  89. Petrides M and Pandya DN (1988) Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey. Journal of Comparative Neurology 273:52–66.PubMedCrossRefGoogle Scholar
  90. Petrides M and Pandya DN (2002) Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. European Journal of Neuroscience 16:291–310.PubMedCrossRefGoogle Scholar
  91. Poremba A, Malloy M, Saunders RC, Carson RE, Herscovitch P, and Mishkin M (2004) Species-specific calls evoke asymmetric activity in the monkey’s temporal poles. Nature 427:448–451.PubMedCrossRefGoogle Scholar
  92. Poremba A, Saunders RC, Crane AM, Cook M, Sokoloff L, and Mishkin M (2003) Functional mapping of the primate auditory system. Science 299:568–572.PubMedCrossRefGoogle Scholar
  93. Rama P, Poremba A, Sala JB, Yee L, Malloy M, Mishkin M, and Courtney SM (2004) Dissociable functional cortical topographies for working memory maintenance of voice identity and location. Cerebral Cortex 14:768–780.PubMedCrossRefGoogle Scholar
  94. Rauschecker JP (2007) Cortical processing of auditory space: pathways and plasticity. In: Mast F and Jäncke L (eds). Spatial Processing in Navigation, Imagery, and Perception. Springer-Verlag, New York, pp. 389–410.CrossRefGoogle Scholar
  95. Rauschecker JP (1998a) Cortical processing of complex sounds. Current Opinion in Neurobiology 8:516–521.PubMedCrossRefGoogle Scholar
  96. Rauschecker JP (1998b) Parallel processing in the auditory cortex of primates. Audiology & Neuro-Otology 3:86–103.CrossRefGoogle Scholar
  97. Rauschecker JP (1997) Processing of complex sounds in the auditory cortex of cat, monkey, and man. Acta Oto-Laryngologica Supplement 532:34–38.CrossRefGoogle Scholar
  98. Rauschecker JP and Tian B (2004) Processing of band-passed noise in the lateral auditory belt cortex of the rhesus monkey. Journal of Neurophysiology 91:2578–2589.PubMedCrossRefGoogle Scholar
  99. Rauschecker JP and Tian B (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proceedings of the National Academy of Sciences of the United States of America 97:11800–11806.PubMedCrossRefGoogle Scholar
  100. Rauschecker JP, Tian B, and Hauser M (1995) Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268:111–114.PubMedCrossRefGoogle Scholar
  101. Rauschecker JP, Tian B, Pons T, and Mishkin M (1997) Serial and parallel processing in rhesus monkey auditory cortex. Journal of Comparative Neurology 382:89–103.PubMedCrossRefGoogle Scholar
  102. Recanzone GH (2000) Spatial processing in the auditory cortex of the macaque monkey. Proceedings of the National Academy of Sciences of the United States of America 97:11829–11835.PubMedCrossRefGoogle Scholar
  103. Recanzone GH, Guard DC, Phan ML, and Su TK (2000) Correlation between the activity of single auditory cortical neurons and sound-localization behavior in the macaque monkey. Journal of Neurophysiology 83:2723–2739.PubMedGoogle Scholar
  104. Romanski LM (2004) Domain specificity in the primate prefrontal cortex. Cognitive, Affective & Behavioral Neuroscience 4:421–429.CrossRefGoogle Scholar
  105. Romanski LM (2003) Anatomy and physiology of auditory-prefrontal interactions in non-human primates. In: Ghazanfar AA (ed). Primate Audition: Ethology and Neurobiology. CRC Press, New York, pp. 259–278.Google Scholar
  106. Romanski LM (2007) Representation and Integration of Communication Stimuli by the Primate Prefrontal Cortex. Cerebral Cortex 17:61–69.CrossRefGoogle Scholar
  107. Romanski LM, Averbeck BB, and Diltz M (2005) Neural representation of vocalizations in the primate ventrolateral prefrontal cortex. Journal of Neurophysiology 93:734–747.PubMedCrossRefGoogle Scholar
  108. Romanski LM and Goldman-Rakic PS (2002) An auditory domain in primate prefrontal cortex. Nature Neuroscience 5:15–16.PubMedCrossRefGoogle Scholar
  109. Romanski LM, Bates JF, and Goldman-Rakic PS (1999a) Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. Journal of Comparative Neurology 403:141–157.PubMedCrossRefGoogle Scholar
  110. Romanski LM, Tian B, Fritz J, Mishkin M, Goldman-Rakic PS, and Rauschecker JP (1999b) Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature Neuroscience 2:1131–1136.PubMedCrossRefGoogle Scholar
  111. Romo R, Brody CD, Hernandez A, and Lemus L (1999) Neuronal correlates of parametric working memory in the prefrontal cortex. Nature 399:470–473.PubMedCrossRefGoogle Scholar
  112. Russ BE, Ackelson AL, Baker AE, and Cohen YE (2008) Coding of auditory-stimulus identity in the auditory non-spatial processing stream. Journal of Neuroscience 99:87–95.Google Scholar
  113. Russo GS and Bruce CJ (1989) Auditory receptive fields of neurons in frontal cortex of rhesus monkey shift with direction of gaze. Society for Neuroscience Abstracts 15:120.4.Google Scholar
  114. Russo GS and Bruce CJ (1994) Frontal eye field activity preceding aurally guided saccades. Journal of Neurophysiology 71:1250–1253.PubMedGoogle Scholar
  115. Scott SK, Blank CC, Rosen S, and Wise RJ (2000) Identification of a pathway for intelligible speech in the left temporal lobe. Brain: A Journal of Neurology 12:2400–2406.Google Scholar
  116. Steinschneider M, Reser D, Schroeder CE, and Arezzo JC (1995) Tonotopic organization of responses reflecting stop consonant place of articulation in primary auditory cortex (A1) of the monkey. Brain Research 674:147–152.PubMedCrossRefGoogle Scholar
  117. Stromswold K, Caplan D, Alpert N, and Rauch S (1996) Localization of syntactic comprehension by positron emission tomography. Brain & Language 52:452–473.CrossRefGoogle Scholar
  118. Suga N, O’Neill WE, and Manabe T (1978) Cortical neurons sensitive to combinations of information-bearing elements of biosonar signals in the mustache bat. Science 200:778–781.PubMedCrossRefGoogle Scholar
  119. Sugihara T, Diltz MD, Averbeck BB, and Romanski LM (2006) Integration of auditory and visual communication information in the primate ventrolateral prefrontal cortex. Journal of Neuroscience 26:11138–11147.PubMedCrossRefGoogle Scholar
  120. Tanaka K (1997) Mechanisms of visual object recognition: monkey and human studies. Current Opinion in Neurobiology 7:523–529.PubMedCrossRefGoogle Scholar
  121. Tanila H, Carlson S, Linnankoski I, and Kahila H (1993) Regional distribution of functions in dorsolateral prefrontal cortex of the monkey. Behavioural Brain Research 53:63–71.PubMedCrossRefGoogle Scholar
  122. Tanila H, Carlson S, Linnankoski I, Lindroos F, and Kahila H (1992) Functional properties of dorsolateral prefrontal cortical neurons in awake monkey. Behavioral Brain Research 47:169–180.CrossRefGoogle Scholar
  123. Tata MS and Ward LM (2005a) Early phase of spatial mismatch negativity is localized to a posterior “where” auditory pathway. Experimental Brain Research 167:481–486.CrossRefGoogle Scholar
  124. Tata MS and Ward LM (2005b) Spatial attention modulates activity in a posterior “where” auditory pathway. Neuropsychologia 43:509–516.PubMedCrossRefGoogle Scholar
  125. Tian B and Rauschecker JP (2004) Processing of frequency-modulated sounds in the lateral auditory belt cortex of the rhesus monkey. Journal of Neurophysiology 92:2993–3013.PubMedCrossRefGoogle Scholar
  126. Tian B and Rauschecker JP (1998) Processing of frequency-modulated sounds in the cat’s posterior auditory field. Journal of Neurophysiology 79:2629–2642.PubMedGoogle Scholar
  127. Tian B and Rauschecker JP (1994) Processing of frequency-modulated sounds in the cat’s anterior auditory field. Journal of Neurophysiology 71:1959–1975.PubMedGoogle Scholar
  128. Tian B, Reser D, Durham A, Kustov A, and Rauschecker JP (2001) Functional specialization in rhesus monkey auditory cortex. Science 292:290–293.PubMedCrossRefGoogle Scholar
  129. Tsao DY, Freiwald WA, Tootell RB, and Livingstone MS (2006) A cortical region consisting entirely of face-selective cells. Science 311:670–674.PubMedCrossRefGoogle Scholar
  130. Ungerleider LG and Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds). Analysis of Visual Behaviour. MIT Press, Cambridge, pp. 549–586.Google Scholar
  131. Vaadia E, Benson DA, Hienz RD, and H. Goldstein MH Jr (1986) Unit study of monkey frontal cortex: active localization of auditory and of visual stimuli. Journal of Neurophysiology 56:934–952.PubMedGoogle Scholar
  132. Wang X, Merzenich MM, Beitel R, and Schreiner CE (1995) Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics. Journal of Neurophysiology 74:2685–2706.PubMedGoogle Scholar
  133. Warren JD, Zielinski BA, Green GGR, Rauschecker JP, and Griffiths TD (2002) Analysis of sound source motion by the human brain. Neuron 34:1–20.CrossRefGoogle Scholar
  134. Watanabe M (1992) Frontal units of the monkey coding the associative significance of visual and auditory stimuli. Experimental Brain Research 89:233–247.CrossRefGoogle Scholar
  135. Wessinger CM, VanMeter J, Tian B, Van Lare J, Pekar J, and Rauschecker JP (2001) Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. Journal of Cognitive Neuroscience 13:1–7.PubMedCrossRefGoogle Scholar
  136. Wilson FA, O’Scalaidhe SP, and Goldman-Rakic PS (1993) Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260:1955–1958.PubMedCrossRefGoogle Scholar
  137. Winter P and Funkenstein HH (1973) The effect of species-specific vocalization on the discharge of auditory cortical cells in the awake squirrel monkey. (Saimiri sciureus). Experimental Brain Research 18:489–504.CrossRefGoogle Scholar
  138. Young ED, Spirou GA, Rice JJ, Voigt HF, and Rees A (1992) Neural organization and responses to complex stimuli in the dorsal cochlear nucleus [and discussion]. Philosophical Transactions of the Royal Society of London, series B, Biological Sciences 336:407–413.CrossRefGoogle Scholar
  139. Zatorre RJ, Bouffard M, Ahad P, and Belin P (2002) Where is ‘where’ in the human auditory cortex? Nature Neuroscience 5:905–909.PubMedCrossRefGoogle Scholar
  140. Zatorre RJ, Bouffard M, and Belin P (2004) Sensitivity to auditory object features in human temporal neocortex. Journal of Neuroscience 24:3637–3642.PubMedCrossRefGoogle Scholar
  141. Zatorre RJ, Meyer E, Gjedde A, and Evans AC (1996) PET studies of phonetic processing of speech: review, replication, and reanalysis. Cerebral Cortex 6:21–30.PubMedCrossRefGoogle Scholar
  142. Zimmer U and Macaluso E (2005) High binaural coherence determines successful sound localization and increased activity in posterior auditory areas. Neuron 47:893–905.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Physiology and BiophysicsGeorgetown University School of MedicineWashingtonUSA
  2. 2.Department of Neurobiology and AnatomyUniversity Rochester Medical CenterRochesterUSA

Personalised recommendations