Skip to main content

Toward a Synthesis of Cellular Auditory Forebrain Functional Organization

  • Chapter
  • First Online:

Abstract

There is no global theory of auditory forebrain function since the facts available cannot support such an edifice. New technologies, some outlined in the previous chapters, have broadened the issues of functional organization and elevated the discussion to more global perspectives. In the following we are not attempting to provide a global synthesis. We rather address some questions preliminary to such a theory with the explicit view from the cellular level.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AAF:

anterior auditory field

AC:

auditory cortex

AI:

primary auditory cortex

GABA:

gamma aminobutyric acid

IC:

inferior colliculus

MGB:

medial geniculate body

TC:

thalamocortical

References

  • Arcelli P, Frassoni C, Regondi MC, De Biasi, and Spreafico R (1997) GABAergic neurons in mammalian thalamus: a marker of thalamic complexity? Brain Research Bulletin 42:27–37.

    Article  CAS  PubMed  Google Scholar 

  • Atencio CA, Sharpee TO, and Schreiner CE (2009) Hierarchical computation in the canonical auditory cortical circuit. Proceedings of the National Academy of Sciences of the United States of America 106:21894–21899.

    Article  CAS  PubMed  Google Scholar 

  • Atencio CA and Schreiner CE (2010a) Columnar connectivity and laminar processing in cat primary auditory cortex. Public Library of Science One 5:e9521.

    PubMed  Google Scholar 

  • Atencio CA and Schreiner CE (2010b) Laminar diversity of dynamic sound processing in cat primary auditory cortex. Journal of Neurophysiology 103:192–205.

    Article  PubMed  Google Scholar 

  • Bar-Yosef O and Nelken I (2007) The effects of background noise on the neural responses to natural sounds in cat primary auditory cortex. Frontiers in Computational Neuroscience 1:1:3, doi: 10.3389/neuro.3310/3003.2007.

    Google Scholar 

  • Briggs F and Callaway EM (2001) Layer-specific input to distinct cell types in layer 6 of monkey primary visual cortex. Journal of Neuroscience 21:3600–3608.

    CAS  PubMed  Google Scholar 

  • Calford MB (1983) The parcellation of the medial geniculate body of the cat defined by the auditory response properties of single units. Journal of Neuroscience 3:2350–2364.

    CAS  PubMed  Google Scholar 

  • Casseday JH, Schreiner CE, and Winer JA (2005) The inferior colliculus: past, present, and future. In: Winer JA and Schreiner CE (eds). The Inferior Colliculus. Springer, New York, pp. 626–640.

    Chapter  Google Scholar 

  • Cipolloni PB and Pandya DN (1991) Golgi, histochemical, and immunocytochemical analyses of the neurons of auditory-related cortices of the rhesus monkey. Experimental Neurology 114:104–122.

    Article  CAS  PubMed  Google Scholar 

  • Clascá F, Llamas A, and Reinoso-Suárez F (2000) Cortical connections of the insular and adjacent parieto-temporal fields in the cat. Cerebral Cortex 10:371–399.

    Article  PubMed  Google Scholar 

  • Crabtree JW, Collingridge GL, and Issac JTR (1998) A new intrathalamic pathway linking modality-related nuclei in the dorsal thalamus. Nature Neuroscience 1:389–394.

    Article  CAS  PubMed  Google Scholar 

  • Crabtree JW, Spear PD, McCall MA, Tong L, Jones KR, and Kornguth SE (1986) Dose-response analysis of effects of antibodies to large ganglion cells on the cat’s retinogeniculate pathways. Journal of Neuroscience 6:1199–1210.

    CAS  PubMed  Google Scholar 

  • Crook JM, Kisvárday ZF, and Eysel UT (1997) GABA-induced inactivation of functionally characterized sites in cat striate cortex: effects on orientation tuning and direction selectivity. Visual Neuroscience 14:141–158.

    Article  CAS  PubMed  Google Scholar 

  • Crook JM, Kisvárday ZF, and Eysel UT (1998) Evidence for a contribution of lateral inhibition to orientation tuning and direction selectivity in cat visual cortex: reversible inactivation of functionally characterized sites combined with neuroanatomical tracing techniques. European Journal of Neuroscience 10:2056–2075.

    Article  CAS  PubMed  Google Scholar 

  • Colavita F (1979) Temporal pattern discrimination in cats with insular-temporal lesions. Physiology & Behavior 18:513–521.

    Article  Google Scholar 

  • Colavita FB (1974) Insular-temporal lesions and vibrotactile temporal pattern discrimination in cats. Physiology & Behavior 12:215–218.

    Article  CAS  Google Scholar 

  • Colwell S (1975) Thalamocortical-corticothalamic reciprocity: a combined anterograde-retrograde tracer technique. Brain Research 92:443–449.

    Article  CAS  PubMed  Google Scholar 

  • Davis KA (2002) Evidence of a functionally segregated pathway from dorsal cochlear nucleus to inferior colliculus. Journal of Neurophysiology 87:1824–1835.

    PubMed  Google Scholar 

  • Diamond IT (1973) The evolution of the tectal-pulvinar system in mammals: structural and behavioural studies of the visual system. Symposia of the Zoological Society of London 33:205–233.

    Google Scholar 

  • Edeline JM (2003) The thalamo-cortical auditory receptive fields: regulation by the states of vigilance, learning and the neuromodulatory systems. Experimental Brain Research 153:554–572.

    Article  Google Scholar 

  • Eggermont JJ (1998) Representation of spectral and temporal sound features in three cortical fields of the cat. Similarities outweigh differences. Journal of Neurophysiology 80:2743–2764.

    CAS  PubMed  Google Scholar 

  • Emri Z, Antal K, and Crunelli V (2003) The impacts of corticothalamic feedback on the output dynamics of a thalamocortical neurone model: the role of synapse location and metabotropic glutamate receptors. Neuroscience 117:229–239.

    Article  CAS  PubMed  Google Scholar 

  • Emson PC (1983) Chemical Neuroanatomy, Raven Press, New York.

    Google Scholar 

  • Fitzpatrick DC, Olsen JF, and Suga N (1998) Connections among functional areas in the mustached bat auditory cortex. Journal of Comparative Neurology 391:366–396.

    Article  CAS  PubMed  Google Scholar 

  • Fritz JB, Elhilai M, and Shamma SA (2007) Auditory attention - focusing the searchlight on sound. Current Opinions in Neurobiology 17:437–455.

    Article  CAS  Google Scholar 

  • Fukuda T, Kosaka T, Singer W, and Galuske RA (2006) Gap junctions among dendrites of cortical GABAergic neurons establish a dense and widespread intercolumnar network. Journal of Neuroscience 26:3454–3464.

    Article  CAS  Google Scholar 

  • Hackett TA, Preuss TM, and Kaas JH (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. Journal of Comparative Neurology 441:197–222.

    Article  CAS  PubMed  Google Scholar 

  • Hallman EL, Schofield BR, and Lin C-S (1988) Dendritic morphology and axon collaterals of corticotectal, corticopontine, and callosal neurons in layer V of primary visual cortex of the hooded rat. Journal of Comparative Neurology 272:149–160.

    Article  CAS  PubMed  Google Scholar 

  • Hsieh CY, Chen Y, Leslie FM, and Metherate R (2002) Postnatal development of NR2A and NR2B mRNA expression in rat auditory cortex and thalamus. Journal of the Association for Research in Otolaryngology 3:479–487.

    Article  PubMed  Google Scholar 

  • Huang CL, Larue DT, and Winer JA (1999) GABAergic organization of the cat medial geniculate body. Journal of Comparative Neurology 415:368–392.

    Article  CAS  PubMed  Google Scholar 

  • Huang CL and Winer JA (2000) Auditory thalamocortical projections in the cat: laminar and areal patterns of input. Journal of Comparative Neurology 427:302–331.

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi K, Lee CC, Linden JF, Winer JA, and Schreiner CE (2005) The anterior field of auditory cortex: neurophysiological and neuroanatomical organization. In: König R, Heil P, Budinger E, and Scheich H (eds). The Auditory Cortex. A Synthesis of Human and Animal Research. Lawrence Erlbaum Associates, New York, pp. 95–110.

    Google Scholar 

  • Imig TJ and Adrián HO (1977) Binaural columns in the primary auditory field (A1) of cat auditory cortex. Brain Research 138:241–257.

    Article  CAS  PubMed  Google Scholar 

  • Imig TJ and Brugge JF (1978) Sources and terminations of callosal axons related to binaural and frequency maps in primary auditory cortex of the cat. Journal of Comparative Neurology 182:637–660.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins WM and Merzenich MM (1984) Role of cat primary auditory cortex for sound-localization behavior. Journal of Neurophysiology 52:819–847.

    CAS  PubMed  Google Scholar 

  • Jones EG and Hendry SHC (1986) Colocalization of GABA and neuropeptides in neocortical neurons. Trends in Neurosciences 9:71–76.

    Article  CAS  Google Scholar 

  • Josephson EM and Morest DK (1998) A quantitative profile of the synapses on the stellate cell body and axon in the cochlear nucleus of the chinchilla. Journal of Neurocytology 27:841–864.

    Article  CAS  PubMed  Google Scholar 

  • Kaas JH (1983) What, if anything is SI? Organization of first somatosensory area of cortex. Physiological Reviews 63:206–231.

    CAS  PubMed  Google Scholar 

  • Kaas JH (1997) Topographic maps are fundamental to sensory processing. Brain Research Bulletin 44:107–112.

    Article  CAS  PubMed  Google Scholar 

  • Kelly JB and Glazier SJ (1978) Auditory cortex lesions and discrimination of spatial location by the rat. Brain Research 145:315–321.

    Article  CAS  PubMed  Google Scholar 

  • Kilgard MP and Merzenich MM (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279:1714–1718.

    Article  CAS  PubMed  Google Scholar 

  • King AJ (1997) Signal selection by cortical feedback. Current Biology 7:R85–R88.

    Article  CAS  PubMed  Google Scholar 

  • King AJ and Nelken I (2009) Unraveling the principles of auditory cortical processing: can we learn from the visual system?. Nature Neuroscience 12:698–701.

    Article  CAS  PubMed  Google Scholar 

  • Ko S, Zhao MG, Toyoda H, Qiu CS, and Zhuo M (2005) Altered behavioral responses to noxious stimuli and fear in glutamate receptor 5 (GluR5)- or GluR6-deficient mice. Journal of Neuroscience 25:977–984.

    Article  CAS  PubMed  Google Scholar 

  • Kulesza RJ, Viñuela A, Saldaña E, and Berrebi AS (2002) Unbiased stereological estimates of neuron number in subcortical auditory nuclei of the rat. Hearing Research 168:12–24.

    Article  PubMed  Google Scholar 

  • Kurt S, Crook JM, Ohl FW, Scheich H, and Schulze H (2006) Differential effects of iontophoretic in vivo application of GABAA-antagonists bicuculline and gabazine in sensory cortex. Hearing Research 212:224–235.

    Article  CAS  PubMed  Google Scholar 

  • Lee CC, Schreiner CE, Imaizumi K, and Winer JA (2004) Tonotopic and heterotopic projection systems in physiologically defined auditory cortex. Neuroscience 128:871–887.

    Article  CAS  PubMed  Google Scholar 

  • Lee CC and Winer JA (2005) Principles governing auditory forebrain connections. Cerebral Cortex 15:1804–1814.

    Article  PubMed  Google Scholar 

  • LeVay S and Gilbert CD (1976) Laminar patterns of geniculocortical projection in the cat. Brain Research 113:1–19.

    Article  CAS  PubMed  Google Scholar 

  • Lübke J, Markram H, Frotscher M, and Sakmann B (1996) Frequency and dendritic distribution of autapses established by layer 5 pyramidal neurons in the developing rat neocortex: comparison with synaptic innervation of adjacent neurons of the same class. Journal of Neuroscience 16:3209–3218.

    PubMed  Google Scholar 

  • Lund JS (1990) Excitatory and inhibitory circuiting and laminar mapping strategies in the primary visual cortex of the monkey. In: Edelman GM, Gall WE, and Cowan WM (eds). Signal and Sense: Local and Global Order in Perceptual Maps. Wiley-Liss, New York, pp. 51–82.

    Google Scholar 

  • Lund JS, Griffiths S, Rumberger A, and Levitt JB (2001) Inhibitory synapse cover on the somata of excitatory neurons in macaque monkey visual cortex. Cerebral Cortex 11:783–795.

    Article  CAS  PubMed  Google Scholar 

  • Malmierca MS, Rees A, and Le Beau FEN (1997) Ascending projections to the medial geniculate body from physiologically identified loci in the inferior colliculus. In: Syka J (ed). Acoustical Signal Processing in the Central Auditory System. Plenum, New York, pp. 295–302.

    Google Scholar 

  • Martinez LM, Wang Q, Reid RC, Pillai C, Alonso J-M, Sommer FT, and Hirsch JA (2005) Receptive field varies with layer in the primary visual cortex. Nature Neuroscience 8:372–379.

    Article  CAS  PubMed  Google Scholar 

  • McMullen NT and de Venecia RK (1993) Thalamocortical patches in auditory neocortex. Brain Research 620:317–322.

    Article  CAS  PubMed  Google Scholar 

  • Middlebrooks JC and Zook JM (1983) Intrinsic organization of the cat’s medial geniculate body identified by projections to binaural response-specific bands in the primary auditory cortex. Journal of Neuroscience 3:203–225.

    CAS  PubMed  Google Scholar 

  • Miller KD, Pinto DJ, and Simons DJ (2001a) Processing in layer 4 of the neocortical circuit: new insights from visual and somatosensory cortex. Current Opinion in Neurobiology 11:488–497.

    Article  CAS  PubMed  Google Scholar 

  • Miller LM, Escabí MA, Read HL, and Schreiner CE (2001b) Functional convergence of response properties in the auditory thalamocortical system. Neuron 32:151–160.

    Article  CAS  PubMed  Google Scholar 

  • Miller LM, Escabí MA, Read HL, and Schreiner CE (2002) Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex. Journal of Neurophysiology 87:516–527.

    PubMed  Google Scholar 

  • Miller LM, Escabí MA, and Schreiner CE (2001c) Feature selectivity and interneuronal cooperation in the thalamocortical system. Journal of Neuroscience 21:8136–8144.

    CAS  PubMed  Google Scholar 

  • Miller LM and Schreiner CE (2000) Stimulus based state control in the thalamocortical system. Journal of Neuroscience 20:7011–7016.

    CAS  PubMed  Google Scholar 

  • Montero VM and Zempel J (1985) Evidence for two types of GABA-containing interneurons in the A-laminae of the cat lateral geniculate nucleus: a double-label HRP and GABA-immunocytochemical study. Experimental Brain Research 60:603–609.

    CAS  Google Scholar 

  • Morel A and Kaas JH (1992) Subdivisions and connections of auditory cortex in owl monkeys. Journal of Comparative Neurology 318:27–63.

    Article  CAS  PubMed  Google Scholar 

  • Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, and Zilles K (2001) Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. NeuroImage 13:694–701.

    Article  Google Scholar 

  • Müller CM (1988) Distribution of GABAergic perikarya and terminals in the centers of the higher auditory pathway of the chicken. Cell and Tissue Research 252:99–106.

    Article  PubMed  Google Scholar 

  • Ohki K, Cheung S, Ch’ng YH, Kara P, Fabene PF, and Reid RC (2005) Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433:597–603.

    Article  CAS  PubMed  Google Scholar 

  • Oliver DL, Winer JA, Beckius GE, and Saint Marie RL (1994) Morphology of GABAergic cells and axon terminals in the cat inferior colliculus. Journal of Comparative Neurology 340:27–42.

    Article  CAS  PubMed  Google Scholar 

  • Olsen JF and Suga N (1991) Combination-sensitive neurons in the medial geniculate body of the mustached bat: encoding of relative velocity information. Journal of Neurophysiology 65:1254–1274.

    CAS  PubMed  Google Scholar 

  • Palmer LA, Rosenquist AC, and Tusa RJ (1978) The retinotopic organization of lateral suprasylvian visual areas in the cat. Journal of Comparative Neurology 177:237–256.

    Article  CAS  PubMed  Google Scholar 

  • Perales M, Winer JA, and Prieto JJ (2006) Focal projections of cat auditory cortex to the pontine nuclei. Journal of Comparative Neurology 497:959–980.

    Article  PubMed  Google Scholar 

  • Persico AM, Calia AE, Puglisi-Allegra S, Ventura R, Lucchese F, and Keller F (2000) Serotonin depletion and barrel cortex development: impact of growth impairment vs. serotonin effects on thalamocortical endings. Cerebral Cortex 10:181–191.

    Article  CAS  PubMed  Google Scholar 

  • Peruzzi D, Bartlett E, Smith PH, and Oliver DL (1997) A monosynaptic GABAergic input from the inferior colliculus to the medial geniculate body in rat. Journal of Neuroscience 17:3766–3777.

    CAS  PubMed  Google Scholar 

  • Peters A, Palay SL, and Webster H (1991) The Fine Structure of the Nervous System. The Neurons and their Supporting Cells. Oxford University Press, New York.

    Google Scholar 

  • Prieto JJ, Peterson BA, and Winer JA (1994) Morphology and spatial distribution of GABAergic neurons in cat primary auditory cortex (AI). Journal of Comparative Neurology 344:349–382.

    Article  CAS  PubMed  Google Scholar 

  • Prieto JJ and Winer JA (1999) Layer VI in cat primary auditory cortex (AI): Golgi study and sublaminar origins of projection neurons. Journal of Comparative Neurology 404:332–358.

    Article  CAS  PubMed  Google Scholar 

  • Przybyszewski AW (1998) Does top-down processing help us to see? Current Biology 8:R135-R139.

    Article  CAS  PubMed  Google Scholar 

  • Read HL, Winer JA, and Schreiner CE (2001) Modular organization of intrinsic connections associated with spectral tuning in cat auditory cortex. Proceedings of the National Academy of Sciences of the United States of America 98:8042–8047.

    Article  CAS  PubMed  Google Scholar 

  • Reale RA and Imig TJ (1980) Tonotopic organization in auditory cortex of the cat. Journal of Comparative Neurology 192:265–291.

    Article  CAS  PubMed  Google Scholar 

  • Rouiller EM, Rodrigues-Dagaeff C, Simm GM, de Ribaupierre Y, Villa AEP, and de Ribaupierre F (1989) Functional organization of the medial division of the medial geniculate body of the cat: tonotopic organization, spatial distribution of response properties and cortical connections. Hearing Research 39:127–146.

    Article  CAS  PubMed  Google Scholar 

  • Schofield BR and Coomes DL (2004) Projections from the auditory cortex to the superior olivary complex in guinea pigs. European Journal of Neuroscience 19:2188–2200.

    Article  PubMed  Google Scholar 

  • Schreiner CE (1995) Order and disorder in auditory cortical maps. Current Opinion in Neurobiology 5:489–496.

    Article  CAS  PubMed  Google Scholar 

  • Sherman SM (2004) Interneurons and triadic circuitry of the thalamus. Trends in Neurosciences 27:670–675.

    Article  CAS  PubMed  Google Scholar 

  • Shi C-J and Cassell MD (1997) Cortical, thalamic, and amygdaloid projections of rat temporal cortex. Journal of Comparative Neurology 382:153–175.

    Article  CAS  PubMed  Google Scholar 

  • Smith DE and Moskowitz N (1979) Ultrastructure of layer IV of the primary auditory cortex of the squirrel monkey. Neuroscience 4:349–359.

    Article  PubMed  Google Scholar 

  • Spreafico R, Frassoni C, Arcelli P, and De Biasi S (1994) GABAergic interneurons in the somatosensory thalamus of the guinea-pig: a light and ultrastructural immunocytochemical investigation. Neuroscience 59:961–973.

    Article  CAS  PubMed  Google Scholar 

  • Steriade M (1996) Arousal: Revisiting the reticular activating system. Science 272:225–226.

    Article  CAS  PubMed  Google Scholar 

  • Steriade M and Timofeev I (2003) Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron 37:563–576.

    Article  CAS  PubMed  Google Scholar 

  • Storm-Mathisen J (1972) Glutamate decarboxylase in the rat hippocampal region after lesions of the afferent fibre systems: evidence that enzyme is localized in intrinsic neurons. Brain Research 40:215–235.

    Article  CAS  PubMed  Google Scholar 

  • Striedter GF (2002) Brain homology and function: An uneasy alliance. Brain Research Bulletin 57:239–242.

    Article  PubMed  Google Scholar 

  • Suga N (1978) Specialization of the auditory system for reception and processing of species-specific sounds. Federation of the American Society for Experimental Biology Proceedings 37:2342–2354.

    CAS  Google Scholar 

  • Szentágothai J (1975) The “module-concept” in cerebral cortex architecture. Brain Research 95:475–496.

    Article  PubMed  Google Scholar 

  • Tusa RJ, Palmer LA, and Rosenquist AC (1981) Multiple cortical visual areas: visual field topography in the cat. In: Woolsey CN (ed). Cortical Sensory Organization, volume 2, Multiple Visual Areas. Humana Press, Clifton, pp. 1–31.

    Google Scholar 

  • Wakatsuki H, Gomi H, Kudoh M, Kimura S, Takahashi K, Takeda M, and Shibuki K (1998) Layer-specific NO dependence of long-term potentiation and biased NO release in layer V in the rat auditory cortex. Journal of Physiology 513:71–81.

    Article  CAS  PubMed  Google Scholar 

  • Warr WB (1982) Parallel ascending pathways from the cochlear nucleus: neuroanatomical evidence of functional specialization. In: Neff WD (ed). Contributions to Sensory Physiology. Academic Press, New York, pp. 1–38.

    Google Scholar 

  • Weedman DL and Ryugo DK (1996) Projections from auditory cortex to the cochlear nucleus in rats: synapses on granule cell dendrites. Journal of Comparative Neurology 371:311–324.

    Article  CAS  PubMed  Google Scholar 

  • Weinberg RJ (1997) Are topographic maps fundamental to sensory processing? Brain Research Bulletin 44:113–116.

    Article  CAS  PubMed  Google Scholar 

  • Weinberger NM (1998) Tuning the brain by learning and by stimulation of the nucleus basalis. Trends in Cognitive Sciences 2:271–273.

    Article  CAS  PubMed  Google Scholar 

  • Wenstrup JJ (2005) The tectothalamic system. In: Winer JA and Schreiner CE (eds). The Inferior Colliculus. Springer, New York, pp. 200–230.

    Chapter  Google Scholar 

  • Wenstrup JJ, Larue DT, and Winer JA (1994) Projections of physiologically defined subdivisions of the inferior colliculus in the mustached bat: targets in the medial geniculate body and extrathalamic nuclei. Journal of Comparative Neurology 346:207–236.

    Article  CAS  PubMed  Google Scholar 

  • Wever EG (1978) The Reptile Ear. Its Structure and Function. Princeton University Press, Princeton.

    Google Scholar 

  • White EL, Amitai Y, and Gutnick MJ (1994) A comparison of synapses onto the somata of intrinsically bursting and regular spiking neurons in layer V of rat SmI cortex. Journal of Comparative Neurology 342:1–14.

    Article  CAS  PubMed  Google Scholar 

  • Wild JM, Karten HJ, and Frost BJ (1993) Connections of the auditory forebrain in the pigeon (Columba livia). Journal of Comparative Neurology 337:32–62.

    Article  CAS  PubMed  Google Scholar 

  • Windhorst U (1990) Activation of Renshaw cells. Progress in Neurobiology 35:135–179.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA (1984) Anatomy of layer IV in cat primary auditory cortex (AI). Journal of Comparative Neurology 224:535–567.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA (1992) The functional architecture of the medial geniculate body and the primary auditory cortex. In: Webster DB, Popper AN, and Fay RR (eds). Springer Handbook of Auditory Research, volume 1, The Mammalian Auditory Pathway: Neuroanatomy. Springer, New York, pp. 222–409.

    Google Scholar 

  • Winer JA (2005) Three systems of descending projections to the inferior colliculus. In: Winer JA and Schreiner CE (eds). The Inferior Colliculus. Springer, New York, pp. 231–247.

    Chapter  Google Scholar 

  • Winer JA (2006) Decoding the auditory corticofugal systems. Hearing Research 212:1–8.

    Article  PubMed  Google Scholar 

  • Winer JA, Diehl JJ, and Larue DT (2001) Projections of auditory cortex to the medial geniculate body of the cat. Journal of Comparative Neurology 430:27–55.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA, Kelly JB, and Larue DT (1999a) Neural architecture of the rat medial geniculate body. Hearing Research 130:19–41.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA and Larue DT (1996) Evolution of GABAergic circuitry in the mammalian medial geniculate body. Proceedings of the National Academy of Sciences of the United States of America 93:3083–3087.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA, Larue DT, Diehl JJ, and Hefti BJ (1998) Auditory cortical projections to the cat inferior colliculus. Journal of Comparative Neurology 400:147–174.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA, Larue DT, and Huang CL (1999b) Two systems of giant axon terminals in the cat medial geniculate body: convergence of cortical and GABAergic inputs. Journal of Comparative Neurology 413:181–197.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA, Larue DT, and Pollak GD (1995) GABA and glycine in the central auditory system of the mustache bat: structural substrates for inhibitory neuronal organization. Journal of Comparative Neurology 355:317–353.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA, Lee CC, Imaizumi K and Schreiner CE (2005a) Challenges to a neuroanatomical theory of forebrain auditory plasticity. In: Syka J and Merzenich MM (eds). Plasticity of the Central Auditory System and Processing of Complex Acoustic Signals. Springer, New York, pp. 109–127.

    Chapter  Google Scholar 

  • Winer JA, Miller LM, Lee CC, and Schreiner CE (2005b) Auditory thalamocortical transformation: structure and function. Trends in Neurosciences 28:255–263.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA and Prieto JJ (2001) Layer V in cat primary auditory cortex (AI): cellular architecture and identification of projection neurons. Journal of Comparative Neurology 434:379–412.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA, Saint Marie RL, Larue DT and Oliver DL (1996) GABAergic feedforward projections from the inferior colliculus to the medial geniculate body. Proceedings of the National Academy of Sciences of the United States of America 93:8005–8010.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA, Sally SL, Larue DT and Kelly JB (1999c) Origins of medial geniculate body projections to physiologically defined regions of rat auditory cortex. Hearing Research 130:42–61.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA, Wenstrup JJ and Larue DT (1992) Patterns of GABAergic immunoreactivity define subdivisions of the mustached bat’s medial geniculate body. Journal of Comparative Neurology 319:172–190.

    Article  CAS  PubMed  Google Scholar 

  • Yingcharoen K, Rinvik E, Storm-Mathisen J, and Ottersen OP (1989) GABA, glycine, glutamate, aspartate and taurine in the perihypoglossal nuclei: an immunocytochemical investigation with particular reference to the issue of amino acid colocalization. Experimental Brain Research 78:345–357.

    Article  CAS  Google Scholar 

  • Zhang Y and Suga N (2005) Corticofugal feedback for collicular plasticity evoked by electric stimulation of the inferior colliculus. Journal of Neurophysiology 94:2676–2682.

    Article  PubMed  Google Scholar 

  • Zirrinpar A and Callaway EM (2006) Local connections of specific types of layer 6 neurons in the rat visual cortex. Journal of Neurophysiology 95:1751–1761.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by United States Public Health Service grants R01 DC02260-16 (C.E.S.) and DC02319-30 (J.A.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph E. Schreiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Winer, J.A., Schreiner, C.E. (2011). Toward a Synthesis of Cellular Auditory Forebrain Functional Organization. In: Winer, J., Schreiner, C. (eds) The Auditory Cortex. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0074-6_32

Download citation

Publish with us

Policies and ethics