Skip to main content

Reconceptualizing the Primary Auditory Cortex: Learning, Memory and Specific Plasticity

  • Chapter
  • First Online:
The Auditory Cortex

Abstract

Since 1985, attitudes about the role of the primary auditory cortex (AI) in learning, memory, and adult plasticity have changed from a denial, or studied disinterest, to an acceptance of these roles and, presently, to a new lack of interest. From the traditional assumption that AI is only an acoustic analyzer to the prevalent belief that learning-induced plasticity serves only to facilitate sensory analysis, auditory neuroscientists are expressing (more in private than in publication) a growing boredom with cortical plasticity. One worker wondered: “How much longer must we be subjected to endless demonstrations of plasticity?” From one viewpoint, this attitude is completely understandable, because (almost) every study of plasticity finds plasticity, first for acoustic frequency and, more recently, for any other acoustic parameter that has been used as a signal for reward or punishment. If all that has been gained is the continued compilation of plasticity demonstrations, boredom would be justified. But that is not all there is to it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-DG:

2-deoxyglucose

AC:

auditory cortex

AI:

primary auditory cortex

AII:

second auditory field

APS:

auditory problem solver

BF:

best frequency

CF:

characteristic frequency

CR:

conditioned response

CS:

conditioned stimulus

EEG:

electroencephalogram

ITI:

intertrial intervals

LFP:

local field potential

MGB:

medial geniculate body

RF:

receptive field

RM:

reference memory

SMI:

specific memory trace

SPL:

sound pressure level

US:

unconditioned stimulus

WM:

working memory

References

  • Bakin JS, Lepan B, and Weinberger NM (1992) Sensitization induced receptive field plasticity in the auditory cortex is independent of CS-modality. Brain Research 577:226–235.

    Article  CAS  PubMed  Google Scholar 

  • Bakin JS, South DA, and Weinberger NM (1996) Induction of receptive field plasticity in the auditory cortex of the guinea pig during instrumental avoidance conditioning. Behavioral Neuroscience 110:905–913.

    Article  CAS  PubMed  Google Scholar 

  • Bakin JS and Weinberger NM (1990) Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig. Brain Research 536:271–286.

    Article  CAS  PubMed  Google Scholar 

  • Bao S, Chang EF, Woods J, and Merzenich MM (2004) Temporal plasticity in the primary auditory cortex induced by operant perceptual learning. Nature Neuroscience 7:974–981.

    Article  CAS  PubMed  Google Scholar 

  • Barrett D, Shumake J, Jones D, and Gonzalez-Lima F (2003) Metabolic mapping of mouse brain activity after extinction of a conditioned emotional response. Journal of Neuroscience 23:5740–5749.

    CAS  PubMed  Google Scholar 

  • Beitel RE, Schreiner CE, Cheung SW, Wang X, and Merzenich MM (2003) Reward-dependent plasticity in the primary auditory cortex of adult monkeys trained to discriminate temporally modulated signals. Proceedings of the National Academy of Sciences of the United States of America 100:11070–11075.

    Article  CAS  PubMed  Google Scholar 

  • Berlau KM and Weinberger NM (2008) Learning strategy determines auditory cortical plasticity. Neurobiology of Learning and Memory 89:153–166.

    Article  PubMed  Google Scholar 

  • Berntson GG, Tuber DS, Ronca AE, and Bachman DS (1983) The decerebrate human: associative learning. Experimental Neurology 81:77–88.

    Article  CAS  PubMed  Google Scholar 

  • Bieszczad KM and Weinberger NM (2010a) Representational gain in cortical area underlies increase of memory strength. Proceedings of the National Academy of Sciences of the United States of America 107:3793–3798.

    Article  CAS  PubMed  Google Scholar 

  • Bieszczad KM and Weinberger NM (2010b) Learning strategy trumps motivational level in determining learning-induced auditory cortical plasticity. Neurobiology of Learning and Memory 93:229–239.

    Google Scholar 

  • Bieszczad KM and Weinberger NM (2010c) Remodeling the cortex in memory: increased use of a learning strategy increases the representational area of relevant acoustic cues. Neurobiology of Learning and Memory 94:127–144.

    Article  PubMed  Google Scholar 

  • Boring EG (1929) A History of Experimental Psychology. Appleton-Century, Oxford.

    Google Scholar 

  • Bouton ME (2007) Learning and Behavior: A Contemporary Synthesis. Sinauer Associates, Sunderland.

    Google Scholar 

  • Brosch M, Selezneva E, Bucks C, and Scheich H (2004) Macaque monkeys discriminate pitch relationships. Cognition 91:259–272.

    Article  PubMed  Google Scholar 

  • Brown M, Irvine DRF, and Park VN (2004) Perceptual learning on an auditory frequency discrimination task by cats: association with changes in primary auditory cortex. Cerebral Cortex 14:952–965.

    Article  PubMed  Google Scholar 

  • Bruchey AK, Shumake J, and Gonzalez-Lima F (2007) Network model of fear extinction and renewal functional pathways. Neuroscience 145:423–437.

    Article  CAS  PubMed  Google Scholar 

  • Buchwald JS, Halas ES, and Schramm S (1966) Changes in cortical and subcortical unit activity during behavioral conditioning. Physiology & Behavior 1:11–22.

    Article  Google Scholar 

  • Budinger E, Heil P, Hess A, and Scheich H (2006) Multisensory processing via early cortical stages: connections of the primary auditory cortical field with other sensory systems. Neuroscience 143:1065–1083.

    Article  CAS  PubMed  Google Scholar 

  • Campbell AW (1905) Histological Studies on the Localisation of Cerebral Function. Cambridge University Press, Cambridge.

    Google Scholar 

  • Cassady JM, Cole M, Thompson RF, and Weinberger NM (1973) Neural correlates of asymptotic avoidance and classical conditioned leg flexion. Experimental Neurology 40:207–215.

    Article  CAS  PubMed  Google Scholar 

  • Christian KM and Thompson RF (2005) Long-term storage of an associative memory trace in the cerebellum. Behavioral Neuroscience 119:526–537.

    Article  PubMed  Google Scholar 

  • Condon CD and Weinberger NM (1991) Habituation produces frequency-specific plasticity of receptive fields in the auditory cortex. Behavioral Neuroscience 105:416–430.

    Article  CAS  PubMed  Google Scholar 

  • Demany L and Semal C (2002) Learning to perceive pitch differences. Journal of the Acoustical Society of America 111:1377–1388.

    Article  PubMed  Google Scholar 

  • Diamond DM and Weinberger NM (1984) Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response: II. Secondary field (AII). Behavioral Neuroscience 98:189–210.

    Article  CAS  PubMed  Google Scholar 

  • Diamond DM and Weinberger NM (1986) Classical conditioning rapidly induces specific changes in frequency receptive fields of single neurons in secondary and ventral ectosylvian auditory cortical fields. Brain Research 372:357–360.

    Article  CAS  PubMed  Google Scholar 

  • Diamond DM and Weinberger NM (1989) Role of context in the expression of learning-induced plasticity of single neurons in auditory cortex. Behavioral Neuroscience 103:471–494.

    Article  CAS  PubMed  Google Scholar 

  • Diamond IT (1979) The subdivisions of the neocortex: a proposal to revise the traditional view of sensory, motor, and associational areas. Progress in Psychobiology and Physiological Psychology 8:1–43.

    Google Scholar 

  • DiCara LV, Braun JJ, and Pappas BA (1970) Classical conditioning and instrumental learning of cardiac and gastrointestinal responses following removal of neocortex in the rat. Journal of Comparative and Physiological Psychology 73:208–216.

    Article  CAS  PubMed  Google Scholar 

  • Domjan M (1998) The Principles of Learning and Behavior. Brooks-Cole, Pacific Grove.

    Google Scholar 

  • Dumenko VN and Sachenko VV (1978) Spontaneous activity of auditory cortical neurons of waking cats at rest and during defensive conditioning. Neurophysiology 10:159–168.

    Article  Google Scholar 

  • Dumenko VN and Sachenko VV (1979) Unit responses of the auditory cortex of waking cats at rest and after defensive conditioning. Neurophysiology 11:17–23.

    Article  Google Scholar 

  • Dunlop CW, Webster WR, and Rodger RS (1966) Amplitude changes of evoked potentials in the auditory system of unanesthetized cats during acoustic habituation. Journal of Auditory Research 6:47–66.

    Google Scholar 

  • Durup G and Fessard A (1935) L’électrencéphalogramme de l’homme: observations psycho-physiologiques relatives à l’action des stimuli visuels et auditifs. L’Année Psychologique 36:1–32.

    Article  Google Scholar 

  • Edeline J-M (2003) The thalamo-cortical auditory receptive fields: regulation by the states of vigilance, learning and the neuromodulatory systems. Experimental Brain Research 153:554–572.

    Article  Google Scholar 

  • Edeline J-M, Neuenschwander-El Massioui N, and Dutrieux G (1990) Discriminative long-term retention of rapidly induced multiunit changes in the hippocampus, medial geniculate and auditory cortex. Behavioural Brain Research 39:145–155.

    Article  CAS  PubMed  Google Scholar 

  • Edeline J-M, Pham P, and Weinberger NM (1993) Rapid development of learning-induced receptive field plasticity in the auditory cortex. Behavioral Neuroscience 107:539–551.

    Article  CAS  PubMed  Google Scholar 

  • Edeline J-M and Weinberger NM (1993) Receptive field plasticity in the auditory cortex during frequency discrimination training: selective retuning independent of task difficulty. Behavioral Neuroscience 107:82–103.

    Article  CAS  PubMed  Google Scholar 

  • Fritz J, Elhilali M, and Shamma S (2005a) Active listening: task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex. Hearing Research 206:159–176.

    Article  PubMed  Google Scholar 

  • Fritz JB, Elhilali M, and Shamma SA (2005b) Differential dynamic plasticity of A1 receptive fields during multiple spectral tasks. Journal of Neuroscience 25:7623–7635.

    Article  CAS  PubMed  Google Scholar 

  • Fritz J, Shamma S, Elhilali M, and Klein D (2003) Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neuroscience 6:1216–1223.

    Article  CAS  PubMed  Google Scholar 

  • Galambos R, Sheatz G, and Vernier V (1956) Electrophysiological correlates of a conditioned response in cats. Science 123:376–377.

    Article  CAS  PubMed  Google Scholar 

  • Galeano C (1963) Electrophysiological aspects of brain activity during conditioning: a review. Acta Neurológica Latinoamericana 9:395–413.

    Google Scholar 

  • Galván VV, Chen J, and Weinberger NM (2001) Long-term frequency tuning of local field potentials in the auditory cortex of the waking guinea pig. Journal of the Association for Research in Otolaryngology 2:199–215.

    PubMed  Google Scholar 

  • Galván VV and Weinberger NM (2002) Long-term consolidation and retention of learning-induced tuning plasticity in the auditory cortex of the guinea pig. Neurobiology of Learning and Memory 77:78–108.

    Article  PubMed  Google Scholar 

  • Gao E and Suga N (1998) Experience-dependent corticofugal adjustment of midbrain frequency map in bat auditory system. Proceedings of the National Academy of Sciences of the United States of America 95:12663–12670.

    Article  CAS  PubMed  Google Scholar 

  • Gao E and Suga N (2000) Experience-dependent plasticity in the auditory cortex and the inferior colliculus of bats: role of the corticofugal system. Proceedings of the National Academy of Sciences of the United States of America 97:8081–8086.

    Article  CAS  PubMed  Google Scholar 

  • Gasanov UG and Galashina AG (1976) Study of plastic changes in cortical interneuronal connections. Pavlov Journal of Higher Nervous Activity 26:820–827.

    Google Scholar 

  • Gluck H and Rowland V (1959) Defensive conditioning of electrographic arousal with delayed and differentiated auditory stimuli. Electroencephalography and Clinical Neurophysiology 11:485–496.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Lima F, Finkenstädt T, and Ewert JP (1989a) Learning-related activation in the auditory system of the rat produced by long-term habituation: a 2-deoxyglucose study. Brain Research 489:67–79.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Lima F, Finkenstädt T, and Ewert JP (1989b) Neural substrates for long-term habituation of the acoustic startle reflex in rats: a 2-deoxyglucose study. Neuroscience Letters 96:151–156.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Lima F and Scheich H (1984) Neural substrates for tone-conditioned bradycardia demonstrated with 2-deoxyglucose: I. activation of auditory nuclei. Behavioral Brain Research 14:213–233.

    Article  CAS  Google Scholar 

  • Gonzalez-Lima F and Scheich H (1986) Neural substrates for tone-conditioned bradycardia demonstration with 2-deoxyglucose: II. Auditory cortex plasticity. Behavioral Brain Research 20:281–293.

    Article  CAS  Google Scholar 

  • Hall RD and Mark RG (1967) Fear and the modification of acoustically evoked potentials during conditioning. Journal of Neurophysiology 30:893–910.

    CAS  PubMed  Google Scholar 

  • Halpern AR (2001) Cerebral substrates of musical imagery. Annals of the New York Academy of Sciences 930:179–192.

    Article  CAS  PubMed  Google Scholar 

  • Halpern AR and Zatorre RJ (1999) When that tune runs through your head: a PET investigation of auditory imagery for familiar melodies. Cerebral Cortex 9:697–704.

    Article  CAS  PubMed  Google Scholar 

  • Halpern AR, Zatorre RJ, Bouffard M, and Johnson JA (2004) Behavioral and neural correlates of perceived and imagined musical timbre. Neuropsychologia 42:1281–1292.

    Article  PubMed  Google Scholar 

  • Hawkey DJ, Amitay S, and Moore DR (2004) Early and rapid perceptual learning. Nature Neuroscience 7:1055–1056.

    Article  CAS  PubMed  Google Scholar 

  • Irvine DR, Martin RL, Klimkeit E, and Smith R (2000) Specificity of perceptual learning in a frequency discrimination task. Journal of the Acoustical Society of America 108:2964–2968.

    Article  CAS  PubMed  Google Scholar 

  • Jasper H and Sharpless S (1956) Habituation of the arousal reaction. Brain 79:655–680.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins WM and Merzenich MM (1984) Role of cat primary auditory cortex for sound-localization behavior. Journal of Neurophysiology 52:819–847.

    CAS  PubMed  Google Scholar 

  • Ji W, Gao E, and Suga N (2001) Effects of acetylcholine and atropine on plasticity of central auditory neurons caused by conditioning in bats. Journal of Neurophysiology 86:211–225.

    CAS  PubMed  Google Scholar 

  • Ji W and Suga N (2003) Development of reorganization of the auditory cortex caused by fear conditioning: effect of atropine. Journal of Neurophysiology 90:1904–1909.

    Article  PubMed  Google Scholar 

  • John ER (1961) High nervous functions: brain functions and learning. Annual Review of Physiology 23:451–484.

    Article  CAS  PubMed  Google Scholar 

  • Jones D and Gonzalez-Lima F (2001a) Associative effects of Pavlovian differential inhibition of behaviour. European Journal of Neuroscience 14:1915–1927.

    Article  CAS  PubMed  Google Scholar 

  • Jones D and Gonzalez-Lima F (2001b) Mapping Pavlovian conditioning effects on the brain: Blocking, contiguity, and excitatory effects. Journal of Neurophysiology 86:809–823.

    CAS  PubMed  Google Scholar 

  • Kellman PJ (2002) Perceptual learning. In: Pashler H and Gallistel R (eds). Learning, Motivation and Emotion, 3rd edition. Wiley, Hoboken, pp. 259–299.

    Google Scholar 

  • Kilgard MP, Pandya PK, Engineer ND, and Moucha R (2002) Cortical network reorganization guided by sensory input features. Biological Cybernetics 87:333–343.

    Article  PubMed  Google Scholar 

  • Kisley MA and Gerstein GL (1999) Trial-to-trial variability and state-dependent modulation of auditory-evoked responses in cortex. Journal of Neuroscience 19:10451–10460.

    CAS  PubMed  Google Scholar 

  • Kisley MA and Gerstein GL (2001) Daily variation and appetitive conditioning-induced plasticity of auditory cortex receptive fields. European Journal of Neuroscience 13:1993–2003.

    Article  CAS  PubMed  Google Scholar 

  • Kitzes LM, Farley GR, and Starr A (1978) Modulation of auditory cortex unit activity during the performance of a conditioned response. Experimental Neurology 62:678–697.

    Article  CAS  PubMed  Google Scholar 

  • Kraemer DJ, Macrae CN, Green AE, and Kelley WM (2005) Musical imagery: sound of silence activates auditory cortex. Nature 434:158.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn TS (1970) The Structure of Scientific Revolutions. University of Chicago Press, Chicago.

    Google Scholar 

  • Lennartz RC and Weinberger NM (1992) Frequency-specific receptive field plasticity in the medial geniculate body induced by Pavlovian fear conditioning is expressed in the anesthetized brain. Behavioral Neuroscience 106:484–497.

    Article  CAS  PubMed  Google Scholar 

  • Mackintosh NJ (1974) The Psychology of Animal Learning. Academic Press, New York.

    Google Scholar 

  • Mackintosh NJ (1983) Conditioning and Associative Learning. Oxford University Press, New York.

    Google Scholar 

  • Majkowski J and Sobieszek A (1975) Evolution of average evoked potentials in cats during conditioning before and after tegmental lesions. Physiology & Behavior 14:123–131.

    Article  CAS  Google Scholar 

  • Mark RG and Hall RD (1967) Acoustically evoked potentials in the rat during conditioning. Journal of Neurophysiology 30:875–892.

    CAS  PubMed  Google Scholar 

  • Marsh JT, McCarthy DA, Sheatz G, and Galambos R (1961) Amplitude changes in evoked auditory potentials during habituation and conditioning. Electroencephalography and Clinical Neurophysiology 13:224–234.

    Article  CAS  PubMed  Google Scholar 

  • Masterton RB (1993) Central auditory system. Otorhinolaryngology 55:159–163.

    CAS  Google Scholar 

  • McIntosh AR and Gonzalez-Lima F (1992) The application of structural modeling to metabolic mapping of functional neural systems. In: Gonzalez-Lima F, Finkenstadt T, and Scheich H (eds). Advances in Metabolic Mapping Techniques for Brain Imaging of Behavioral and Learning Functions. Dordrecht, Boston, pp. 219–255.

    Google Scholar 

  • McIntosh AR and Gonzalez-Lima F (1993) Network analysis of functional auditory pathways mapped with fluorodeoxyglucose: associative effects of a tone conditioned as a Pavlovian excitor or inhibitor. Brain Research 627:129–140.

    Article  CAS  PubMed  Google Scholar 

  • McIntosh AR and Gonzalez-Lima F (1995) Functional network interactions between parallel auditory pathways during Pavlovian conditioned inhibition. Brain Research 683:228–241.

    Article  CAS  PubMed  Google Scholar 

  • McLin DE 3rd, Miasnikov AA, and Weinberger NM (2003) CS-specific gamma, theta, and alpha EEG activity detected in stimulus generalization following induction of behavioral memory by stimulation of the nucleus basalis. Neurobiology of Learning and Memory 79:152–176.

    Article  PubMed  Google Scholar 

  • Merzenich MM and Sameshima K (1993) Cortical plasticity and memory. Current Opinion in Neurobiology 3:187–196.

    Article  CAS  PubMed  Google Scholar 

  • Meyer M, Baumann S, and Jancke L (2006) Electrical brain imaging reveals spatio-temporal dynamics of timbre perception in humans. NeuroImage 32:1510–1523.

    Article  PubMed  Google Scholar 

  • Molchán SE, Sunderland T, McIntosh AR, Herscovitch P, and Schreurs BG (1994) A functional anatomical study of associative learning in humans. Proceedings of the National Academy of Sciences of the United States of America 91:8122–8126.

    Article  PubMed  Google Scholar 

  • Molnár M, Karmos G, Csépe V, and Winkler I (1988) Intracortical auditory evoked potentials during classical aversive conditioning in cats. Biological Psychology 26:339–350.

    Article  PubMed  Google Scholar 

  • Morrell F (1961) Electrophysiological contributions to the neural basis of learning. Physiological Review 41:443–494.

    CAS  Google Scholar 

  • Morris JS, Friston KJ, and Dolan RJ (1998) Experience-dependent modulation of tonotopic neural responses in human auditory cortex. Proceedings of the Royal Society of London, series B, Biological Sciences 265:649–657.

    Article  CAS  Google Scholar 

  • Murata K and Kameda K (1963) The activity of single cortical neurones of unrestrained cats during sleep and wakefulness. Archives Italiennes de Biologie 101:306–331.

    CAS  PubMed  Google Scholar 

  • Nair HP, Berndt JD, Barrett D, and Gonzalez-Lima F (2001a) Maturation of extinction behavior in infant rats: large-scale regional interactions with medial prefrontal cortex, orbitofrontal cortex, and anterior cingulate cortex. Journal of Neuroscience 21:4400–4407.

    CAS  PubMed  Google Scholar 

  • Nair HP, Berndt JD, Barrett D, and Gonzalez-Lima F (2001b) Metabolic mapping of brain regions associated with behavioral extinction in preweanling rats. Brain Research 903:141–153.

    Article  CAS  PubMed  Google Scholar 

  • Neff WD, Diamond IT, and Casseday JH (1975) Behavioral studies of auditory discrimination: central nervous system. In: Keidel WD and Neff WD (eds). Handbook of Sensory Physiology, volume 5: Auditory System, Part 2: Physiology (CNS), Behavioral Studies, Psychoacoustics. Springer, New York, pp. 307–400.

    Google Scholar 

  • Ohl FW and Scheich H (2004) Fallacies in behavioural interpretation of auditory cortex plasticity. Nature Reviews Neuroscience 5. Published online at http://www.nature.com/nrn/journal/v5/n4/full/nrn1366-c1.html

  • Ohl FW and Scheich H (2005) Learning-induced plasticity in animal and human auditory cortex. Current Opinion in Neurobiology 15:470–477.

    Article  CAS  PubMed  Google Scholar 

  • Ohl FW, Scheich H, and Freeman WJ (2001) Change in pattern of ongoing cortical activity with auditory category learning. Nature 412:733–736.

    Article  CAS  PubMed  Google Scholar 

  • Oleson TD, Ashe JH, and Weinberger NM (1975) Modification of auditory and somatosensory system activity during pupillary conditioning in the paralyzed cat. Journal of Neurophysiology 38:1114–1139.

    CAS  PubMed  Google Scholar 

  • Packard MG and McGaugh JL (1996) Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiology of Learning and Memory 65:65–72.

    Article  CAS  PubMed  Google Scholar 

  • Palmer CV, Nelson CT, and Lindley GA 4th (1998) The functionally and physiologically plastic adult auditory system. Journal of the Acoustical Society of America 103:1705–1721.

    Article  CAS  PubMed  Google Scholar 

  • Pekkola J, Ojanen V, Autti T, Jääskeläinen IP, Möttönen R, Tarkiainen A, and Sams M (2005) Primary auditory cortex activation by visual speech: an fMRI study at 3 T. NeuroReport 16:125–128.

    Article  PubMed  Google Scholar 

  • Phillips DP, Hall SE, and Boehnke SE (2002) Central auditory onset responses, and temporal asymmetries in auditory perception. Hearing Research 167:192–205.

    Article  CAS  PubMed  Google Scholar 

  • Polley DB, Heiser MA, Blake DT, Schreiner CE, and Merzenich MM (2004) Associative learning shapes the neural code for stimulus magnitude in primary auditory cortex. Proceedings of the National Academy of Sciences of the United States of America 101:16351–16356.

    Article  CAS  PubMed  Google Scholar 

  • Polley DB, Steinberg EE, and Merzenich MM (2006) Perceptual learning directs auditory cortical map reorganization through top-down influences. Journal of Neuroscience 26:4970–4982.

    Article  CAS  PubMed  Google Scholar 

  • Poremba A, Jones D, and Gonzalez-Lima F (1997) Metabolic effects of blocking tone conditioning on the rat auditory system. Neurobiology of Learning and Memory 68:154–171.

    Article  CAS  PubMed  Google Scholar 

  • Poremba A, Jones D, and Gonzalez-Lima F (1998) Classical conditioning modifies cytochrome oxidase activity in the auditory system. European Journal of Neuroscience 10:3035–3043.

    Article  CAS  PubMed  Google Scholar 

  • Puga F, Barrett DW, Bastida CC, and Gonzalez-Lima F (2007) Functional networks underlying latent inhibition learning in the mouse brain. NeuroImage 38:171–183.

    Article  PubMed  Google Scholar 

  • Rauschecker JP (1999) Auditory cortical plasticity: a comparison with other sensory systems. Trends in Neurosciences 22:74–80.

    Article  CAS  PubMed  Google Scholar 

  • Recanzone GH, Schreiner CE, and Merzenich MM (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. Journal of Neuroscience 13:87–103.

    CAS  PubMed  Google Scholar 

  • Rescorla RA (1988) Behavioral studies of Pavlovian conditioning. Annual Review of Neuroscience 11:329–352.

    Article  CAS  PubMed  Google Scholar 

  • Romanski LM and LeDoux JE (1992) Equipotentiality of thalamo-amygdala and thalamo-cortico-amygdala circuits in auditory fear conditioning. Journal of Neuroscience 12:4501–4509.

    CAS  PubMed  Google Scholar 

  • Rowland V and Gluck H (1960) Electrographic arousal and its inhibition as studied by auditory conditioning. In: Wortis J (ed). Recent Advances in Biological Psychiatry, volume 2. Grune and Stratton, Oxford, pp. 96–105.

    Google Scholar 

  • Rutkowski RG and Weinberger NM (2005) Encoding of learned importance of sound by magnitude of representational area in primary auditory cortex. Proceedings of the National Academy of Sciences of the United States of America 102:13664–13669.

    Article  CAS  PubMed  Google Scholar 

  • Ryle G (1963) The Concept of Mind. Hutchinson, London.

    Google Scholar 

  • Sakurai Y (1990) Cells in the rat auditory system have sensory-delay correlates during the performance of an auditory working memory task. Behavioral Neuroscience 104:856–868.

    Article  CAS  PubMed  Google Scholar 

  • Sakurai Y (1992) Auditory working and reference memory can be tested in a single situation of stimuli for the rat. Behavioural Brain Research 50:193–195.

    Article  CAS  PubMed  Google Scholar 

  • Sakurai Y (1994) Involvement of auditory cortical and hippocampal neurons in auditory working memory and reference memory in the rat. Journal of Neuroscience 14:2606–2623.

    CAS  PubMed  Google Scholar 

  • Sakurai Y (1998) The search for cell assemblies in the working brain. Behavioural Brain Research 91:1–13.

    Article  CAS  PubMed  Google Scholar 

  • Saunders JC and Chabora JT (1969) Effects of appetitive drive on evoked potentials in cochlear nucleus and auditory cortex in cats. Journal of Comparative and Physiological Psychology 69:355–361.

    Article  CAS  PubMed  Google Scholar 

  • Schreurs BG, McIntosh AR, Bahro M, Herscovitch P, Sunderland T, and Molchán SE (1997) Lateralization and behavioral correlation of changes in regional cerebral blood flow with classical conditioning of the human eyeblink response. Journal of Neurophysiology 77:2153–2163.

    CAS  PubMed  Google Scholar 

  • Schwartz B, Wasserman EA, and Robbins SJ (2002) Psychology of Learning and Behavior. W.W. Norton and Company, New York.

    Google Scholar 

  • Shuler MG and Bear MF (2006) Reward timing in the primary visual cortex. Science 311:1606–1609.

    Article  CAS  PubMed  Google Scholar 

  • Suga N and Ma X (2003) Multiparametric corticofugal modulation and plasticity in the auditory system. Nature Reviews Neuroscience 4:783–794.

    Article  CAS  PubMed  Google Scholar 

  • Teas DC and Kiang NY (1964) Evoked responses from the auditory cortex. Experimental Neurology 10:91–119.

    Article  CAS  PubMed  Google Scholar 

  • Teich AH, McCabe PM, Gentile CG, Jarrell TW, Winters RW, Liskowsky DR. and Schneiderman N (1988) Role of auditory cortex in the acquisition of differential heart rate conditioning. Physiology & Behavior 44:405–412.

    Article  CAS  Google Scholar 

  • Teich AH, McCabe PM, Gentile CG, Schneiderman LS, Winters RW, Liskowsky DR, and Schneiderman N (1989) Auditory cortex lesions prevent the extinction of Pavlovian differential heart rate conditioning to tonal stimuli in rabbits. Brain Research 480:210–218.

    Article  CAS  PubMed  Google Scholar 

  • Tervaniemi M, Rytkönen M, Schröger E, Ilmoniemi RJ, and Näätänen R (2001) Superior formation of cortical memory traces for melodic patterns in musicians. Learning and Memory 8:295–300.

    Article  CAS  PubMed  Google Scholar 

  • Thomas GJ (1962) Neurophysiology of learning. Annual Review of Psychology 13:71–106.

    Article  CAS  PubMed  Google Scholar 

  • Villa AEP, Hyland B, Tetko IV, and Najem A (1998) Dynamical cell assemblies in the rat auditory cortex in a reaction-time task. Biosystems 48:269–277.

    Article  CAS  PubMed  Google Scholar 

  • Villa AEP, Tetko IV, Hyland B, and Najem A (1999) Spatiotemporal activity patterns of rat cortical neurons predict responses in a conditioned task. Proceedings of the National Academy of Sciences of the United States of America 96:1106–1111.

    Article  CAS  PubMed  Google Scholar 

  • Weinberger NM (1998) Physiological memory in primary auditory cortex: characteristics and mechanisms. Neurobiology of Learning and Memory 70:226–251.

    Article  CAS  PubMed  Google Scholar 

  • Weinberger NM (2004a) Correcting misconceptions of tuning shifts in auditory cortex. Nature Reviews Neuroscience 5. Published online at http://www.nature.com/nrn/journal/v5/n4/full/nrn1366-c2.html

  • Weinberger NM (2004b) Experience-dependent response plasticity in the auditory cortex: Issues, characteristics, mechanisms, and functions. In: Parks TN, Rubel EW, Fay RR, and Popper AN (eds). Springer Handbook of Auditory Research, volume 23, Plasticity of the Auditory System. Springer, New York, pp. 173–227.

    Google Scholar 

  • Weinberger NM (2007a) Associative representational plasticity in the auditory cortex: A synthesis of two disciplines. Learning and Memory 14:1–16.

    Article  PubMed  Google Scholar 

  • Weinberger NM (2007b) Auditory associative memory and representational plasticity in the primary auditory cortex. Hearing Research 229:54–68.

    Article  PubMed  Google Scholar 

  • Weinberger NM (2008a) Cortical plasticity in associative learning and memory. In: Byrne JH (ed). Learning and Memory: A Comprehensive Reference, volume 3. Academic Press, New York, pp. 187–218.

    Google Scholar 

  • Weinberger NM (2008b) Retuning the brain by learning, literature, and logic: reply to Suga. Learning and Memory 15:202–207.

    Article  Google Scholar 

  • Weinberger NM (2009) The cognitive auditory cortex. In: Palmer AR and Rees A (eds). The Oxford Handbook of Auditory Science: The Auditory Brain. Oxford University Press, Oxford, pp. 439–475.

    Google Scholar 

  • Weinberger NM and Bakin JS (1998) Learning-induced physiological memory in adult primary auditory cortex: receptive fields plasticity, model, and mechanisms. Audiology & Neuro-otology 3:145–167.

    Article  CAS  Google Scholar 

  • Weinberger NM and Diamond DM (1987) Physiological plasticity in auditory cortex: rapid induction by learning. Progress in Neurobiology 29:1–55.

    Article  CAS  PubMed  Google Scholar 

  • Weinberger NM and Diamond DM (1988) Dynamic modulation of the auditory system by associative learning. In: Edelman GM, Gall WE, and Cowan WM (eds). Auditory Function: Neurobiological Bases of Hearing. Wiley, New York, pp. 485–512.

    Google Scholar 

  • Weinberger NM, Diamond DM, and McKenna TM (1984a) Initial events in conditioning: Plasticity in the pupillomotor and auditory systems. In: Lynch G, McGaugh JL, and Weinberger NM (eds). Neurobiology of Learning and Memory. Guilford Press, New York, pp. 197–227.

    Google Scholar 

  • Weinberger NM, Hopkins W, and Diamond DM (1984b) Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response: I. Primary field (AI). Behavioral Neuroscience 98:171–188.

    Article  CAS  PubMed  Google Scholar 

  • Weinberger NM, Javid R, and Lepan B (1993) Long-term retention of learning-induced receptive-field plasticity in the auditory cortex. Proceedings of the National Academy of Sciences of the United States of America 90:2394–2398.

    Article  CAS  PubMed  Google Scholar 

  • Westenberg IS, Paige G, Golub B, and Weinberger NM (1976) Evoked potential decrements in auditory cortex: I. Discrete-trial and continual stimulation. Electroencephalography and Clinical Neurophysiology 40:337–355.

    Article  CAS  PubMed  Google Scholar 

  • Westenberg IS and Weinberger NM (1976) Evoked potential decrements in auditory cortex. II: critical test for habituation. Electroencephalography and Clinical Neurophysiology 40:356–369.

    Article  CAS  PubMed  Google Scholar 

  • Wetzel W, Wagner T, Ohl FW, and Scheich H (1998) Categorical discrimination of direction in frequency-modulated tones by Mongolian gerbils. Behavioural Brain Research 91:29–39.

    Article  CAS  PubMed  Google Scholar 

  • Wickelgren WO (1968) Effect of acoustic habituation on click-evoked responses in cats. Journal of Neurophysiology 31:777–785.

    CAS  PubMed  Google Scholar 

  • Woody CD, Knispel JD, Crow TJ, and Black-Cleworth PA (1976) Activity and excitability to electrical current of cortical auditory receptive neurons of awake cats as affected by stimulus association. Journal of Neurophysiology 39:1045–1061.

    CAS  PubMed  Google Scholar 

  • Zatorre RJ and Halpern AR (2005) Mental concerts: musical imagery and auditory cortex. Neuron 47:9–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Sincere thanks to Gabriel K. Hui and Jacquie Weinberger for assistance in the preparation of this chapter. Supported by research grants from the National Institutes of Health/National Institute on Deafness and Other Communication Disorders (NIDCD), DC-02938 and DC-05592 (N.M.W.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman M. Weinberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Weinberger, N.M. (2011). Reconceptualizing the Primary Auditory Cortex: Learning, Memory and Specific Plasticity. In: Winer, J., Schreiner, C. (eds) The Auditory Cortex. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0074-6_22

Download citation

Publish with us

Policies and ethics