Skip to main content

Communication Sounds and their Cortical Representation

  • Chapter
  • First Online:

Abstract

Communications sounds of most mammals have common acoustic properties that derive from the information bearing elements (IBEs) constant-frequency tones, frequency modulations, and noise bursts. IBEs contain information bearing parameters (IBPs) such as frequency and amplitude, duration, and amplitude modulations. IBPs may be mapped in continuous scales and/or represented in patchy distributions in the activation of neurons in fields of the auditory cortex (AC). The spatial superposition of the maps or patchy distributions of responses to different IBPs creates local sensitivities of neurons (hot spots) to certain IBP combinations. Gamma-band oscillations across the AC may bind the hot spot activities leading to the “meaning” of sounds. The perception of the three basic meanings – attraction, cohesion, aversion – in communication sounds reflect one simple form of processing in the ventral stream from the AC to the frontal cortex.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AC:

auditory cortex

AI:

primary auditory cortex

AIp:

posterior pole of primary auditory cortex

AII:

second auditory field

AL:

anterior lateral belt area

AM:

amplitude modulation

AAF:

anterior auditory field

CF:

constant frequency

DF:

dorsal fringe

DSCF:

Doppler-shifted constant frequency area

FM:

frequency modulation/frequency sweep

fMRI:

functional magnetic resonance imaging

IBE:

information-bearing element

IBP:

information-bearing parameter

LFP:

local field potential

ML:

medial lateral belt area

NB:

noise burst

PAF:

posterior auditory field

PET:

positron emission tomography

R:

rostral field

UF:

ultrasonic field

VA:

ventral anterior area

VOT:

voice onset time

VSD:

voltage sensitive dye

References

  • Ackermann H, Hertrich I, Lutzenberger W, and Mathiak K (2005) Cerebral organization of speech sound perception: hemispheric lateralization effects at the level of the supratemporal plane, the inferior dorsolateral frontal lobe, and the cerebellum. In: König R, Heil P, Budinger E, and Scheich H (eds). The Auditory Cortex. A Synthesis of Human and Animal Research. Lawrence Erlbaum, Mahwa, pp. 181–200.

    Google Scholar 

  • Aitkin LM, Merzenich MM, Irvine DRF, Clarey JC, and Nelson JE (1986) Frequency representation in auditory cortex of the common marmoset (Callithrix jacchus jacchus). Journal of Comparative Neurology 252:175–185.

    Article  CAS  PubMed  Google Scholar 

  • Alain C, Arnott SR, and Picton TW (2001) Bottom-up and top-down influences on auditory scene analysis: evidence from event-related brain potentials. Journal of Experimental Psychology: Human Perception and Performance 27:1072–1089.

    Article  CAS  PubMed  Google Scholar 

  • Alain C, Snyder JS, He Y, and Reinke KS (2007) Changes in auditory cortex parallel rapid perceptual learning. Cerebral Cortex 17:1074–1084.

    Article  PubMed  Google Scholar 

  • August PV and Anderson JGT (1987) Mammal sounds and motivation-structural rules: a test of the hypothesis. Journal of Mammalogy 68:1–9.

    Article  Google Scholar 

  • Balaban E (1988) Bird song syntax: learned intraspecific variation is meaningful. Proceedings of the National Academy of Sciences of the United States of America 85:3657–3660.

    Article  CAS  PubMed  Google Scholar 

  • Bartlett EL and Wang X (2005) Long-lasting modulation by stimulus context in primate auditory cortex. Journal of Neurophysiology 94:83–104.

    Article  PubMed  Google Scholar 

  • Beecher MD, Petersen MR, Zoloth SR, Moody DB, and Stebbins WC (1979) Perception of conspecific vocalizations by Japanese macaques. Evidence for selective attention and neural lateralization. Brain, Behavior and Evolution 16:443–460.

    Article  CAS  PubMed  Google Scholar 

  • Bendor D and Wang X (2005) The neuronal representation of pitch in primate auditory cortex. Nature 436:1161–1165.

    Article  CAS  PubMed  Google Scholar 

  • Bendor D and Wang X (2007) Differential neural coding of acoustic flutter within primate auditory cortex. Nature Neuroscience 10:763–771.

    Article  CAS  PubMed  Google Scholar 

  • Benson DF (1986) Aphasia and the lateralization of language. Cortex 22:71–86.

    CAS  PubMed  Google Scholar 

  • Besser GM (1967) Some physiological characteristics of auditory flutter fusion in man. Nature 214:17–19.

    Article  CAS  PubMed  Google Scholar 

  • Bieser A and Müller-Preuß P (1996) Auditory responsive cortex in the squirrel monkey: neural responses to amplitude-modulated sounds. Experimental Brain Research 108:273–284.

    Article  CAS  Google Scholar 

  • Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Springer JA, Kaufman JN, and Possing ET (2000) Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex 10:512–528.

    Article  CAS  PubMed  Google Scholar 

  • Bizley JK, Nodal FR, Nelken I, and King AJ (2005) Functional organization of ferret auditory cortex. Cerebral Cortex 15:1637–1653.

    Article  PubMed  Google Scholar 

  • Boinski S and Mitchell CL (1995) Wild squirrel monkey (Saimiri sciureus) “caregiver” calls: contexts and acoustic structure. American Journal of Primatology 35:129–137.

    Article  Google Scholar 

  • Bonin GV and Bailey P (1947) The Neocortex of Macaca mulatta. University of Illinois Press, Urbana.

    Google Scholar 

  • Böye M, Güntürkün O, and Vauclair J (2005) Right ear advantage for conspecific calls in adults and subadults, but not infants, California sea lions (Zalophus californianus): hemispheric specialization for communication? European Journal of Neuroscience 21:1727–1732.

    Article  PubMed  Google Scholar 

  • Brechmann A and Scheich H (2005) Hemispheric shifts of sound representation in auditory cortex with conceptual listening. Cerebral Cortex 15:578–587.

    Article  PubMed  Google Scholar 

  • Broca P (1861) Remarques sur la siege de la faculté du langage articule suivies d’une observation d’aphemie. Bulletin de la Société d’Anatomie 6:398–407.

    Google Scholar 

  • Brosch M and Schreiner CE (1999) Correlations between neural discharges are related to receptive field properties in cat primary auditory cortex. European Journal of Neuroscience 11:3517–3530.

    Article  CAS  PubMed  Google Scholar 

  • Brudzynski SM (2005) Principles of rat communication: quantitative parameters of ultrasonic calls in rats. Behavior Genetics 35:85–92.

    Article  PubMed  Google Scholar 

  • Budinger E, Heil P, and Scheich H (2000) Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). III. Anatomical subdivisions and corticocortical connections. European Journal of Neuroscience 12:2425–2451.

    Article  CAS  PubMed  Google Scholar 

  • Casseday JH, Ehrlich D, and Covey E (1994) Neural tuning for sound duration: role of inhibitory mechanisms in the inferior colliculus. Science 264:847–850.

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekaran B, Gandour JT, and Krishnan A (2007) Neuroplasticity in the processing of pitch dimensions: a multidimensional scaling analysis of the mismatch negativity. Restorative Neurology and Neuroscience 25:195–210.

    PubMed  Google Scholar 

  • Cheung SW, Nagarajan SS, Bedenbaugh PH, Schreiner CE, Wang X, and Wong A (2001) Auditory cortical neuron response differences under isoflurane versus pentobarbital anesthesia. Hearing Research 156:115–127.

    Article  CAS  PubMed  Google Scholar 

  • Clement MJ, Dietz N, Gupta P, and Kanwal JS (2006) Audiovocal communication and social behavior in mustached bats. In: Kanwal JS and Ehret G (eds). Behavior and Neurodynamics for Auditory Communication. Cambridge University Press, Cambridge, pp. 57–84.

    Google Scholar 

  • Crick F (1984) Function of the thalamic reticular complex: the searchlight hypothesis. Proceedings of the National Academy of Sciences of the United States of America 81:4586–4590.

    Article  CAS  PubMed  Google Scholar 

  • Crone NE, Hao L, Hart Jr J, Boatman D, Lesser RP, Irizarry R, and Gordon B (2001) Electrocorticographic gamma activity during word production in spoken and sign language. Neurology 57:2045–2053.

    CAS  PubMed  Google Scholar 

  • de Ribaupierre F (1997) Acoustical information processing in the auditory thalamus and cerebral cortex. In: Ehret G and Romand R (eds). The Central Auditory System. Oxford University Press, New York, pp. 317–397.

    Google Scholar 

  • Dear SP, Fritz J, Haresign T, Ferragamo M, and Simmons JA (1993a) Tonotopic and functional organization in the auditory cortex of the big brown bat, Eptesicus fuscus. Journal of Neurophysiology 70:1988–2009.

    CAS  PubMed  Google Scholar 

  • Dear SP, Simmons JA, and Fritz J (1993b) A possible neuronal basis for representation of acoustic scenes in auditory cortex of the big brown bat. Nature 364:620–623.

    Article  CAS  PubMed  Google Scholar 

  • deCharms RC, Blake DT, and Merzenich MM (1998) Optimizing sound features for cortical neurons. Science 280:1439–1443.

    Article  CAS  PubMed  Google Scholar 

  • deCharms RC and Merzenich MM (1996) Primary cortical representation of sounds by the coordination of action-potential timing. Nature 381:610–613.

    Article  CAS  PubMed  Google Scholar 

  • Deike S, Gaschler-Markefski B, Brechmann A, and Scheich H (2004) Auditory stream segregation relying on timbre involves left auditory cortex. Neuroreport 15:1511–1514.

    Article  PubMed  Google Scholar 

  • Delmaghani S, del Castillo FJ, Michel V, Leibovici M, Aghaie A, Ron U, Van Laer L, Ben-Tal N, Van Camp G, Weil D, Langa F, Lathrop M, Avan P, and Petit C (2006) Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nature Genetics 38:770–778.

    Article  CAS  PubMed  Google Scholar 

  • Deutscher A, Kurt S, Scheich H, and Schulze H (2006) Cortical and subcortical sides of auditory rhythms and pitches. Neuroreport 17:853–856.

    Article  PubMed  Google Scholar 

  • Devlin JT, Raley J, Tunbridge E, Lanary K, Floyer-Lea A, Narain C, Cohen I, Behrens T, Jezzard P, Matthews PM, and Moore DR (2003) Functional asymmetry for auditory processing in human primary auditory cortex. Journal of Neuroscience 23:11516–11522.

    CAS  PubMed  Google Scholar 

  • Dimattina C and Wang X (2006) Virtual vocalization stimuli for investigating neural representations of species-specific vocalizations. Journal of Neurophysiology 95:1244–1262.

    Article  PubMed  Google Scholar 

  • Dolata JK, Davis BL, and Macneilage PF (2008) Characteristics of the rhythmic organization of vocal babbling: implications for an amodal linguistic rhythm. Infant Behavioral Development, 31:422–431.

    Article  Google Scholar 

  • Doron NN, LeDoux JE, and Semple MN (2002) Redefining the tonotopic core of rat auditory cortex: physiological evidence for a posterior field. Journal of Comparative Neurology 453:345–360.

    Article  PubMed  Google Scholar 

  • Eggermont JJ (1994) Neural interaction in cat primary auditory cortex II. Effects of sound stimulation. Journal of Neurophysiology 71:246–270.

    CAS  PubMed  Google Scholar 

  • Eggermont JJ (1995) Representation of a voice onset time continuum in primary auditory cortex of the cat. Journal of the Acoustical Society of America 98:911–920.

    Article  CAS  PubMed  Google Scholar 

  • Eggermont JJ (1998) Representation of spectral and temporal sound features in three cortical fields of the cat. Similarities outweigh differences. Journal of Neurophysiology 80:2743–2764.

    CAS  PubMed  Google Scholar 

  • Ehret G (1975) Schallsignale der Hausmaus (Mus musculus). Behaviour 52:38–56.

    Article  Google Scholar 

  • Ehret G (1980) Development of sound communication in mammals. Advances in the Study of Behavior 11:179–225.

    Article  Google Scholar 

  • Ehret G (1987) Left hemisphere advantage in the mouse brain for recognizing ultrasonic communication calls. Nature 325:249–251.

    Article  CAS  PubMed  Google Scholar 

  • Ehret G (1992a) Categorical perception of mouse-pup ultrasounds in the temporal domain. Animal Behavior 43:409–416.

    Article  Google Scholar 

  • Ehret G (1992b) Preadaptations in the auditory system of mammals for phoneme perception: from sounds to words. In: Schouten MEH (ed). The Auditory Processing of Speech. Mouton de Gruyter, Berlin, pp. 99–112.

    Google Scholar 

  • Ehret G (1997) The auditory cortex. Journal of Comparative Physiology A 181:547–557.

    Article  CAS  Google Scholar 

  • Ehret G (2005) Infant rodent ultrasounds – a gate to the understanding of sound communication. Behavior Genetics 35:19–29.

    Article  PubMed  Google Scholar 

  • Ehret G (2006a) Common rules of communication sound perception. In: Kanwal J and Ehret G (eds). Behavior and Neurodynamics for Auditory Communication. Cambridge University Press, Cambridge, pp. 85–114.

    Google Scholar 

  • Ehret G (2006b) Hemisphere dominance of brain function-which functions are lateralized and why? In: van Hemmen J and Sejnowski T (eds). 23 Problems in Systems Neuroscience. Oxford University Press, New York, pp. 44–61.

    Chapter  Google Scholar 

  • Ehret G and Buckenmaier J (1994) Estrogen-receptor occurrence in the female mouse brain: effects of maternal experience, ovariectomy, estrogen and anosmia. Journal of Physiology (Paris) 88:315–329.

    Article  CAS  Google Scholar 

  • Ehret G and Haack B (1981) Categorical perception of mouse pup ultrasound by lactating females. Naturwissenschaften 68:208–209.

    Article  CAS  PubMed  Google Scholar 

  • Ehret G and Koch M (1989) Ultrasound-induced parental behaviour in house mice is controlled by female sex hormones and parental experience. Ethology 80:81–93.

    Article  Google Scholar 

  • Ehret G, Koch M, Haack B, and Markl H (1987) Sex and parental experience determine the onset of an instinctive behavior in mice. Naturwissenschaften 74:47.

    Article  CAS  PubMed  Google Scholar 

  • Ehret G and Riecke S (2002) Mice and humans perceive multiharmonic communication sounds in the same way. Proceedings of the National Academy of Sciences of the United States of America 99:479–482.

    Article  CAS  PubMed  Google Scholar 

  • Ehret G and Schmid C (2009) Reproductive cycle-dependent plasticity of perception of acoustic meaning in mice. Physiology & Behavior 96:428–433.

    Google Scholar 

  • Ehret G and Schreiner CE (1997) Frequency resolution and spectral integration (critical band analysis) in single units of the cat primary auditory cortex. Journal of Comparative Physiology A 181:635–650.

    Article  CAS  Google Scholar 

  • Ehret G and Schreiner CE (2000) Regional variations of noise-induced changes in operating range in cat AI. Hearing Research 141:107–116.

    Article  CAS  PubMed  Google Scholar 

  • Eliades SJ and Wang X (2003) Sensory-motor interaction in the primate auditory cortex during self-initiated vocalizations. Journal of Neurophysiology 89:2194–2207.

    Article  PubMed  Google Scholar 

  • Elkind-Hirsch KE, Stoner WR, Stach BA, and Jerger JF (1992) Estrogen influences auditory brainstem responses during the normal menstrual cycle. Hearing Research 60:143–148.

    Article  CAS  PubMed  Google Scholar 

  • Erulkar SD, Nelson PG, and Bryan JS (1968) Experimental and theoretical approaches to neural processing in the central auditory pathway. Contributions to Sensory Physiology 3:149–189.

    CAS  PubMed  Google Scholar 

  • Esser K-H, Condon CJ, Suga N, and Kanwal JS (1997) Syntax processing by auditory cortical neurons in the FM-FM area of the mustached bat Pteronotus parnellii. Proceedings of the National Academy of Sciences of the United States of America 94:14019–14024.

    Article  CAS  PubMed  Google Scholar 

  • Esser K-H and Eiermann A (1999) Tonotopic organization and parcellation of auditory cortex in the FM-bat Carollia perspicillata. European Journal of Neuroscience 11:3669–3682.

    Article  CAS  PubMed  Google Scholar 

  • Evans CS and Marler P (1991) On the use of video images as social stimuli in birds: audience effects on alarm calling. Animal Behavior 41:17–26.

    Article  Google Scholar 

  • Fichtel I and Ehret G (1999) Perception and recognition discriminated in the mouse auditory cortex by c-Fos labeling. Neuroreport 10:2341–2345.

    Article  CAS  PubMed  Google Scholar 

  • Fishman YI, Reser DH, Arezzo JC, and Steinschneider M (2000a) Complex tone processing in primary auditory cortex of the awake monkey. I. Neural ensemble correlates of roughness. Journal of the Acoustical Society of America 108:235–246.

    Article  CAS  PubMed  Google Scholar 

  • Fishman YI, Reser DH, Arezzo JC, and Steinschneider M (2000b) Complex tone processing in primary auditory cortex of the awake monkey. II. Pitch versus critical band representation. Journal of the Acoustical Society of America 108:247–262.

    Article  CAS  PubMed  Google Scholar 

  • Fishman YI, Reser DH, Arezzo JC, and Steinschneider M (2001a) Neural correlates of auditory stream segregation in primary auditory cortex of the awake monkey. Hearing Research 151:167–187.

    Article  CAS  PubMed  Google Scholar 

  • Fishman YI, Volkov IO, Noh MD, Garell PC, Bakken H, Arezzo JC, Howard MA, and Steinschneider M (2001b) Consonance and dissonance of musical chords: neural correlates in auditory cortex of monkeys and humans. Journal of Neurophysiology 86:2761–2788.

    CAS  PubMed  Google Scholar 

  • Fitch RH, Brown CP, O’Connor K, and Tallal P (1993) Functional lateralization for auditory temporal processing in male and female rats. Behavioral Neuroscience 107:844–850.

    Article  CAS  PubMed  Google Scholar 

  • Fitch RH, Miller S, and Tallal P (1997) Neurobiology of speech perception. Annual Review of Neuroscience 20:331–353.

    Article  CAS  PubMed  Google Scholar 

  • Formisano E, Kim DS, Di Salle F, van de Moortele PF, Ugurbil K, and Goebel R (2003) Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40:859–869.

    Article  CAS  PubMed  Google Scholar 

  • Francois O, Abdallahi LM, Horikawa J, Taniguchi I, and Herve T (2000) Statistical procedures for spatiotemporal neuronal data with applications to optical recording of the auditory cortex. Neural Computation 12:1821–1838.

    Article  CAS  PubMed  Google Scholar 

  • Fritz J, Elhilali M, and Shamma S (2005) Active listening: task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex. Hearing Research 206:159–176.

    Article  PubMed  Google Scholar 

  • Fritz J, Shamma S, Elhilali M, and Klein D (2003) Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neuroscience 6:1216–1223.

    Article  CAS  PubMed  Google Scholar 

  • Galazyuk AV and Feng AS (1997) Encoding of sound duration by neurons in the auditory cortex of the little brown bat, Myotis lucifugus. Journal of Comparative Physiology A 180:301–311.

    Article  CAS  Google Scholar 

  • Gannon PJ, Holloway RL, Broadfield DC, and Braun AR (1998) Asymmetry of chimpanzee planum temporale: humanlike pattern of Wernicke’s brain language area homolog. Science 279:220–222.

    Article  CAS  PubMed  Google Scholar 

  • Gaub S and Ehret G (2005) Grouping in auditory temporal perception and vocal production is mutually adapted: the case of wriggling calls of mice. Journal of Comparative Physiology A 191:1131–1135.

    Article  Google Scholar 

  • Gehr DD, Komiya H, and Eggermont JJ (2000) Neuronal responses in cat primary auditory cortex to natural and altered species-specific calls. Hearing Research 150:27–42.

    Article  CAS  PubMed  Google Scholar 

  • Geissler DB and Ehret G (2004) Auditory perception vs. recognition: representation of complex communication sounds in the mouse auditory cortical fields. European Journal of Neuroscience 19:1027–1040.

    Article  PubMed  Google Scholar 

  • Ghazanfar AA and Hauser MD (2001) The auditory behaviour of primates: a neuroethological perspective. Current Opinion in Neurobiology 11:712–720.

    Article  CAS  PubMed  Google Scholar 

  • Glass I and Wollberg Z (1983) Responses of cells in the auditory cortex of awake squirrel monkeys to normal and reversed species-specific vocalizations. Hearing Research 9:27–33.

    Article  CAS  PubMed  Google Scholar 

  • Godey B, Atencio CA, Bonham BH, Schreiner CE, and Cheung SW (2005) Functional organization of squirrel monkey primary auditory cortex: responses to frequency-modulated sweeps. Journal of Neurophysiology 94:1299–1311.

    Article  PubMed  Google Scholar 

  • Gonzalez-Lima F and Scheich H (1986) Neural substrates for tone-conditioned bradycardia demonstrated with 2-deoxyglucose. II. Auditory cortex plasticity. Behavioural Brain Research 20:281–293.

    Article  CAS  PubMed  Google Scholar 

  • Gruber T, Maess B, Trujillo-Barreto NJ, and Muller MM (2008) Sources of synchronized induced gamma-band responses during a simple object recognition task: a replication study in human MEG. Brain Research 1196:74–84.

    Article  CAS  PubMed  Google Scholar 

  • Hackett TA, Preuss TM, and Kaas JH (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. Journal of Comparative Neurology 441:197–222.

    Article  CAS  PubMed  Google Scholar 

  • Hackett TA, Stepniewska I, and Kaas JH (1998) Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. Journal of Comparative Neurology 394:475–495.

    Article  CAS  PubMed  Google Scholar 

  • Hauser MD (1991) Sources of acoustic variation in rhesus macaque vocalization. Ethology 89:29–46.

    Article  Google Scholar 

  • Hauser MD and Andersson K (1994) Left hemisphere dominance for processing vocalizations in adult, but not infant, rhesus monkeys: field experiments. Proceedings of the National Academy of Sciences of the United States of America 91:3946–3948.

    Article  CAS  PubMed  Google Scholar 

  • Hauser MD, Chomsky N, and Fitch WT (2002) The faculty of language: what is it, who has it, and how did it evolve? Science 298:1569–1579.

    Article  CAS  PubMed  Google Scholar 

  • Heffner H and Whitfield IC (1976) Perception of the missing fundamental by cats. Journal of the Acoustical Society of America 59:915–919.

    Article  CAS  PubMed  Google Scholar 

  • Heil P, Langner G, and Scheich H (1992a) Processing of frequency-modulated stimuli in the chick auditory cortex analogue: evidence for topographic representations and possible mechanisms of rate and directional sensitivity. Journal of Comparative Physiology A 171:583–600.

    Article  CAS  Google Scholar 

  • Heil P, Rajan R, and Irvine DRF (1992b) Sensitivity of neurons in cat primary auditory cortex to tones and frequency-modulated stimuli. I: Effects of variation of stimulus parameters. Hearing Research 63:108–134.

    Article  CAS  PubMed  Google Scholar 

  • Heil P, Rajan R, and Irvine DRF (1992c) Sensitivity of neurons in cat primary auditory cortex to tones and frequency-modulated stimuli. II: Organization of response properties along the ‘isofrequency’ dimension. Hearing Research 63:135–156.

    Article  CAS  PubMed  Google Scholar 

  • Hirsh IJ (1959) Auditory perception of temporal order. Journal of the Acoustical Society of America 31:759–767.

    Article  Google Scholar 

  • Hofstetter KM and Ehret G (1992) The auditory cortex of the mouse: connections of the ultrasonic field. Journal of Comparative Neurology 323:370–386.

    Article  CAS  PubMed  Google Scholar 

  • Hopfield JJ and Brody CD (2001) What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration. Proceedings of the National Academy of Sciences of the United States of America 98:1282–1287.

    Article  CAS  PubMed  Google Scholar 

  • Horikawa J, Hess A, Hosokawa Y, and Taniguchi I (2006) Spatiotemporal processing in the guinea pig auditory cortex In: Kanwal JS and Ehret G (eds). Behavior and Neurodynamics for Auditory Communication. Cambridge University Press, Cambridge, pp. 189–204.

    Google Scholar 

  • Horikawa J, Hess A, Nasu M, Hosokawa Y, Scheich H, and Taniguchi I (2001) Optical imaging of neural activity in multiple auditory cortical fields of guinea pigs. Neuroreport 12:3335–3339.

    Article  CAS  PubMed  Google Scholar 

  • Horikawa J, Hosokawa Y, Kubota M, Nasu M, and Taniguchi I (1996) Optical imaging of spatiotemporal patterns of glutamatergic excitation and GABAergic inhibition in the guinea-pig auditory cortex in vivo. Journal of Physiology (London) 497:629–638.

    CAS  Google Scholar 

  • Horikawa J, Nasu M, and Taniguchi I (1998) Optical recording of responses to frequency-modulated sounds in the auditory cortex. Neuroreport 9:799–802.

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa Y, Horikawa J, Nasu M, Sugimoto S, and Taniguchi I (1998) Anisotropic neural interaction in the primary auditory cortex of guinea pigs with sound stimulation. Neuroreport 9:3421–3425.

    Article  CAS  PubMed  Google Scholar 

  • Hromádka T, DeWeese MR, and Zador AM (2008) Sparse representation of sounds in the unanesthetized auditory cortex. Public Library of Science Biology 6:e16.

    Google Scholar 

  • Husain FT, Tagamets MA, Fromm SJ, Braun AR, and Horwitz B (2004) Relating neuronal dynamics for auditory object processing to neuroimaging activity: a computational modeling and an fMRI study. Neuroimage 21:1701–1720.

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi K, Priebe NJ, Crum PAC, Bedenbaugh PH, Cheung SW, and Schreiner CE (2004) Modular functional organization of cat anterior auditory field. Journal of Neurophysiology 92:444–457.

    Article  PubMed  Google Scholar 

  • Imig TJ and Reale RA (1980) Patterns of cortico-cortical connections related to tonotopic maps in cat auditory cortex. Journal of Comparative Neurology 192:293–332.

    Article  CAS  PubMed  Google Scholar 

  • Imig TJ, Ruggero MA, Kitzes LM, Javel E, and Brugge JF (1977) Organization of auditory cortex in the owl monkey (Aotus trivirgatus). Journal of Comparative Neurology 171:111–128.

    Article  CAS  PubMed  Google Scholar 

  • Jin W, Zhang RJ, and Wu JY (2002) Voltage-sensitive dye imaging of population neuronal activity in cortical tissue. Journal of Neuroscience Methods 115:13–27.

    Article  PubMed  Google Scholar 

  • Johnsrude IS, Zatorre RJ, Milner BA, and Evans AC (1997) Left-hemisphere specialization for the processing of acoustic transients. Neuroreport 8:1761–1765.

    Article  CAS  PubMed  Google Scholar 

  • Kaas JH (2005) The future of mapping sensory cortex in primates: three of many remaining issues. Philosophical Transactions of the Royal Society of London, series B: Biological Sciences 360:653–664.

    Article  Google Scholar 

  • Kaas JH and Hackett TA (2000) Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences of the United States of America 97:11793–11799.

    Article  CAS  PubMed  Google Scholar 

  • Kaas JH, Hackett TA, and Tramo MJ (1999) Auditory processing in primate cerebral cortex. Current Opinion in Neurobiology 9:164–170.

    Article  CAS  PubMed  Google Scholar 

  • Kadia SC and Wang X (2003) Spectral integration in A1 of awake primates: neurons with single- and multipeaked tuning characteristics. Journal of Neurophysiology 89:1603–1622.

    Article  PubMed  Google Scholar 

  • Kaiser J, Leiberg S, Rust H, and Lutzenberger W (2007) Prefrontal gamma-band activity distinguishes between sound durations. Brain Research 1139:153–162.

    Article  CAS  PubMed  Google Scholar 

  • Kalatsky VA, Polley DB, Merzenich MM, Schreiner CE, and Stryker MP (2005) Fine functional organization of auditory cortex revealed by Fourier optical imaging. Proceedings of the National Academy of Sciences of the United States of America 102:13325–13330.

    Article  CAS  PubMed  Google Scholar 

  • Kanwal JS (1999) Processing species-specific calls by combination-sensitive neurons in an echolocating bat. In: Hauser MD and Konishi M (eds). The Design of Animal Communication. The MIT Press, Cambridge, pp. 135–157.

    Google Scholar 

  • Kanwal JS (2006) A distributed cortical representation of social calls. In: Kanwal JS and Ehret G (eds). Behavior and Neurodynamics for Auditory Communication. Cambridge University Press, Cambridge, pp. 163–188.

    Google Scholar 

  • Kanwal JS, Fitzpatrick DC, and Suga N (1999) Facilitatory and inhibitory frequency tuning of combination-sensitive neurons in the primary auditory cortex of mustached bats. Journal of Neurophysiology 82:2327–2345.

    CAS  PubMed  Google Scholar 

  • Kanwal JS and Gordon M (1999) Segregating auditory information along two subcortical streams. Journal of Cognitive Neuroscience, Supplement:102.

    Google Scholar 

  • Kanwal JS, Matsumura S, Ohlemiller K, and Suga N (1994) Analysis of acoustic elements and syntax in communication sounds emitted by mustached bats. Journal of the Acoustical Society of America 96:1229–1254.

    Article  CAS  PubMed  Google Scholar 

  • Kanwal JS and Rauschecker JP (2007) Auditory cortex of bats and primates: managing species-specific calls for social communication. Frontiers in Bioscience 12:4621–4640.

    Article  PubMed  Google Scholar 

  • Kanwal JS and Suga N (1995) Hemispheric asymmetry in the processing of calls in the auditory cortex of the mustached bat. Association for Research in Otolaryngology Abstracts 18:104.

    Google Scholar 

  • König P and Schillen TB (1991) Stimulus-dependent assembly formation of oscillatory responses: I. Synchronisation. Neural Computation 3:155–166.

    Article  Google Scholar 

  • König R, Heil P, Budinger E, and Scheich H (2005) The Auditory Cortex. A Synthesis of Human and Animal Research. Lawrence Erlbaum, Mahwah.

    Google Scholar 

  • Kössl M and Vater M (1985) The cochlear frequency map of the mustache bat, Pteronotus parnellii. Journal of Comparative Physiology A 157:687–697.

    Article  Google Scholar 

  • Krumbholz K, Patterson RD, and Pressnitzer D (2000) The lower limit of pitch as determined by rate discrimination. Journal of the Acoustical Society of America 108:1170–1180.

    Article  CAS  PubMed  Google Scholar 

  • Kuhl PK and Miller JD (1978) Speech perception by the chinchilla: identification function for synthetic VOT stimuli. Journal of the Acoustical Society of America 63:905–917.

    Article  CAS  PubMed  Google Scholar 

  • Kuhl PK and Padden DM (1982) Enhanced discriminability at the phonetic boundaries for the voicing feature in macaques. Perception and Psychophysics 32:542–550.

    CAS  PubMed  Google Scholar 

  • Kurt S, Deutscher A, Crook JM, Ohl FW, Budinger E, Moeller CK, Scheich H, and Schulze H (2008) Auditory cortical contrast enhancing by global winner-take-all inhibitory interactions. Public Library of Science ONE 3:e1735.

    PubMed  Google Scholar 

  • Lakatos P, Chen CM, O’Connell MN, Mills A, and Schroeder CE (2007) Neuronal oscillations and multisensory interaction in primary auditory cortex. Neuron 53:279–292.

    Article  CAS  PubMed  Google Scholar 

  • Langner G (1992) Periodicity coding in the auditory system. Hearing Research 60:115–142.

    Article  CAS  PubMed  Google Scholar 

  • Lee CC and Winer JA (2005) Principles governing auditory cortex connections. Cerebral Cortex 15:1804–1818.

    Article  PubMed  Google Scholar 

  • Liang L, Lu T, and Wang X (2002) Neural representations of sinusoidal amplitude and frequency modulations in the primary auditory cortex of awake primates. Journal of Neurophysiology 87:2237–2261.

    PubMed  Google Scholar 

  • Liberman AM, Cooper FS, Shankweiller DP, and Studdert-Kennedy M (1967) Perception of the speech-code. Psychological Review 74:431–461.

    Article  CAS  PubMed  Google Scholar 

  • Linden J, Liu RC, Sahani M, Schreiner CE, and Merzenich MM (2003) Spectrotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex. Journal of Neurophysiology 96:2660–2975.

    Article  Google Scholar 

  • Lippert MT, Takagaki K, Xu W, Huang X, and Wu JY (2007) Methods for voltage-sensitive dye imaging of rat cortical activity with high signal-to-noise ratio. Journal of Neurophysiology 98:502–512.

    Article  PubMed  Google Scholar 

  • Liu RC (2006) Prospective contributions of transgenic mouse models to central auditory research. Brain Research 1091:217–223.

    Article  CAS  PubMed  Google Scholar 

  • Liu RC, Linden JF, and Schreiner CE (2006) Improved cortical entrainment to infant communication calls in mothers compared with virgin mice. European Journal of Neuroscience 23:3087–3097.

    Article  PubMed  Google Scholar 

  • Liu RC, Miller KD, Merzenich MM, and Schreiner CE (2003) Acoustic variability and distinguishability among mouse ultrasound vocalizations. Journal of the Acoustical Society of America 114:3412–3422.

    Article  PubMed  Google Scholar 

  • Liu RC and Schreiner CE (2007) Auditory cortical detection and discrimination correlates with communicative significance. Public Library of Science Biology 5:e173.

    Google Scholar 

  • Loftus WC and Sutter ML (2001) Spectrotemporal organization of excitatory and inhibitory receptive fields of cat posterior auditory field neurons. Journal of Neurophysiology 86:475–491.

    CAS  PubMed  Google Scholar 

  • Ma J, Kobayasi K, Zhang S, and Metzner W (2006) Vocal communication in adult greater horseshoe bats, Rhinolophus ferrumequinum. Journal of Comparative Physiology A 192:535–550.

    Article  Google Scholar 

  • Ma X and Suga N (2001) Corticofugal modulation of duration-tuned neurons in the midbrain auditory nucleus in bats. Proceedings of the National Academy of Sciences of the United States of America 98:14060–14065.

    Article  CAS  PubMed  Google Scholar 

  • Malhotra S and Lomber SG (2007) Sound localization during homotopic and heterotopic bilateral cooling deactivation of primary and nonprimary auditory cortical areas in the cat. Journal of Neurophysiology 97:26–43.

    Article  PubMed  Google Scholar 

  • Marler P and Peters S (1988) The role of song phonology and syntax in vocal learning preferences in the song sparrow, Melospiza melodia. Ethology 77.

    Google Scholar 

  • Martinovic J, Gruber T, Hantsch A, and Muller MM (2008) Induced gamma-band activity is related to the time point of object identification. Brain Research 1198:93–106.

    Article  CAS  PubMed  Google Scholar 

  • Mateer C (1983) Motor and perceptual functions of the left hemisphere and their interaction. In: Segalowitz S (ed). Language Functions and Brain Organization. Academic Press, New York, pp. 145–170.

    Google Scholar 

  • May B, Moody DB, and Stebbins WC (1989) Categorical perception of conspecific communication sounds by Japanese macaques, Macaca fuscata. Journal of the Acoustical Society of America 85:837–847.

    Article  CAS  PubMed  Google Scholar 

  • Mazoyer B, Tzourio N, Frak V, Syrota A, Murayama N, Levrier O, Salamon G, Dehaene S, Cohen L, and Mehler J (1993) The cortical representation of speech. Journal of Cognitive Neuroscience 5:467–479.

    Article  Google Scholar 

  • Medvedev AV, Chiao F, and Kanwal JS (2002) Modeling complex tone perception: grouping harmonics with combination-sensitive neurons. Biological Cybernetics 86:497–505.

    Article  PubMed  Google Scholar 

  • Medvedev AV and Kanwal JS (2004a) Local field potentials and spiking activity in the primary auditory cortex in response to social calls. Journal of Neurophysiology 92:52–65.

    Article  PubMed  Google Scholar 

  • Medvedev AV and Kanwal JS (2004b) Simple acoustic patterns do not predict responses to natural calls in the frontal auditory field of the mustached bat, Pteronotus parnellii. Association for Research in Otolaryngology Abstracts 27:196.

    Google Scholar 

  • Medvedev AV and Kanwal JS (2008) Communication call-evoked gamma-band activity in the auditory cortex of awake bats is modified by complex acoustic features. Brain Research 1188:76–86.

    Article  CAS  PubMed  Google Scholar 

  • Mendelson JR, Schreiner CE, Sutter ML, and Grasse KL (1993) Functional topography of cat primary auditory cortex: responses to frequency-modulated sweeps. Experimental Brain Research 94:65–87.

    Article  CAS  Google Scholar 

  • Merzenich MM and Brugge JF (1973) Representation of the cochlear partition of the superior temporal plane of the macaque monkey. Brain Research 50:275–296.

    Article  CAS  PubMed  Google Scholar 

  • Metherate R, Kaur S, Kawai H, Lazar R, Liang K, and Rose HJ (2005) Spectral integration in auditory cortex: mechanisms and modulation. Hearing Research 206:146–158.

    Article  PubMed  Google Scholar 

  • Miller G and Taylor W (1948) The perception of repeated bursts of noise. Journal of the Acoustical Society of America 20:171–182.

    Article  Google Scholar 

  • Moody DB and Le Prell CG (1997) Perceptual salience of acoustic features of Japanese monkey coo calls. Journal of Comparative Psychology 111:261–274.

    Article  PubMed  Google Scholar 

  • Morel A, Garraghty PE, and Kaas JH (1993) Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. Journal of Comparative Neurology 335:437–459.

    Article  CAS  PubMed  Google Scholar 

  • Morel A and Kaas JH (1992) Subdivisions and connections of auditory cortex in owl monkeys. Journal of Comparative Neurology 318:27–63.

    Article  CAS  PubMed  Google Scholar 

  • Morton ES (1977) On the occurrence and significance of motivation-structural rules in some bird and mammal sounds. American Naturalist 111:855–869.

    Article  Google Scholar 

  • Nagarajan SS, Cheung SW, Bedenbaugh PH, Beitel RE, Schreiner CE, and Merzenich MM (2002) Representation of spectral and temporal envelope of twitter vocalizations in common marmoset primary auditory cortex. Journal of Neurophysiology 87:1723–1737.

    PubMed  Google Scholar 

  • Naumann T, Washington S, and Kanwal J (2006) Auditory responses in the basolateral amygdala of the mustached bat, Pteronotus parnellii. Association for Research in Otolaryngology Abstracts 29:577.

    Google Scholar 

  • Nelken I (2002) Feature detection by the auditory cortex. In: Oertel D, Fay RR, and Popper AN (eds). Springer Handbook of Auditory Research, volume 15, Integrative Functions in the Mammalian Auditory Pathway. Springer, New York, pp. 358–416.

    Google Scholar 

  • Nelken I (2004) Processing of complex stimuli and natural scenes in the auditory cortex. Current Opinion in Neurobiology 14:474–480.

    Article  CAS  PubMed  Google Scholar 

  • Nelken I, Prut Y, Vaadia E, and Abeles M (1994) Population responses to multifrequency sounds in the cat auditory cortex: one- and two-parameter families of sounds. Hearing Research 72:206–222.

    Article  CAS  PubMed  Google Scholar 

  • Nelken I and Versnel H (2000) Responses to linear and logarithmic frequency-modulated sweeps in ferret primary auditory cortex. European Journal of Neuroscience 12:549–562.

    Article  CAS  PubMed  Google Scholar 

  • Newman JD, Smith HJ, and Talmage-Riggs G (1983) Structural variability in primate vocalizations and its functional significance: an analysis of squirrel monkey chuck calls. Folia Primatologica 40:114–124.

    Article  CAS  Google Scholar 

  • Newman JD and Wollberg Z (1973) Responses of single neurons in the auditory cortex of squirrel monkeys to variants of a single call type. Experimental Neurology 40:821–824.

    Article  CAS  PubMed  Google Scholar 

  • O’Connor KN, Petkov CI, and Sutter ML (2005) Adaptive stimulus optimization for auditory cortical neurons. Journal of Neurophysiology 94:4051–4067.

    Article  PubMed  Google Scholar 

  • O’Neill WE (1995) The bat auditory cortex. In: Popper AN and Fay RR (eds). Springer Handbook of Auditory Research, volume 5, Hearing by Bats. Springer, New York, pp. 416–480.

    Google Scholar 

  • O’Neill WE and Suga N (1979) Target range-sensitive neurons in the auditory cortex of the mustache bat. Science 203:69–73.

    Article  PubMed  Google Scholar 

  • Ohl FW and Scheich H (1997) Orderly cortical representation of vowels based on formant interaction. Proceedings of the National Academy of Sciences of the United States of America 94:9440–9444.

    Article  CAS  PubMed  Google Scholar 

  • Ohlemiller K, Kanwal JS, Butman JA, and Suga N (1994) Stimulus design for auditory neuroethology: synthesis and manipulation of complex communication sounds. Auditory Neuroscience 1:19–37.

    Google Scholar 

  • Ohlemiller KK, Kanwal JS, and Suga N (1996) Facilitative responses to species-specific calls in cortical FM-FM neurons of the mustached bat. Neuroreport 7:1749–1755.

    Article  CAS  PubMed  Google Scholar 

  • Ojemann G (1983) Brain organization for language from the perspective of electrical stimulation mapping. Behavioral and Brain Sciences 2:189–230.

    Article  Google Scholar 

  • Ostwald J (1984) Tonotopical organization and pure tone response characteristics of single units in the auditory cortex of the greater horseshoe bat. Journal of Comparative Physiology A 155:821–834.

    Article  Google Scholar 

  • Pandya DN and Sanides F (1973) Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern. Zeitschrift für Anatomie und Entwicklungsgeschichte 139:127–161.

    Article  CAS  PubMed  Google Scholar 

  • Parlee MB (1983) Menstrual rhythms in sensory processes: a review of fluctuations in vision, olfaction, audition, taste, and touch. Psychological Bulletin 93:539–548.

    Article  CAS  PubMed  Google Scholar 

  • Payne RS and McVay S (1971) Songs of humpback whales. Science 173:585–597.

    Article  CAS  PubMed  Google Scholar 

  • Penner MJ (1975) Persistence and integration: two consequences of a sliding integrator. Perception and Psychophysics 18:114–120.

    Google Scholar 

  • Petersen MR, Beecher MD, Zoloth SR, Moody DB, and Stebbins WC (1978) Neural lateralization of species-specific vocalizations by Japanese macaques (Macaca fuscata). Science 202:324–327.

    Article  CAS  PubMed  Google Scholar 

  • Petkov CI, Kayser C, Augath M, and Logothetis NK (2006) Functional imaging reveals numerous fields in the monkey auditory cortex. Public Library of Science Biology 4:e215.

    Google Scholar 

  • Philibert B, Beitel RE, Nagarajan SS, Bonham BH, Schreiner CE, and Cheung SW (2005) Functional organization and hemispheric comparison of primary auditory cortex in the common marmoset (Callithrix jacchus). Journal of Comparative Neurology 487:391–406.

    Article  PubMed  Google Scholar 

  • Phillips DP and Orman SS (1984) Responses of single neurons in posterior field of cat auditory cortex to tonal stimulation. Journal of Neurophysiology 51:147–163.

    CAS  PubMed  Google Scholar 

  • Phillips DP, Semple MN, and Kitzes LM (1995) Factors shaping the tone level sensitivity of single neurons in posterior field of cat auditory cortex. Journal of Neurophysiology 73:674–686.

    CAS  PubMed  Google Scholar 

  • Pisoni DB and Lazarus JH (1974) Categorical and noncategorical modes of speech perception along the voicing continuum. Journal of the Acoustical Society of America 55:328–333.

    Article  CAS  PubMed  Google Scholar 

  • Plourde G, Belin P, Chartrand D, Fist P, Backman S, Guoming X, and Zatorre R (2006) Cortical processing of complex auditory stimuli during alterations of consciousness with the general anesthetic propofol. Anesthesiology 104:448–457.

    Article  PubMed  Google Scholar 

  • Poeppel D (2003) The analysis of speech in different temporal integration windows: cerebral lateralization as ‘asymmetric sampling in time’. Speech Communication 41:245–255.

    Article  Google Scholar 

  • Poeppel D, Guillemin A, Thompson J, Fritz J, Bavelier D, and Braun AR (2004) Auditory lexical decision, categorical perception, and FM direction discrimination differentially engage left and right auditory cortex. Neuropsychologia 42:183–200.

    Article  PubMed  Google Scholar 

  • Pola YV and Snowdon CT (1975) The vocalizations of pygmy marmosets (Cebuella pygmaea). Animal Behaviour 23:826–842.

    Article  CAS  PubMed  Google Scholar 

  • Polley DB, Read HL, Storace DA, and Merzenich MM (2007) Multiparametric auditory receptive field organization across five cortical fields in the albino rat. Journal of Neurophysiology 97:3621–3638.

    Article  PubMed  Google Scholar 

  • Poremba A, Malloy M, Saunders RC, Carson RE, Herscovitch P, and Mishkin M (2004) Species-specific calls evoke asymmetric activity in the monkey’s temporal poles. Nature 427:448–451.

    Article  CAS  PubMed  Google Scholar 

  • Preisler A and Schmidt S (1995) Virtual pitch formation in the ultrasonic range. Naturwissenschaften 82:45–47.

    Article  CAS  Google Scholar 

  • Radtke-Schuller S and Schuller G (1995) Auditory cortex of the rufous horseshoe bat: 1. Physiological response properties to acoustic stimuli and vocalizations and the topographical distribution of neurons. European Journal of Neuroscience 7:570–591.

    Article  CAS  PubMed  Google Scholar 

  • Ramus F, Hauser MD, Miller C, Morris D, and Mehler J (2000) Language discrimination by human newborns and by cotton-top tamarin monkeys. Science 288:349–351.

    Article  CAS  PubMed  Google Scholar 

  • Rauschecker JP (1998a) Cortical processing of complex sounds. Current Opinion in Neurobiology 8:516–521.

    Article  CAS  PubMed  Google Scholar 

  • Rauschecker JP (1998b) Parallel processing in the auditory cortex of primates. Audiology and Neuro-Otology 3:86–103.

    Article  CAS  PubMed  Google Scholar 

  • Rauschecker JP and Tian B (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proceedings of the National Academy of Sciences of the United States of America 97:11800–11806.

    Article  CAS  PubMed  Google Scholar 

  • Rauschecker JP, Tian B, and Hauser M (1995) Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268:111–114.

    Article  CAS  PubMed  Google Scholar 

  • Rauschecker JP, Tian B, Pons T, and Mishkin M (1997) Serial and parallel processing in rhesus monkey auditory cortex. Journal of Comparative Neurology 382:89–103.

    Article  CAS  PubMed  Google Scholar 

  • Razak KA and Fuzessery ZM (2002) Functional organization of the pallid bat auditory cortex: emphasis on binaural organization. Journal of Neurophysiology 87:72–86.

    PubMed  Google Scholar 

  • Razak KA, Fuzessery ZM, and Lohuis TD (1999) Single cortical neurons serve both echolocation and passive sound localization. Journal of Neurophysiology 81:1438–1442.

    CAS  PubMed  Google Scholar 

  • Read HL, Winer JA, and Schreiner CE (2001) Modular organization of intrinsic connections associated with spectral tuning in cat auditory cortex. Proceedings of the National Academy of Sciences of the United States of America 98:8042–8047.

    Article  CAS  PubMed  Google Scholar 

  • Riquimaroux H, Gaioni SJ, and Suga N (1991) Cortical computational maps control auditory perception. Science 251:565–568.

    Article  CAS  PubMed  Google Scholar 

  • Roederer JG (1975) Introduction to the Physics and Psychophysics of Music. Springer, New York.

    Google Scholar 

  • Rouiller EM (1997) Functional organization of the auditory pathways. In: Ehret G and Romand R (eds). The Central Auditory System. Oxford University Press, New York, pp. 3–96.

    Google Scholar 

  • Rutkowski RG, Miasnikov AA, and Weinberger NM (2003) Characterisation of multiple physiological fields within the anatomical core of rat auditory cortex. Hearing Research 181:116–130.

    Article  PubMed  Google Scholar 

  • Sales G and Pye D (1974) Ultrasonic Communication by Animals. Chapman and Hall, London.

    Google Scholar 

  • Sander K and Scheich H (2005) Left auditory cortex and amygdala, but right insula dominance for human laughing and crying. Journal of Cognitive Neuroscience 17:1519–1531.

    Article  PubMed  Google Scholar 

  • Sansavini A, Bertoncini J, and Giovanelli G (1997) Newborns discriminate the rhythm of multisyllabic stressed words. Developmental Psychology 33:3–11.

    Article  CAS  PubMed  Google Scholar 

  • Scharf B (1970) Critical band. In: Tobias JV (ed). Foundations of Modern Auditory Theory, volume 1. Academic Press, New York, pp. 159–202.

    Google Scholar 

  • Scheich H, Brechmann A, Brosch M, Budinger E, and Ohl FW (2007) The cognitive auditory cortex: task-specificity of stimulus representations. Hearing Research 229:213–224.

    Article  PubMed  Google Scholar 

  • Scheich H, Ohl FW, Schulze H, Hess A, and Brechmann A (2005) What is reflected in auditory cortex activity: properties of sound stimuli or what the brain does with them? In: König R, Heil P, Budinger E, and Scheich H (eds). The Auditory Cortex. A Synthesis of Human and Animal Research. Lawrence Erlbaum Associates, Mahwah, pp. 383–407.

    Google Scholar 

  • Scheich H, Simonis C, Ohl F, Tillein J, and Thomas H (1993) Functional organization and learning-related plasticity in auditory cortex of the Mongolian gerbil. Progress in Brain Research 97:135–143.

    Article  CAS  PubMed  Google Scholar 

  • Schreiner CE (1992) Functional organization of the auditory cortex: maps and mechanisms. Current Opinion in Neurobiology 2:516–521.

    Article  CAS  PubMed  Google Scholar 

  • Schreiner CE (1995) Order and disorder in auditory cortical maps. Current Opinion in Neurobiology:489–496.

    Google Scholar 

  • Schreiner CE, Read HL, and Sutter ML (2000) Modular organization of frequency integration in primary auditory cortex. Annual Review of Neuroscience 23:501–529.

    Article  CAS  PubMed  Google Scholar 

  • Schreiner CE and Urbas JV (1986) Representation of amplitude modulation in the auditory cortex of the cat. I. The anterior auditory field (AAF). Hearing Research 21:227–241.

    Article  CAS  PubMed  Google Scholar 

  • Schreiner CE and Urbas JV (1988) Representation of amplitude modulation in the auditory cortex of the cat. II. Comparison between cortical fields. Hearing Research 32:49–63.

    Article  CAS  PubMed  Google Scholar 

  • Schreiner CE and Winer JA (2007) Auditory cortex mapmaking: principles, projections, and plasticity. Neuron 56:356–365.

    Article  CAS  PubMed  Google Scholar 

  • Schulze H, Hess A, Ohl FW, and Scheich H (2002) Superposition of horseshoe-like periodicity and linear tonotopic maps in auditory cortex of the Mongolian gerbil. European Journal of Neuroscience 15:1077–1084.

    Article  PubMed  Google Scholar 

  • Schulze H and Langner G (1997) Periodicity coding in the primary auditory cortex of the Mongolian gerbil (Meriones unguiculatus): two different coding strategies for pitch and rhythm? Journal of Comparative Physiology A 181:651–663.

    Article  CAS  Google Scholar 

  • Schwarz DW and Tomlinson RW (1990) Spectral response patterns of auditory cortex neurons to harmonic complex tones in alert monkey (Macaca mulatta). Journal of Neurophysiology 64:282–298.

    CAS  PubMed  Google Scholar 

  • Scott SK (2005) Auditory processing-speech, space and auditory objects. Current Opinion in Neurobiology 15:197–201.

    Article  CAS  PubMed  Google Scholar 

  • Scott SK and Johnsrude IS (2003) The neuroanatomical and functional organization of speech perception. Trends in Neurosciences 26:100–107.

    Article  CAS  PubMed  Google Scholar 

  • Scott SK and Wise RJS (2003) PET and fMRI studies of the neural basis of speech perception. Speech Communication 41:23–34.

    Article  Google Scholar 

  • Seyfarth RM, Cheney DL, and Marler P (1980) Vervet monkey alarm calls: semantic communication in a free-ranging primate. Animal Behavior 28:1070–1094.

    Article  Google Scholar 

  • Shamma SA, Fleshman JW, Wiser PR, and Versnel H (1993) Organization of response areas in ferret primary auditory cortex. Journal of Neurophysiology 69:367–383.

    CAS  PubMed  Google Scholar 

  • Shapleske J, Rossell SL, Woodruff PW, and David AS (1999) The planum temporale: a systematic, quantitative review of its structural, functional and clinical significance. Brain Research Reviews 29:26–49.

    Article  CAS  PubMed  Google Scholar 

  • Sinai A, Bowers CW, Crainiceanu CM, Boatman D, Gordon B, Lesser RP, Lenz FA, and Crone NE (2005) Electrocorticographic high gamma activity versus electrical cortical stimulation mapping of naming. Brain 128:1556–1570.

    Article  PubMed  Google Scholar 

  • Sloboda JA (1978) Perception of contour in music reading. Perception 7:323–331.

    Article  CAS  PubMed  Google Scholar 

  • Snowdon CT (1982) Linguistic and psycholinguistic approaches to primate communication. In: Snowdon CT, Brown CH, and Petersen MR (eds). Primate Communication. Cambridge University Press, Cambridge, pp. 212–238.

    Google Scholar 

  • Steinschneider M, Reser DH, Fishman YI, Schroeder CE, and Arezzo JC (1998) Click train encoding in primary auditory cortex of the awake monkey: evidence for two mechanisms subserving pitch perception. Journal of the Acoustical Society of America 104:2935–2955.

    Article  CAS  PubMed  Google Scholar 

  • Steinschneider M, Volkov IO, Fishman YI, Oya H, Arezzo JC, and Howard MA 3rd (2005) Intracortical responses in human and monkey primary auditory cortex support a temporal processing mechanism for encoding of the voice onset time phonetic parameter. Cerebral Cortex 15:170–186.

    Article  PubMed  Google Scholar 

  • Stevens KN and Klatt DH (1974) Role of formant transitions in the voiced-voiceless distinction for stops. Journal of the Acoustical Society of America 55:653–659.

    Article  CAS  PubMed  Google Scholar 

  • Stewart L, Overath T, Warren JD, Foxton JM, and Griffiths TD (2008) fMRI evidence for a cortical hierarchy of pitch pattern processing. Public Library of Science ONE 3:e1470.

    PubMed  Google Scholar 

  • Stiebler I, Neulist R, Fichtel I and Ehret G (1997) The auditory cortex of the house mouse: left-right differences, tonotopic organization and quantitative analysis of frequency representation. Journal of Comparative Physiology A 181:559–571.

    Article  CAS  Google Scholar 

  • Streeter LA (1978) Acoustic determinants of phrase boundary perception. Journal of the Acoustical Society of America 64:1582–1592.

    Article  CAS  PubMed  Google Scholar 

  • Suga N (1978) Specialization of the auditory system for reception and processing of species-specific sounds. Federation Proceedings 37:2342–2354.

    CAS  PubMed  Google Scholar 

  • Suga N (1984) The extent to which biosonar information is represented in the bat auditory cortex. In: Edelman GM, Gall WE, and Cowan WM (eds). Dynamic Aspects of Neocortical Function. John Wiley & Sons, New York, pp. 315–373.

    Google Scholar 

  • Suga N (1988) What does single-unit analysis in the auditory cortex tell us about information processing in the auditory system? In: Rakic P and Singer W (eds). Neurobiology of Neocortex. John Wiley & Sons, Chichester, pp. 331–349.

    Google Scholar 

  • Suga N (1990) Biosonar and neural computation in bats. Scientific American 262:60–68.

    Article  CAS  PubMed  Google Scholar 

  • Suga N (1994a) Multi-function theory for cortical processing of auditory information: implications of single-unit and lesion data for future research. Journal of Comparative Physiology A 175:135–144.

    Article  CAS  Google Scholar 

  • Suga N (1994b) Processing of auditory information carried by species-specific complex sounds. In: Gazzaniga MS (ed). The Cognitive Neurosciences. The MIT Press, Cambridge, pp. 295–313.

    Google Scholar 

  • Suga N (1996) Basic acoustic patterns and neural mechanisms shared by humans and animals for auditory perception: a neuroethologist’s view. In: Ainsworth W and Greenberg S (eds). Auditory Basis of Speech Perception. ISCA Archive, Keele University, Keele, pp. 31–38.

    Google Scholar 

  • Suga N and O’Neill WE (1979) Neural axis representing target range in the auditory cortex of the mustache bat. Science 206:351–353.

    Article  CAS  PubMed  Google Scholar 

  • Suga N, O’Neill WE, Kujirai K, and Manabe T (1983) Specificity of combination-sensitive neurons for processing of complex biosonar signals in auditory cortex of the mustached bat. Journal of Neurophysiology 49:1573–1626.

    CAS  PubMed  Google Scholar 

  • Suga N and Schlegel P (1972) Neural attenuation of responses to emitted sounds in echolocating rats. Science 177:82–84.

    Article  CAS  PubMed  Google Scholar 

  • Sussman HM (1989) Neural coding of relational invariance in speech: human language analogs to the barn owl. Psychological Review 96:631–642.

    Article  CAS  PubMed  Google Scholar 

  • Sussman HM, McCaffrey HA, and Matthews S (1991) An investigation of locus equations as a source of relational invariance for stop place categorization. Journal of the Acoustical Society of America 90:1309–1325.

    Article  Google Scholar 

  • Sutter ML, Schreiner CE, McLean M, O’Connor KN, and Loftus WC (1999) Organization of inhibitory frequency receptive fields in cat primary auditory cortex. Journal of Neurophysiology 82:2358–2371.

    CAS  PubMed  Google Scholar 

  • Sweet RA, Dorph-Petersen KA, and Lewis DA (2005) Mapping auditory core, lateral belt, and parabelt cortices in the human superior temporal gyrus. Journal of Comparative Neurology 491:270–289.

    Article  PubMed  Google Scholar 

  • Syka J and Merzenich MM (eds) (2005) Plasticity and Signal Representation in the Auditory System. Springer, New York. .

    Google Scholar 

  • Taberner AM and Liberman MC (2005) Response properties of single auditory nerve fibers in the mouse. Journal of Neurophysiology 93:557–569.

    Article  PubMed  Google Scholar 

  • Taniguchi I, Horikawa J, Moriyama T, and Nasu M (1992) Spatio-temporal pattern of frequency representation in the auditory cortex of guinea pigs. Neuroscience Letters 146:37–40.

    Article  CAS  PubMed  Google Scholar 

  • Terhardt E (1974a) On the perception of periodic sound fluctuations (roughness). Acustica 30:201–213.

    Google Scholar 

  • Terhardt E (1974b) Pitch, consonance, and harmony. Journal of the Acoustical Society of America 55:1061–1069.

    Article  CAS  PubMed  Google Scholar 

  • Thomas H, Tillein J, Heil P, and Scheich H (1993) Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). I. Electrophysiological mapping of frequency representation and distinction of fields. European Journal of Neuroscience 5:882–897.

    Article  CAS  PubMed  Google Scholar 

  • Tian B and Rauschecker JP (1998) Processing of frequency-modulated sounds in the cat’s posterior auditory field. Journal of Neurophysiology 79:2629–2642.

    CAS  PubMed  Google Scholar 

  • Tomlinson RW and Schwarz DWF (1988) Perception of the missing fundamental in nonhuman primates. Journal of the Acoustical Society of America 84:560–565.

    Article  CAS  PubMed  Google Scholar 

  • Trehub SE, Bull D, and Thorpe LA (1984) Infants’ perception of melodies: the role of melodic contour. Child Development 55:821–830.

    CAS  PubMed  Google Scholar 

  • Tsuzuki K and Suga N (1988) Combination-sensitive neurons in the ventroanterior area of the auditory cortex of the mustached bat. Journal of Neurophysiology 60:1908–1923.

    CAS  PubMed  Google Scholar 

  • Ulanovsky N, Las L, Farkas D, and Nelken I (2004) Multiple time scales of adaptation in auditory cortex neurons. Journal of Neuroscience 24:10440–10453.

    Article  CAS  PubMed  Google Scholar 

  • Ulanovsky N, Las L, and Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nature Neuroscience 6:391–398.

    Article  CAS  PubMed  Google Scholar 

  • Umiker-Sebeok J and Sebeok TA (1980) Introduction: questioning apes. In: Sebeok TA and Umiker-Sebeok J (eds). Speaking of Apes. A Critical Anthology of Two-Way Communication With Man. Plenum, New York, pp. 1–59.

    Google Scholar 

  • van Dommelen WA (1990) Acoustic parameters in human speaker recognition. Language and Speech 33:259–272.

    PubMed  Google Scholar 

  • van Wassenhove V and Nagarajan SS (2007) Auditory cortical plasticity in learning to discriminate modulation rate. Journal of Neuroscience 27:2663–2672.

    Article  PubMed  CAS  Google Scholar 

  • von der Malsburg C (1986) Am I thinking assemblies? In: Palm G and Aertsen A (eds). Brain Theory. Springer, Berlin Heidelberg, pp. 161–176.

    Google Scholar 

  • Wallace MN, Rutkowski RG, and Palmer AR (2000) Identification and localisation of auditory areas in guinea pig cortex. Experimental Brain Research 132:445–456.

    Article  CAS  Google Scholar 

  • Wan H, Warburton EC, Kusmierek P, Aggleton JP, Kowalska DM, and Brown MW (2001) Fos imaging reveals differential neuronal activation of areas of rat temporal cortex by novel and familiar sounds. European Journal of Neuroscience 14:118–124.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Lu T, Snider RK, and Liang L (2005) Sustained firing in auditory cortex evoked by preferred stimuli. Nature 435:341–346.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Merzenich MM, Beitel R, and Schreiner CE (1995) Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics. Journal of Neurophysiology 74:2685–2706.

    CAS  PubMed  Google Scholar 

  • Warren JE, Wise RJ, and Warren JD (2005) Sounds do-able: auditory-motor transformations and the posterior temporal plane. Trends in Neurosciences 28:636–643.

    CAS  PubMed  Google Scholar 

  • Washington SD and Kanwal JS (2007) Right versus left hemispheric tuning to frequency modulated sweeps in primary auditory cortex. Society for Neuroscience Abstracts 37:389.9.

    Google Scholar 

  • Washington SD and Kanwal JS (2008) DSCF neurons within the primary auditory cortex of the mustached bat process frequency modulations present within social calls. Journal of Neurophysiology 100:3285–3304.

    Article  PubMed  Google Scholar 

  • Wehr M and Zador AM (2003) Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426:442–446.

    Article  CAS  PubMed  Google Scholar 

  • Weinberger NM and McKenna TM (1988) Sensitivity of single neurons in auditory cortex to contour: toward a neurophysiology of music perception. Music Perception 5:355–390.

    Google Scholar 

  • Wernicke C (1874) Der Aphasische Symptomenkomplex: Eine Psychologische Studie auf Anatomischer Basis. Max Cohn und Weigert, Breslau.

    Google Scholar 

  • Wetzel W, Ohl FW, Wagner T and Scheich H (1998) Right auditory cortex lesion in Mongolian gerbils impairs discrimination of rising and falling frequency-modulated tones. Neuroscience Letters 252:115–118.

    Article  CAS  PubMed  Google Scholar 

  • Whitney G and Nyby JG (1983) Sound communication among adults. In: Willott JF (ed). The Auditory Psychobiology of the Mouse. Charles C Thomas, Springfield, pp. 98–129.

    Google Scholar 

  • Willott JF (2001) Handbook of Mouse Auditory Research. CRC Press, Boca Raton.

    Book  Google Scholar 

  • Winer JA, Wenstrup JJ, and Larue DT (1992) Patterns of GABAergic immunoreactivity define subdivisions of the mustached bat’s medial geniculate body. Journal of Comparative Neurology 319:172–190.

    Article  CAS  PubMed  Google Scholar 

  • Winter P and Funkenstein HH (1973) The effect of species-specific vocalization on the discharge of auditory cortical cells in the awake squirrel monkey (Saimiri sciureus). Experimental Brain Research 18:489–504.

    Article  CAS  Google Scholar 

  • Winter P, Ploog D, and Latta J (1966) Vocal repertoire of the squirrel monkey (Saimiri sciureus), its analysis and significance. Experimental Brain Research 1:359–384.

    Article  CAS  Google Scholar 

  • Wollberg Z and Newman JD (1972) Auditory cortex of squirrel monkey: response patterns of single cells to species-specific vocalizations. Science 175:212–214.

    Article  CAS  PubMed  Google Scholar 

  • Wong PC (2002) Hemispheric specialization of linguistic pitch patterns. Brain Research Bulletin 59:83–95.

    PubMed  Google Scholar 

  • Wu JY, Guan L, Bai L, and Yang Q (2001) Spatiotemporal properties of an evoked population activity in rat sensory cortical slices. Journal of Neurophysiology 86:2461–2474.

    CAS  PubMed  Google Scholar 

  • Wu JY, Lam YW, Falk CX, Cohen LB, Fang J, Loew L, Prechtl JC, Kleinfeld D, and Tsau Y (1998) Voltage-sensitive dyes for monitoring multineuronal activity in the intact central nervous system. Histochemical Journal 30:169–187.

    Article  CAS  PubMed  Google Scholar 

  • Yin S, Chen Z, Yu D, Feng Y, and Wang J (2008) Local inhibition shapes duration tuning in the inferior colliculus of guinea pigs. Hearing Research 237:32–48.

    Article  PubMed  Google Scholar 

  • Zanto TP, Snyder JS, and Large EW (2006) Neural correlates of rhythmic expectancy. Advances in Cognitive Psychology 2:221–231.

    Article  Google Scholar 

  • Zatorre RJ, Belin P, and Penhune VB (2002) Structure and function of auditory cortex: music and speech. Trends in Cognitive Sciences 6:37–46.

    Article  PubMed  Google Scholar 

  • Zhang LI, Tan AYY, Schreiner CE, and Merzenich MM (2003) Topography and synaptic shaping of direction selectivity in primary auditory cortex. Nature 424:201–205.

    Article  CAS  PubMed  Google Scholar 

  • Zimmer U, Ehret G, and Esser K-H (1998) Categorical perception of sounds mimicking species-specific communication calls in the FM-bat Phyllostomus discolor. In: Göttingen Neurobiology Report, Thieme, Göttingen, p. 326.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jagmeet S. Kanwal or Günter Ehret .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kanwal, J.S., Ehret, G. (2011). Communication Sounds and their Cortical Representation. In: Winer, J., Schreiner, C. (eds) The Auditory Cortex. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0074-6_16

Download citation

Publish with us

Policies and ethics