Skip to main content

Spectral Processing in Auditory Cortex

  • Chapter
  • First Online:
The Auditory Cortex

Abstract

Historically, the main purpose of the auditory system has been interpreted as a frequency analyzer (Ohm 1843; von Helmholtz 1863) that provides a faithful spectral representation of the received acoustic waveform. Analysis and characterization of spectral processing, beginning with the principle of parallel signal processing in narrow, partially overlapping frequency channels in the cochlea, has provided a framework for all subsequent stages of computation, information extraction and encoding in the auditory system, including the auditory cortex. This still evolving bottom-up characterization around the concept of a set of parallel frequency filters has been significantly enhanced by including temporal or dynamic and nonlinear aspects of spectral processing. Quantitative and rigorous systems and information analysis approaches have resulted in more complete characterizations of spectral encoding and decoding abilities throughout the auditory system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAF:

anterior auditory field

ADF:

anterior dorsal field

AI:

primary auditory cortex

AII:

second auditory cortical field

AL:

antero-lateral field

BF:

best frequency

BW:

bandwidth

CF:

characteristic frequency

CL:

caudolateral field

CM:

caudal medial field

DC:

dorsal-caudal field

DCB:

dorsocaudal belt

DRB:

dorsorostral belt

DZ:

dorsal zone

EP:

ectosylvian fields

FRA:

frequency response area

FSU:

fast-spiking unit

FTC:

frequency tuning curve

GABA:

gamma-aminobutyric acid

MGB:

medial geniculate body

MI:

mutual information

MID:

maximally informative dimension

ML:

medial-lateral field

MM:

middle medial field

MTF:

modulation transfer function

P:

postnatal day

PAF:

posterior auditory field

PDF:

posterior dorsal field

PPF:

posterior pseudosylvian field

PSF:

posterior suprasylvian field

Q:

quality factor

R:

rostral field

RF:

receptive field

RM:

rostro-medial field

RSS:

random spectral stimulus

RSU:

regular-spiking unit

RT:

rostro-temporal field

SRAF:

suprarhinal auditory field

STA:

spike-triggered average

STRF:

spectro-temporal receptive field

TORC:

temporally orthogonal ripple combinations

VCB:

ventrocaudal belt

VPAF:

ventroposterior auditory field

VRB:

ventrorostral belt

References

  • Abeles M and Goldstein MH, Jr. (1970) Functional architecture in cat primary auditory cortex: columnar organization and organization according to depth. Journal of Neurophysiology 33:172–187.

    CAS  PubMed  Google Scholar 

  • Abeles M and Goldstein MH Jr (1972) Responses of single units in the primary auditory cortex of the cat to tones and to tone pairs. Brain Research 42:337–352.

    Article  CAS  PubMed  Google Scholar 

  • Aertsen AM and Johannesma PI (1981) The spectro-temporal receptive field. A functional characteristic of auditory neurons. Biological Cybernetics 42:133–143.

    Article  CAS  PubMed  Google Scholar 

  • Ahissar M, Nahum M, Nelken I, and Hochstein S (2009) Reverse hierarchies and sensory learning. Philosophical Transactions of the Royal Society of London, series B, Biological Sciences 364:285–299.

    Article  Google Scholar 

  • Ahmed B, Garcia-Lazaro JA, and Schnupp JW (2006) Response linearity in primary auditory cortex of the ferret. Journal of Physiology 572:763–773.

    CAS  PubMed  Google Scholar 

  • Aitkin LM (1976) Tonotopic organization at higher levels of the auditory pathway. In: Porter R (ed). International Review of Physiology, Neurophysiology II. University Park Press, Baltimore, pp. 249–279.

    Google Scholar 

  • Allard TT, Clark SA, Jenkins WM, and Merzenich MM (1985) Syndactyly results in the emergence of double-digit receptive fields in somatosensory cortex in adult owl monkeys. Proceedings of the Society for Neuroscience 11:965.

    Google Scholar 

  • Atencio CA and Schreiner CE (2010a) Columnar connectivity and laminar processing in cat primary auditory cortex. Public Library of Science One 5:e9521.

    PubMed  Google Scholar 

  • Atencio CA and Schreiner CE (2010b) Laminar diversity of dynamic sound processing in cat primary auditory cortex. Journal of Neurophysiology 103:192–205.

    Article  PubMed  Google Scholar 

  • Atencio CA and Schreiner CE (2008) Spectrotemporal processing differences between auditory cortical fast-spiking and regular-spiking neurons. Journal of Neuroscience 28:3897–3910.

    Article  CAS  PubMed  Google Scholar 

  • Atencio CA, Sharpee TO, and Schreiner CE (2008) Cooperative nonlinearities in auditory cortical neurons. Neuron 58:956–966.

    Article  CAS  PubMed  Google Scholar 

  • Atencio CA, Sharpee TO, and Schreiner CE (2009) Hierarchical computation in the canonical auditory cortical circuit. Proceedings of the National Academy of Sciences of the United States of America 106:21894–21899.

    Article  CAS  PubMed  Google Scholar 

  • Atiani S, Elhilali M, David SV, Fritz JB, and Shamma SA (2009) Task difficulty and performance induce diverse adaptive patterns in gain and shape of primary auditory cortical receptive fields. Neuron 61:467–480.

    Article  CAS  PubMed  Google Scholar 

  • Averbeck BB and Romanski LM (2006) Probabilistic encoding of vocalizations in macaque ventral lateral prefrontal cortex. Journal of Neuroscience 26:11023–11033.

    Article  CAS  PubMed  Google Scholar 

  • Bakin JS and Weinberger NM (1996) Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis. Proceedings of the National Academy of Sciences of the United States of America 93:11219–11224.

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay S, Shamma SA, and Kanold PO (2010) Dichotomy of functional organization in the mouse auditory cortex. Nature Neuroscience 13:361–368.

    Article  CAS  PubMed  Google Scholar 

  • Bar-Yosef O and Nelken I (2007) The effects of background noise on the neural responses to natural sounds in cat primary auditory cortex. Frontiers in Computational Neuroscience 1:1:3, doi: 10.3389/neuro.3310/3003.2007.

    Article  Google Scholar 

  • Barbour DL and Callaway EM (2008) Excitatory local connections of superficial neurons in rat auditory cortex. Journal of Neuroscience 28:11174–11185.

    Article  CAS  PubMed  Google Scholar 

  • Barbour DL and Wang X (2003a) Auditory cortical responses elicited in awake primates by random spectrum stimuli. Journal of Neuroscience 23:7194–7206.

    PubMed  Google Scholar 

  • Barbour DL and Wang X (2003b) Contrast tuning in auditory cortex. Science 299:1073–1075.

    Article  CAS  PubMed  Google Scholar 

  • Bartho P, Hirase H, Monconduit L, Zugaro M, Harris KD, and Buzsaki G (2004) Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. Journal of Neurophysiology 92:600–608.

    Article  PubMed  Google Scholar 

  • Batzri-Izraeli R and Wollberg Z (1992) Auditory cortex of the long-eared hedgehog (Hemiechinus auritus): II. Tuning properties. Brain Behavior and Evolution 39:143–152.

    Article  CAS  Google Scholar 

  • Bendor D and Wang X (2008) Neural properties of primary, rostral, and rostrotemporal core fields in the auditory cortex of marmoset monkeys. Journal of Neurophysiology 100:888–906.

    Article  PubMed  Google Scholar 

  • Billimoria CP, Kraus BJ, Narayan R, Maddox RK, and Sen K (2008) Invariance and sensitivity to intensity in neural discrimination of natural sounds. Journal of Neuroscience 28:6304–6308.

    Article  CAS  PubMed  Google Scholar 

  • Bishop PO, Coombs JS, and Henry GH (1973) Receptive fields of simple cells in the cat striate cortex. Journal of Physiology (London) 231:31–60.

    CAS  Google Scholar 

  • Bizley JK, Nodal FR, Nelken I, and King AJ (2005) Functional organization of ferret auditory cortex. Cerebral Cortex 15:1637–1653.

    Article  PubMed  Google Scholar 

  • Blake DT and Merzenich MM (2002) Changes of AI receptive fields with sound density. Journal of Neurophysiology 88:3409–3420.

    Article  PubMed  Google Scholar 

  • Brandner S and Redies H (1990) The projection of the medial geniculate body to field AI: organization in the isofrequency dimension. Journal of Neuroscience 10:50–61.

    CAS  PubMed  Google Scholar 

  • Bregman AS (1990) Auditory Scene Analysis. The Perceptual Organization of Sound. MIT Press, Cambridge.

    Google Scholar 

  • Brugge JF and Reale RA (1985) Auditory cortex. In: Peters A and Jones EG (eds). Cerebral Cortex, volume 4, Association and Auditory Cortices. Plenum Press, New York, pp. 229–271.

    Google Scholar 

  • Bruno RM and Simons DJ (2002) Feedforward mechanisms of excitatory and inhibitory cortical receptive fields. Journal of Neuroscience 22:10966–10975.

    CAS  PubMed  Google Scholar 

  • Buonomano DV and Merzenich MM (1998) Cortical plasticity: from synapses to maps. Annual Review of Neuroscience 21:149–186.

    Article  CAS  PubMed  Google Scholar 

  • Calford MB and Tweedle R (1988) Immediate and chronic changes in responses of somatosensory cortex in adult flying-fox after induced sensory deficits. Nature 332:446–448.

    Article  CAS  PubMed  Google Scholar 

  • Calhoun BM and Schreiner CE (1998) Spectral envelope coding in cat primary auditory cortex: linear and non-linear effects of stimulus characteristics. European Journal of Neuroscience 10:926–940.

    Article  CAS  PubMed  Google Scholar 

  • Callaway EM (1998) Local circuits in primary visual cortex of the macaque monkey. Annual Review of Neuroscience 21:47–74.

    Article  CAS  PubMed  Google Scholar 

  • Carandini M, Movshon JA, and Ferster D (1998) Pattern adaptation and cross-orientation interactions in the primary visual cortex. Neuropharmacology 37:501–511.

    Article  CAS  PubMed  Google Scholar 

  • Chang EF, Bao S, Imaizumi K, Schreiner CE, and Merzenich MM (2005) Development of spectral and temporal response selectivity in the auditory cortex. Proceedings of the National Academy of Sciences of the United States of America 102:16460–16465.

    Article  CAS  PubMed  Google Scholar 

  • Chang EF and Merzenich MM (2003) Environmental noise retards auditory cortical development. Science 300:498–502.

    Article  CAS  PubMed  Google Scholar 

  • Chechik G, Anderson MJ, Bar-Yosef O, Young ED, Tishby N, and Nelken I (2006) Reduction of information redundancy in the ascending auditory pathway. Neuron 51:359–368.

    Article  CAS  PubMed  Google Scholar 

  • Cheung SW, Bedenbaugh PH, Nagarajan SS, and Schreiner CE (2001a) Functional organization of squirrel monkey primary auditory cortex: responses to pure tones. Journal of Neurophysiology 85:1732–1749.

    CAS  PubMed  Google Scholar 

  • Cheung SW, Bonham BH, Schreiner CE, Godey B, and Copenhaver DA (2009) Realignment of interaural cortical maps in asymmetric hearing loss. Journal of Neuroscience 29:7065–7078.

    Article  CAS  PubMed  Google Scholar 

  • Cheung SW, Nagarajan SS, Bedenbaugh PH, Schreiner CE, Wang X, and Wong A (2001b) Auditory cortical neuron response differences under isoflurane versus pentobarbital anesthesia. Hearing Research 156:115–127.

    Article  CAS  PubMed  Google Scholar 

  • Chichilnisky EJ (2001) A simple white noise analysis of neuronal light responses. Network 12:199–213.

    CAS  PubMed  Google Scholar 

  • Chklovskii DB and Koulakov AA (2004) Maps in the brain: what can we learn from them? Annual Review of Neuroscience 27:369–392.

    Article  CAS  PubMed  Google Scholar 

  • Christianson GB, Sahani M, and Linden JF (2008) The consequences of response nonlinearities for interpretation of spectrotemporal receptive fields. Journal of Neuroscience 28:446–455.

    Article  CAS  PubMed  Google Scholar 

  • Clifford CW, Webster MA, Stanley GB, Stocker AA, Kohn A, Sharpee TO, and Schwartz O (2007) Visual adaptation: neural, psychological and computational aspects. Vision Research 47:3125–3131.

    PubMed  Google Scholar 

  • Cohen YE, Theunissen F, Russ BE, and Gill P (2007) Acoustic features of rhesus vocalizations and their representation in the ventrolateral prefrontal cortex. Journal of Neurophysiology 97:1470–1484.

    Article  PubMed  Google Scholar 

  • Connors BW and Gutnick MJ (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends in Neurosciences 13:99–104.

    Article  CAS  PubMed  Google Scholar 

  • David SV, Mesgarani N, Fritz JB, and Shamma SA (2009) Rapid synaptic depression explains nonlinear modulation of spectro-temporal tuning in primary auditory cortex by natural stimuli. Journal of Neuroscience 29:3374–3386.

    Article  CAS  PubMed  Google Scholar 

  • de la Rocha J, Marchetti C, Schiff M, and Reyes AD (2008) Linking the response properties of cells in auditory cortex with network architecture: cotuning versus lateral inhibition. Journal of Neuroscience 28:9151–9163.

    Article  PubMed  CAS  Google Scholar 

  • Dellen BK, Clark JW, and Wessel R (2009) Contextual interaction in a generalized model of complex cells. Spatial Vision 22:301–324.

    Article  PubMed  Google Scholar 

  • de Villers-Sidani E, Chang EF, Bao S, and Merzenich MM (2007) Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat. Journal of Neuroscience 27:180–189.

    Article  PubMed  CAS  Google Scholar 

  • Dear SP, Fritz J, Haresign T, Ferragamo M, and Simmons JA (1993) Tonotopic and functional organization in the auditory cortex of the big brown bat, Eptesicus fuscus. Journal of Neurophysiology 70:1988–2009.

    CAS  PubMed  Google Scholar 

  • deCharms RC, Blake DT, and Merzenich MM (1998) Optimizing sound features for cortical neurons. Science 280:1439–1443.

    Article  CAS  PubMed  Google Scholar 

  • Depireux DA, Simon JZ, Klein DJ, and Shamma SA (2001) Spectro-temporal response field characterization with dynamic ripples in ferret primary auditory cortex. Journal of Neurophysiology 85:1220–1234.

    CAS  PubMed  Google Scholar 

  • DeWeese MR, Wehr M, and Zador AM (2003) Binary spiking in auditory cortex. Journal of Neuroscience 23:7940–7949.

    CAS  PubMed  Google Scholar 

  • Diamond DM and Weinberger NM (1986) Classical conditioning rapidly induces specific changes in frequency receptive fields of single neurons in secondary and ventral ectosylvian auditory cortical fields. Brain Research 372:357–360.

    Article  CAS  PubMed  Google Scholar 

  • Diamond DM and Weinberger NM (1989) Role of context in the expression of learning-induced plasticity of single neurons in auditory cortex. Behavioral Neuroscience 103:471–494.

    Article  CAS  PubMed  Google Scholar 

  • Diamond ME, Huang W, and Ebner FF (1994) Laminar comparison of somatosensory cortical plasticity. Science 265:1885–1888.

    Article  CAS  PubMed  Google Scholar 

  • Dorrn AJ, Yuan K, Barker AJ, Schreiner CE, and Froemke RC (2010) Developmental sensory experience balances cortical excitation and inhibition. Nature 465:932–936.

    Article  CAS  PubMed  Google Scholar 

  • Douglas RJ, Martin KAC, and Whitteridge D (1991) An intracellular analysis of the visual responses of neurones in cat visual cortex. Journal of Physiology (London) 440:659–696.

    CAS  Google Scholar 

  • Dreisbach LE, Leek MR, and Lentz JJ (2005) Perception of spectral contrast by hearing-impaired listeners. Journal of Speech Language and Hearing Research 48:910–921.

    Article  Google Scholar 

  • Edeline J, Dutrieux G, Manunta Y, and Hennevin E (2001) Diversity of receptive field changes in auditory cortex during natural sleep. European Journal of Neuroscience 14:1865–1880.

    Article  CAS  PubMed  Google Scholar 

  • Edeline J-M (1998) Learning-induced physiological plasticity in the thalamo-cortical sensory systems: a critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Progress in Neurobiology 57:165–224.

    Article  Google Scholar 

  • Edeline JM (2003) The thalamo-cortical auditory receptive fields: regulation by the states of vigilance, learning and the neuromodulatory systems. Experimental Brain Research 153:554–572.

    Article  Google Scholar 

  • Eggermont JJ (1996) How homogeneous is cat primary auditory cortex? Evidence from simultaneous single-unit recordings. Auditory Neuroscience 2:79–96.

    Article  Google Scholar 

  • Eggermont JJ (2001) Between sound and perception: reviewing the search for a neural code. Hearing Research 157:1–42.

    Article  CAS  PubMed  Google Scholar 

  • Eggermont JJ (2002) Temporal modulation transfer functions in cat primary auditory cortex: separating stimulus effects from neural mechanisms. Journal of Neurophysiology 87:305–321.

    PubMed  Google Scholar 

  • Eggermont JJ, Johannesma PM, and Aertsen AM (1983) Reverse-correlation methods in auditory research. Quarterly Reviews in Biophysics 16:341–414.

    Article  CAS  Google Scholar 

  • Ehret G and Merzenich MM (1985) Auditory midbrain responses parallel spectral integration phenomena. Science 227:1245–1247.

    Article  CAS  PubMed  Google Scholar 

  • Ehret G and Merzenich MM (1988) Complex sound analysis (frequency resolution, filtering and spectral integration) by single units of the inferior colliculus of the cat. Brain Research 472:139–163.

    CAS  PubMed  Google Scholar 

  • Ehret G and Schreiner CE (1997) Frequency resolution and spectral integration (critical band analysis) in single units of the cat primary auditory cortex. Journal of Comparative Physiology A 181:635–650.

    Article  CAS  Google Scholar 

  • Elhilali M, Fritz JB, Chi T-S, and Shamma SA (2007) Auditory cortical receptive fields: stable entities with plastic abilities. Journal of Neuroscience 27:10372–10382.

    Article  CAS  PubMed  Google Scholar 

  • Emerson RC, Korenberg MJ, and Citron MC (1992) Identification of complex-cell intensive nonlinearities in a cascade model of cat visal cortex. Biological Cybernetics 66:291–300.

    Article  CAS  PubMed  Google Scholar 

  • Escabí MA and Read HL (2003) Representation of spectrotemporal sound information in the ascending auditory pathway. Biological Cybernetics 89:350–362.

    Article  PubMed  Google Scholar 

  • Escabí MA and Read HL (2005) Neural mechanisms for spectral analysis in the auditory midbrain, thalamus, and cortex. International Review of Neurobiology 70:207–252.

    Article  PubMed  Google Scholar 

  • Escabí MA and Schreiner CE (2002) Nonlinear spectrotemporal sound analysis by neurons in the auditory midbrain. Journal of Neuroscience 22:4114–4131.

    PubMed  Google Scholar 

  • Evans EF and Whitfield IC (1964) Classification of unit responses in the auditory cortex of unanaesthetized and unrestrained cat. Journal of Physiology (London) 171:476–493.

    CAS  Google Scholar 

  • Ferster D (1986) Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex. Journal of Neuroscience 6:1284–1301.

    CAS  PubMed  Google Scholar 

  • Fishman YI and Steinschneider M (2006) Spectral resolution of monkey primary auditory cortex (A1) revealed with two-noise masking. Journal of Neurophysiology 96:1105–1115.

    Article  PubMed  Google Scholar 

  • Fishman YI and Steinschneider M (2009) Temporally dynamic frequency tuning of population responses in monkey primary auditory cortex. Hearing Research 254:64–76.

    Article  PubMed  Google Scholar 

  • Fitzpatrick DC, Suga N, and Olsen JF (1998) Distribution of response types across entire hemispheres of the mustached bat’s auditory cortex. Journal of Comparative Neurology 391:353–365.

    CAS  PubMed  Google Scholar 

  • Foeller E, Vater M, and Kössl M (2001) Laminar analysis of inhibition in the gerbil primary auditory cortex. Journal of the Association for Research in Otolaryngology 2:279–296.

    CAS  PubMed  Google Scholar 

  • Fritz J, Shamma S, Elhilali M, and Klein D (2003) Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neuroscience 6:1216–1223.

    Article  CAS  PubMed  Google Scholar 

  • Fritz JB, Elhilali M, David SV, and Shamma S (2007a) Does attention play a role in dynamic receptive field adaptation to changing acoustic salience in A1? Hearing Research 229:186–203.

    Article  PubMed  Google Scholar 

  • Fritz JB, Elhilali M, David SV, and Shamma SA (2007b) Auditory attention--focusing the searchlight on sound. Current Opinions in Neurobiology 17:437–455.

    Article  CAS  Google Scholar 

  • Fritz JB, Elhilali M, and Shamma SA (2005) Differential dynamic plasticity of A1 receptive fields during multiple spectral tasks. Journal of Neuroscience 25:7623–7635.

    Article  CAS  PubMed  Google Scholar 

  • Fritz JB, Elhilali M, and Shamma SA (2007c) Adaptive changes in cortical receptive fields induced by attention to complex sounds. Journal of Neurophysiology 98:2337–2346.

    Article  PubMed  Google Scholar 

  • Froemke RC, Merzenich MM, and Schreiner CE (2007) A synaptic memory trace in auditory cortex. Nature 450:425–429.

    Article  CAS  PubMed  Google Scholar 

  • Gaese BH and Ostwald J (2001) Anesthesia changes frequency tuning of neurons in the rat primary auditory cortex. Journal of Neurophysiology 86:1062–1066.

    CAS  PubMed  Google Scholar 

  • Gans D, Sheykholeslami K, Peterson DC, and Wenstrup J (2009) Temporal features of spectral integration in the inferior colliculus: effects of stimulus duration and rise time. Journal of Neurophysiology 102:167–180.

    Article  PubMed  Google Scholar 

  • Gilbert CD, Li W, and Piech V (2009) Perceptual learning and adult cortical plasticity. Journal of Physiology 587:2743–2751.

    Article  CAS  PubMed  Google Scholar 

  • Gill P, Zhang J, Woolley SM, Fremouw T, and Theunissen FE (2006) Sound representation methods for spectro-temporal receptive field estimation. Journal of Computational Neuroscience 21:5–20.

    Article  PubMed  Google Scholar 

  • Goldstein MH, Jr. and Abeles M (1975) Single unit activity of the auditory cortex. In: Keidel WD and Neff WD (eds). Handbook of Sensory Physiology, volume V, part 2, Auditory System Anatomy, Physiology (Ear). Springer-Verlag, Berlin, pp. 199–218.

    Google Scholar 

  • Gourevitch B and Eggermont JJ (2008) Spectro-temporal sound density-dependent long-term adaptation in cat primary auditory cortex. European Journal of Neuroscience 27:3310–3321.

    Article  PubMed  Google Scholar 

  • Gourevitch B, Norena A, Shaw G, and Eggermont JJ (2009) Spectrotemporal receptive fields in anesthetized cat primary auditory cortex are context dependent. Cerebral Cortex 19:1448–1461.

    Article  PubMed  Google Scholar 

  • Grana GD, Billimoria CP, and Sen K (2009) Analyzing variability in neural responses to complex natural sounds in the awake songbird. Journal of Neurophysiology 101:3147–3157.

    Article  PubMed  Google Scholar 

  • Greenwood DD (1974) Critical bandwidth in man and in some other species in relation to the traveling wave envelope. In: Moskowitz HR, Scharf B, and Stevens JC (eds). Sensation and Measurement. Dordecht, Reidel, pp. 231–239.

    Google Scholar 

  • Griffiths TD, Warren JD, Scott SK, Nelken I, and King AJ (2004) Cortical processing of complex sound: a way forward? Trends in Neurosciences 27:181–185.

    Article  CAS  PubMed  Google Scholar 

  • Hackett TA (2010) Information flow in the auditory cortical network. Hearing Research doi:10.1016/j.heares.2010.01.011.

    Google Scholar 

  • Hackett TA (2008) Anatomical organization of the auditory cortex. Journal of the American Academy of Audiology 19:774–779.

    Article  PubMed  Google Scholar 

  • Hackett TA and Schroeder CE (2009) Multisensory integration in auditory and auditory-related areas of cortex. Hearing Research 258:1–3.

    Article  PubMed  Google Scholar 

  • Hackett TA, Stepniewska I, and Kaas JH (1998) Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. Journal of Comparative Neurology 394:475–495.

    Article  CAS  PubMed  Google Scholar 

  • Hall JW, 3rd and Grose JH (1988) Comodulation masking release: evidence for multiple cues. Journal of the Acoustical Society of America 84:1669–1675.

    Article  PubMed  Google Scholar 

  • Harrison RV, Nagasawa A, Smith DW, Stanton S, and Mount RJ (1991) Reorganization of auditory cortex after neonatal high frequency cochlear hearing loss. Hearing Research 54:11–19.

    Article  CAS  PubMed  Google Scholar 

  • He J and Hashikawa T (1998) Connections of the dorsal zone of cat auditory cortex. Journal of Comparative Neurology 400:334–348.

    Article  CAS  PubMed  Google Scholar 

  • He J, Hashikawa T, Ojima H, and Kinouchi Y (1997) Temporal integration and duration tuning in the dorsal zone of cat auditory cortex. Journal of Neuroscience 17:2615–2625.

    CAS  PubMed  Google Scholar 

  • Hefti BJ and Smith PH (2003) Distribution and kinetic properties of GABAergic inputs to layer V pyramidal cells. Journal of the Association for Research in Otolaryngology 4:106–121.

    Article  PubMed  Google Scholar 

  • Henny P and Jones BE (2008) Projections from basal forebrain to prefrontal cortex comprise cholinergic, GABAergic and glutamatergic inputs to pyramidal cells or interneurons. European Journal of Neuroscience 27:654–670.

    Article  PubMed  Google Scholar 

  • Henry GH (1991) Afferent inputs, receptive field properties and morphologial cell types in different layers. In: Leventhal AG (ed). Vision and Visual Dysfunction. Macmillan Press, London, pp. 223–240.

    Google Scholar 

  • Henry GH, Dreher B, and Bishop PO (1974) Orientation specificity of cells in cat striate cortex. Journal of Neurophysiology 37:1394–1409.

    CAS  PubMed  Google Scholar 

  • Hensch TK (2005) Critical period plasticity in local cortical circuits. Nature Reviews Neuroscience 6:877–888.

    Article  CAS  PubMed  Google Scholar 

  • Hirsch JA (2003) Synaptic physiology and receptive field structure in the early visual pathway of the cat. Cerebral Cortex 13:63–69.

    Article  PubMed  Google Scholar 

  • Horton JC and Adams DL (2005) The cortical column: a structure without a function. Philosophical Transactions of the Royal Society of London, series B, Biological Sciences 360:837–862.

    Article  Google Scholar 

  • Hubel DH and Livingstone MS (1990) Color and contrast sensitivity in the lateral geniculate body and primary visual cortex of the macaque monkey. Journal of Neuroscience 10:2223–2237.

    CAS  PubMed  Google Scholar 

  • Hubel DH and Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology (London) 160:106–154.

    Google Scholar 

  • Hubel DH and Wiesel TN (1970) Cells sensitive to binocular depth in area 18 of the macaque monkey cortex. Nature 225:41–42.

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi K, Priebe NJ, Crum PAC, Bedenbaugh PH, Cheung SW, and Schreiner CE (2004) Modular functional organization of cat anterior auditory field. Journal of Neurophysiology 90:444–457.

    Article  Google Scholar 

  • Imaizumi K, Priebe NJ, Sharpee TO, Cheung SW, and Schreiner CE (2010) Encoding of temporal information rate, timing, and place incat auditory cortex. Public Library of Science One (in press).

    Google Scholar 

  • Issa EB and Wang X (2008) Sensory responses during sleep in primate primary and secondary auditory cortex. Journal of Neuroscience 28:14467–14480.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins WM, Merzenich MM, Ochs MT, Allard T, and Guíc-Robles E (1990) Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation. Journal of Neurophysiology 63:82–104.

    CAS  PubMed  Google Scholar 

  • Jones EG (2000) Microcolumns in the cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America 97:5019–5021.

    Article  CAS  PubMed  Google Scholar 

  • Kaas JH and Hackett TA (1999) ‘What’ and ‘where’ processing in auditory cortex. Nature Neuroscience 2:1045–1047.

    Article  CAS  PubMed  Google Scholar 

  • Kaas JH and Hackett TA (2000) Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences of the United States of America 97:11793–11799.

    Article  CAS  PubMed  Google Scholar 

  • Kadia SC and Wang X (2003) Spectral integration in A1 of awake primates: neurons with single and multipeaked tuning characteristics. Journal of Neurophysiology 89:1603–1622.

    Article  PubMed  Google Scholar 

  • Kajikawa Y, de la Mothe LA, Blumell S, Sterbing-D’Angelo SJ, D’Angelo W, Camaier CR, and Hackett TA (2008) Coding of FM sweep trains an twitter calls in area CM of marmoset auditory cortex. Hearing Research 239:107–125.

    Article  PubMed  Google Scholar 

  • Katz LC and Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274:1133–1138.

    Article  CAS  PubMed  Google Scholar 

  • Kaur S, Lazar R, and Metherate R (2004) Intracortical pathways determine breadth of subthreshold frequency receptive fields in primary auditory cortex. Journal of Neurophysiology 91:2551–2567.

    Article  PubMed  Google Scholar 

  • Kawaguchi Y and Kubota Y (1993) Correlation of physiological subgroupings of nonpyramidal cells with paravalbumin- and calbindin D28k-immunoreactive neurons in layer V of rat frontal cortex. Journal of Neurophysiology 70:387–396.

    CAS  PubMed  Google Scholar 

  • Keeling MD, Calhoun BM, Krueger K, Polley DB, and Schreiner CE (2008) Spectral integration plasticity in cat auditory cortex induced by perceptual training. Experimental Brain Research 184:493–509.

    Article  Google Scholar 

  • Kelly JP and Wong D (1981) Laminar connections of the cat’s auditory cortex. Brain Research 212:1–15.

    Article  CAS  PubMed  Google Scholar 

  • Kilgard MP and Merzenich MM (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279:1714–1718.

    Article  CAS  PubMed  Google Scholar 

  • King AJ and Nelken I (2009) Unraveling the principles of auditory cortical processing: can we learn from the visual system? Nature Neuroscience 12:698–701.

    Article  CAS  PubMed  Google Scholar 

  • Klein DJ, Depireux DA, Simon JZ, and Shamma SA (2000) Robust spectrotemporal reverse correlation for the auditory system: optimizing stimulus design. Journal of Computational Neuroscience 9:85–111.

    Article  CAS  PubMed  Google Scholar 

  • Klein DJ, Simon JZ, Depireux DA, and Shamma SA (2006) Stimulus-invariant processing and spectrotemporal reverse correlation in primary auditory cortex. Journal of Computational Neuroscience 20:111–136.

    Article  PubMed  Google Scholar 

  • Kotak VC, Takesian AE, and Sanes DH (2008) Hearing loss prevents the maturation of GABAergic transmission in the auditory cortex. Cerebral Cortex 18:2098–2108.

    Article  PubMed  Google Scholar 

  • Kowalski N, Depireux DA, and Shamma SA (1996a) Analysis of dynamic spectra in ferret primary auditory cortex. I. Characteristics of single-unit responses to moving ripple spectra. Journal of Neurophysiology 76:3503–3523.

    CAS  PubMed  Google Scholar 

  • Kowalski N, Depireux DA, and Shamma SA (1996b) Analysis of dynamic spectra in ferret primary auditory cortex. II. Prediction of unit responses to arbitrary dynamic spectra. Journal of Neurophysiology 76:3524–3534.

    CAS  PubMed  Google Scholar 

  • Kowalski N, Versnel H, and Shamma SA (1995) Comparison of responses in the anterior and primary auditory fields of the ferret cortex. Journal of Neurophysiology 73:1513–1523.

    CAS  PubMed  Google Scholar 

  • Kurt S, Crook JM, Ohl FW, Scheich H, and Schulze H (2006) Differential effects of iontophoretic in vivo application of GABAA-antagonists bicuculline and gabazine in sensory cortex. Hearing Research 212:224–235.

    Article  CAS  PubMed  Google Scholar 

  • Kusmierek P and Rauschecker JP (2009) Functional specialization of medial auditory belt cortex in the alert rhesus monkey. Journal of Neurophysiology 102:1606–1622.

    Article  PubMed  Google Scholar 

  • Langers DR, Backes WH, and van Dijk P (2003) Spectrotemporal features of the auditory cortex: the activation in response to dynamic ripples. Neuroimage 20:265–275.

    Article  PubMed  Google Scholar 

  • Lee CC and Winer JA (2005) Principles governing auditory forebrain connections. Cerebral Cortex 15:1804–1814.

    Article  PubMed  Google Scholar 

  • Leek MR, Dorman MF, and Summerfield Q (1987) Minimum spectral contrast for vowel identification by normal-hearing and hearing-impaired listeners. Journal of the Acoustical Society of America 81:148–154.

    Article  CAS  PubMed  Google Scholar 

  • Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. Journal of the Acoustical Society of America 63:442–455.

    Article  CAS  PubMed  Google Scholar 

  • Lin SC and Nicolelis MA (2008) Neuronal ensemble bursting in the basal forebrain encodes salience irrespective of valence. Neuron 59:138–149.

    Article  CAS  PubMed  Google Scholar 

  • Linden JF and Schreiner CE (2003) Columnar transformations in auditory cortex? A comparison to visual and somatosensory cortices. Cerebral Cortex 13:83–89.

    Article  PubMed  Google Scholar 

  • Linden JS, Liu RC, Sahani M, Schreiner CE, and Merzenich MM (2003) Spectrotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex. Journal of Neurophysiology 90:2660–2675.

    Article  PubMed  Google Scholar 

  • Liu BH, Li P, Li YT, Sun YJ, Yanagawa Y, Obata K, Zhang LI, and Tao HW (2009) Visual receptive field structure of cortical inhibitory neurons revealed by two-photon imaging guided recording. Journal of Neuroscience 29:10520–10532.

    Article  CAS  PubMed  Google Scholar 

  • Liu BH, Wu GK, Arbuckle R, Tao HW, and Zhang LI (2007) Defining cortical frequency tuning with recurrent excitatory circuitry. Nature Neuroscience 10:1594–1600.

    Article  CAS  PubMed  Google Scholar 

  • Loftus WC and Sutter ML (2001) Spectrotemporal organization of excitatory and inhibitory receptive fields of cat posterior auditory field neurons. Journal of Neurophysiology 86:475–491.

    CAS  PubMed  Google Scholar 

  • Luna R, Hernandez A, Brody CD, and Romo R (2005) Neural codes for perceptual discrimination in primary somatosensory cortex. Nature Neuroscience 8:1210–1219.

    Article  CAS  PubMed  Google Scholar 

  • Lund JS (1990) Mapping strategies of monkey primary visual cortex. In: Lund JS (ed). Sensory Processing in the Mammalian Brain: Neural Substrates and Experimental Strategies. Oxford Press, New York, pp. 209–225.

    Google Scholar 

  • Machens CK, Wehr MS, and Zador AM (2004) Linearity of cortical receptive fields measured with natural sounds. Journal of Neuroscience 24:1089–1100.

    Article  CAS  PubMed  Google Scholar 

  • Margoliash D and Fortune ES (1992) Temporal and harmonic combination-sensitive neurons in the zebra finch’s HVc. Journal of Neuroscience 12:4309–4326.

    CAS  PubMed  Google Scholar 

  • Martinez LM and Alonso JM (2003) Complex receptive fields in primary visual cortex. Neuroscientist 9:317–331.

    Article  PubMed  Google Scholar 

  • Martinez LM, Wang Q, Reid RC, Pillai C, Alonso J-M, Sommer FT, and Hirsch JA (2005) Receptive field varies with layer in the primary visual cortex. Nature Neuroscience 8:372–379.

    Article  CAS  PubMed  Google Scholar 

  • McCormick DA, Connors BW, Lighthall JW, and Prince DA (1985) Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. Journal of Neurophysiology 54:782–806.

    CAS  PubMed  Google Scholar 

  • Merzenich MM and Brugge JF (1973) Representation of the cochlear partition on the superior temporal plane of the macaque monkey. Brain Research 50:275–296.

    Article  CAS  PubMed  Google Scholar 

  • Merzenich MM, Knight PL, and Roth GL (1975) Representation of cochlea within primary auditory cortex in the cat. Journal of Neurophysiology 38:231–249.

    CAS  PubMed  Google Scholar 

  • Mesgarani N, David SV, Fritz JB, and Shamma SA (2008) Phoneme representation and classification in primary auditory cortex. Journal of the Acoustical Society of America 123:899–909.

    Article  PubMed  Google Scholar 

  • Mesgarani N, David SV, Fritz JB, and Shamma SA (2009) Influence of context and behavior on stimulus reconstruction from neural activity in primary auditory cortex. Journal of Neurophysiology 102:3329–3339.

    Article  PubMed  Google Scholar 

  • Metherate R and Ashe JH (1993) Nucleus basalis stimulation facilitates thalamocortical synaptic transmission in the rat auditory cortex. Synapse 14:132–143.

    Article  CAS  PubMed  Google Scholar 

  • Metherate R, Cox CL, and Ashe JH (1992) Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine. Journal of Neuroscience 12:4701–4711.

    CAS  PubMed  Google Scholar 

  • Metherate R, Kaur S, Kawai H, Lazar R, Liang K, and Rose HJ (2005) Spectral integration in auditory cortex: mechanisms and modulation. Hearing Research 206:146–158.

    Article  PubMed  Google Scholar 

  • Miller LM, Escabi MA, Read HL, and Schreiner CE (2001) Functional convergence of response properties in the auditory thalamocortical system. Neuron 32:151–160.

    Article  CAS  PubMed  Google Scholar 

  • Miller LM, Escabí MA, Read HL, and Schreiner CE (2002) Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex. Journal of Neurophysiology 87:516–527.

    PubMed  Google Scholar 

  • Mirabella G, Battiston S, and Diamond ME (2001) Integration of multiple-whisker inputs in rat somatosensory cortex. Cerebral Cortex 11:164–170.

    Article  CAS  PubMed  Google Scholar 

  • Mitani A and Shimokouchi M (1985) Neuronal connections in the primary auditory cortex: an electrophysiological study in the cat. Journal of Comparative Neurology 235:417–429.

    Article  CAS  PubMed  Google Scholar 

  • Mitani A, Shimokouchi M, Itoh K, Nomura S, Kudo M, and Mizuno N (1985) Morphology and laminar organization of electrophysiologically identified neurons in primary auditory cortex in the cat. Journal of Comparative Neurology 235:430–447.

    Article  CAS  PubMed  Google Scholar 

  • Monier C, Chavane F, Baudot P, Graham LJ, and Fregnac Y (2003) Orientation and direction selectivity of synaptic inputs in visual cortical neurons: a diversity of combinations produces spike tuning. Neuron 37:663–680.

    Article  CAS  PubMed  Google Scholar 

  • Moshitch D, Las L, Ulanovsky N, Bar-Yosef O, and Nelken I (2006) Responses of neurons in primary auditory cortex (A1) to pure tones in the halothane-anesthetized cat. Journal of Neurophysiology 95:3756–3769.

    Article  PubMed  Google Scholar 

  • Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. Journal of Neurophysiology 20:408–434.

    CAS  PubMed  Google Scholar 

  • Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120:701–722.

    Article  PubMed  Google Scholar 

  • Movshon JA (1975) The velocity tuning of single units in cat striate cortex. Journal of Physiology (London) 249:445–468.

    CAS  Google Scholar 

  • Movshon JA, Thompson ID, and Tolhurst DJ (1978) Receptive field organization of complex cells in the cat’s striate cortex. Journal of Physiology (London) 283:79–99.

    CAS  Google Scholar 

  • Nagarajan SS, Cheung SW, Bedenbaugh P, Beitel RE, Schreiner CE, and Merzenich MM (2002) Representation of spectral and temporal envelope of twitter vocalizations in common marmoset primary auditory cortex. Journal of Neurophysiology 87:1723–1737.

    PubMed  Google Scholar 

  • Nagel KI and Doupe AJ (2006) Temporal processing and adaptation in the songbird auditory forebrain. Neuron 51:845–859.

    Article  CAS  PubMed  Google Scholar 

  • Nagel KI and Doupe AJ (2008) Organizing principles of spectro-temporal encoding in the avian primary auditory area field L. Neuron 58:938–955.

    Article  CAS  PubMed  Google Scholar 

  • Narayan SS, Temchin AN, Recio A, and Ruggero MA (1998) Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae. Science 282:1882–1884.

    Article  CAS  PubMed  Google Scholar 

  • Nelken I and Bar-Yosef O (2008) Neurons and objects: the case of auditory cortex. Frontiers in Neuroscience 2:107–113.

    Article  PubMed  Google Scholar 

  • Nelken I, Prut Y, Vaadia E, and Abeles M (1994a) In search of the best stimulus: an optimization procedure for finding efficient stimuli in the cat auditory cortex. Hearing Research 72:237–253.

    Article  CAS  PubMed  Google Scholar 

  • Nelken I, Prut Y, Vaadia E, and Abeles M (1994b) Population responses to multifrequency sounds in the cat auditory cortex: four-tone complexes. Hearing Research 72:223–236.

    Article  CAS  PubMed  Google Scholar 

  • Niell CM and Stryker MP (2008) Highly selective receptive fields in mouse visual cortex. Journal of Neuroscience 28:7520–7536.

    Article  CAS  PubMed  Google Scholar 

  • Nienhuys TGW and Clark GM (1979) Critical bands following the selective destruction of cochlear inner and outer hair cells. Acta Oto-Laryngologica 88:350–358.

    Article  CAS  PubMed  Google Scholar 

  • Nishimura M, Shirasawa H, Kaizo H, and Sonf WJ (2007) New field with tonotopic organization in guinea pig auditory cortex. Journal of Neurophysiology 97:927–932.

    Article  PubMed  Google Scholar 

  • Norena A and Eggermont JJ (2002) Comparison between local field potentials and unit cluster activity on primary auditory cortex and anterior auditory field in the cat. Hearing Research 166:202–213.

    Article  PubMed  Google Scholar 

  • Norena AJ, Gourevitch B, Pienkowski M, Shaw G, and Eggermont JJ (2008) Increasing spectrotemporal sound density reveals an octave-based organization in cat primary auditory cortex. Journal of Neuroscience 28:8885–8896.

    Article  CAS  PubMed  Google Scholar 

  • O’Connor K N, Petkov CI, and Sutter ML (2005) Adaptive stimulus optimization for auditory cortical neurons. Journal of Neurophysiology 94:4051–4067.

    Article  PubMed  Google Scholar 

  • Ohl FW and Scheich H (1996) Differential frequency conditioning enhances spectral contrast sensitivity of units in auditory cortex (field AI) of the alert Mongolian gerbil. European Journal of Neuroscience 8:1001–1017.

    Article  CAS  PubMed  Google Scholar 

  • Ohm GS (1843) Ãœber die Definition des Tones, nebst daran geknüpfter Theorie der Sirene und ähnlicher Tonbildender Vorrichtungen. Annalen der Physik 59:497–565.

    Google Scholar 

  • Olsen JF and Suga N (1991) Combination-sensitive neurons in the medial geniculate body of the mustached bat: encoding of target range information. Journal of Neurophysiology 65:1275–1296.

    CAS  PubMed  Google Scholar 

  • Oonishi S and Katsuki Y (1965) Functional organization and integrative mechanism on the auditory cortex of the cat. Japanese Journal of Physiology 15:342–365.

    Google Scholar 

  • Oswald AM and Reyes AD (2008) Maturation of intrinsic and synaptic properties of layer 2/3 pyramidal neurons in mouse auditory cortex. Journal of Neurophysiology 99:2998–3008.

    Article  PubMed  Google Scholar 

  • Parikh V, Kozak R, Martinez V, and Sarter M (2007) Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron 56:141–154.

    Article  CAS  PubMed  Google Scholar 

  • Pei X, Volgushev M, Vidyasagar TR, and Creutzfeldt OD (1991) Whole cell recording and conductance measurements in cat visual cortex in-vivo. NeuroReport 2:485–488.

    Article  CAS  PubMed  Google Scholar 

  • Pelleg-Toiba R and Wollberg Z (1989) Tuning properties of auditory cortex cells in the awake squirrel monkey. Experimental Brain Research 74:353–364.

    Article  CAS  Google Scholar 

  • Pena JL, Perez-Perera L, Bouvier M, and Velluti RA (1999) Sleep and wakefulness modulation of the neuronal firing in the auditory cortex of the guinea pig. Brain Research 816:463–470.

    Article  CAS  PubMed  Google Scholar 

  • Peterson DC, Voytenko S, Gans D, Galazyuk A, and Wenstrup J (2008) Intracellular recordings from combination-sensitive neurons in the inferior colliculus. Journal of Neurophysiology 100:629–645.

    Article  PubMed  Google Scholar 

  • Petilla International Nomenclature Group (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nature Reviews Neuroscience 9:557–568.

    Google Scholar 

  • Phillips DP and Irvine DRF (1981) Responses of single neurons in physiologically defined primary auditory cortex (AI) of the cat: frequency tuning and responses to intensity. Journal of Neurophysiology 45:48–58.

    CAS  PubMed  Google Scholar 

  • Pickles JO (1975) Normal critical bands in the cat. Acta Otolaryngologica 80:245–254.

    Article  CAS  Google Scholar 

  • Pienkowski M and Eggermont JJ (2009) Effects of adaptation on spectrotemporal receptive fields in primary auditory cortex. NeuroReport 20:1198–1203.

    Article  PubMed  Google Scholar 

  • Polley DB, Read HL, Storace DA, and Merzenich MM (2007) Multiparametric auditory receptive field organization across five cortical fields in the albino rat. Journal of Neurophysiology 97:3621–3638.

    Article  PubMed  Google Scholar 

  • Portfors CV and Felix RA, 2nd (2005) Spectral integration in the inferior colliculus of the CBA/CaJ mouse. Neuroscience 136:1159–1170.

    Article  CAS  PubMed  Google Scholar 

  • Prieto JJ, Peterson BA, and Winer JA (1994a) Laminar distribution and neuronal targets of GABAergic axon terminals in cat primary auditory cortex (AI). Journal of Comparative Neurology 344:383–402.

    Article  CAS  PubMed  Google Scholar 

  • Prieto JJ, Peterson BA, and Winer JA (1994b) Morphology and spatial distribution of GABAergic neurons in cat primary auditory cortex (AI). Journal of Comparative Neurology 344:349–382.

    Article  CAS  PubMed  Google Scholar 

  • Qin L, Chimoto S, Sakai M, and Sato Y (2004) Spectral-shape preference of primary auditory cortex neurons in awake cats. Brain Research 1024:167–175.

    Article  CAS  PubMed  Google Scholar 

  • Qin L, Chimoto S, Sakai M, Wang J, and Sato Y (2007) Comparison between offset and onset responses of primary auditory cortex ON-OFF neurons in awake cats. Journal of Neurophysiology 97:3421–3431.

    Article  PubMed  Google Scholar 

  • Qin L, Kitama T, Chimoto S, Sakayori S, and Sato Y (2003) Time course of tonal frequency-response-area of primary auditory cortex neurons in alert cats. Neuroscience Research 46:145–152.

    PubMed  Google Scholar 

  • Qin L and Sato Y (2004) Suppression of auditory cortical activities in awake cats by pure tone stimuli. Neuroscience Letters 365:190–194.

    Article  CAS  PubMed  Google Scholar 

  • Qiu A, Schreiner CE, and Escabi MA (2003) Gabor analysis of auditory midbrain receptive fields: spectro-temporal and binaural composition. Journal of Neurophysiology 90:456–476.

    Article  PubMed  Google Scholar 

  • Radtke-Schuller S and Schuller G (1995) Auditory cortex of the rufous horseshoe bat: 1. Physiological response properties to acoustic stimuli and vocalizations and the topographical distribution of neurons. European Journal of Neuroscience 7:570–591.

    Article  CAS  PubMed  Google Scholar 

  • Rajan R (2001) Plasticity of excitation and inhibition in the receptive field of primary auditory cortical neurons after limited receptor organ damage. Cerebral Cortex 11:171–182.

    Article  CAS  PubMed  Google Scholar 

  • Rasmusson DD and Dykes RW (1988) Long-term enhancement of evoked potentials in cat somatosensory cortex produced by co-activation of the basal forebrain and cutaneous receptors. Experimental Brain Research 70:276–286.

    Article  CAS  Google Scholar 

  • Rauschecker JP (1998) Parallel processing in the auditory cortex of primates. Audiology & Neuro-Otology 3:86–103.

    Article  CAS  Google Scholar 

  • Rauschecker JP and Tian B (2004) Processing of band-passed noise in the lateral auditory belt cortex of the rhesus monkey. Journal of Neurophysiology 91:2578–2589.

    Article  PubMed  Google Scholar 

  • Razak KA, Shen W, Zumsteg T, and Fuzessery ZM (2007) Parallel thalamocortical pathways for echolocation and passive sound localization in a gleaning bat, Antrozous pallidus. Journal of Comparative Neurology 500:322–338.

    Article  PubMed  Google Scholar 

  • Read HL, Winer JA, and Schreiner CE (2001) Modular organization of intrinsic connections associated with spectral tuning in cat auditory cortex. Proceedings of the National Academy of Sciences of the United States of America 98:8042–8047.

    Article  CAS  PubMed  Google Scholar 

  • Read HL, Winer JA, and Schreiner CE (2002) Functional architecture of auditory cortex. Current Opinion in Neurobiology 12:433–440.

    Article  CAS  PubMed  Google Scholar 

  • Reale RA and Imig TJ (1980) Tonotopic organization in auditory cortex of the cat. Journal of Comparative Neurology 192:265–291.

    Article  CAS  PubMed  Google Scholar 

  • Recanzone GH (1998) Rapidly induced auditory plasticity: the ventriloquism aftereffect. Proceedings of the National Academy of Sciences of the United States of America 95:869–875.

    Article  CAS  PubMed  Google Scholar 

  • Recanzone GH (2000) Response profiles of auditory cortical neurons to tones and noise in behaving macaque monkeys. Hearing Research 150:104–118.

    Article  CAS  PubMed  Google Scholar 

  • Recanzone GH (2008) Representation of con-specific vocalizations in the core and belt areas of the auditory cortex in the alert macaque monkey. Journal of Neuroscience 28:13184–13193.

    Article  CAS  PubMed  Google Scholar 

  • Recanzone GH, Guard DC, and Phan ML (2000) Frequency and intensity response properties of single neurons in the auditory cortex of the behaving macaque monkey. Journal of Neurophysiology 83:2315–2331.

    CAS  PubMed  Google Scholar 

  • Recanzone GH, Merzenich MM, and Schreiner CE (1992) Changes in the distributed temporal responses of SI cortical neurons reflect improvements in performance on a temporally based tactile discrimination task. Journal of Neurophysiology 67.

    Google Scholar 

  • Recanzone GH, Schreiner CE, and Merzenich MM (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. Journal of Neuroscience 13:87–103.

    CAS  PubMed  Google Scholar 

  • Recanzone GH, Schreiner CE, Sutter ML, Beitel RE, and Merzenich MM (1999) Functional organization of spectral receptive fields in the primary auditory cortex of the owl monkey. Journal of Comparative Neurology 415:460–481.

    Article  CAS  PubMed  Google Scholar 

  • Robertson D and Irvine DRF (1989) Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. Journal of Comparative Neurology 282:456–471.

    Article  CAS  PubMed  Google Scholar 

  • Romanski LM and Averbeck BB (2009) The primate cortical auditory system and neural representation of conspecific vocalizations. Annual Review of Neuroscience 32:315–346.

    Article  CAS  PubMed  Google Scholar 

  • Rothschild G, Nelken I, and Mizrahi A (2010) Functional organization and population dynamics in the mouse primary auditory cortex. Nature Neuroscience 13:353–360.

    Article  CAS  PubMed  Google Scholar 

  • Rotman Y, Bar-Yosef O, and Nelken I (2001) Relating cluster and population responses to natural sounds and tonal stimuli in cat primary auditory cortex. Hearing Research 152:110–127.

    Article  CAS  PubMed  Google Scholar 

  • Rust NC, Schwartz O, Movshon JA, and Simoncelli EP (2005) Spatio-temporal elements in macaque v1 receptive fields. Neuron 46:945–956.

    Article  CAS  PubMed  Google Scholar 

  • Rutkowski RG, Shackleton TM, Schnupp JW, Wallace MN, and Palmer AM (2002) Spectrotemporal receptive field properties of single units in the primary, dorsocausal and ventrorostral auditory cortex in the guinea pig. Audiology and Neurootology 7:214–227.

    Article  Google Scholar 

  • Sadagopan S and Wang X (2009) Nonlinear spectrotemporal interactions underlying selectivity for complex sounds in auditory cortex. Journal of Neuroscience 29:11192–11202.

    Article  CAS  PubMed  Google Scholar 

  • Sahani M and Linden JF (2003) How linear are auditory cortical responses? In: Becker S, Thrun S, and Obermayer K (eds). Advances in Neural Information Processing Systems, Volume 15. MIT Press, Cambridge, pp. 109–116.

    Google Scholar 

  • Sally SL and Kelly JB (1988) Organization of auditory cortex in the albino rat: sound frequency. Journal of Neurophysiology 59:1627–1638.

    CAS  PubMed  Google Scholar 

  • Sarter M and Parikh V (2005) Choline transporters, cholinergic transmission and cognition. Nature Reviews Neuroscience 6:48–56.

    Article  CAS  PubMed  Google Scholar 

  • Scholl B, Gao X, and Wehr M (2010) Nonoverlapping sets of synapses drive on responses and off responses in auditory cortex. Neuron 65:412–421.

    Article  CAS  PubMed  Google Scholar 

  • Schoenwiesner M and Zatorre RJ (2009) Spectro-temporal modulation transfer function of single voxels in the human auditory cortex measured with high-resolution fMRI. Proceedings of the National Academy of Sciences of the United States of America 106:14611–14616.

    Article  PubMed  Google Scholar 

  • Schreiner CE and Calhoun BM (1994) Spectral envelope coding in cat primary auditory cortex: properties of ripple transfer functions. Auditory Neuroscience 1:39–61.

    Google Scholar 

  • Schreiner CE and Cynader MS (1984) Basic functional organization of second auditory cortical field (AII) of the cat. Journal of Neurophysiology 51:1284–1305.

    CAS  PubMed  Google Scholar 

  • Schreiner CE, Read HL, and Sutter ML (2000) Modular organization of frequency integration in primary auditory cortex. Annual Review of Neuroscience 23:501–529.

    Article  CAS  PubMed  Google Scholar 

  • Schreiner CE and Sutter ML (1992) Topography of excitatory bandwidth in cat primary auditory cortex: single-neuron versus multiple-neuron recordings. Journal of Neurophysiology 68:1487–1502.

    CAS  PubMed  Google Scholar 

  • Schreiner CE and Winer JA (2007) Auditory cortex mapmaking: principles, projections, and plasticity. Neuron 56:356–365, PMC51590.

    Article  CAS  PubMed  Google Scholar 

  • Schreiner CE, Wong SW, and Dinse HR (2006) Temporal processing in cat primary auditory cortex: dynamic frequency tuning and spectro-temporal representation of speech sounds . In: Greenberg S and Ainsworth WA (eds). Listening to Speech: An Auditory Perspective. Lawrence Erlbaum Assoc., Mahwah, pp. 129–141.

    Google Scholar 

  • Schummers J, Marino J, and Sur M (2002) Synaptic integration by V1 neurons depends on location within the orientation map. Neuron 36:969–978.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz O, Pillow JW, Rust NC, and Simoncelli EP (2006) Spike-triggered neural characterization. Journal of Vision 6:484–507.

    Article  PubMed  Google Scholar 

  • Sen K, Theunissen FE, and Doupe AJ (2001) Feature analysis of natural sounds in the songbird auditory forebrain. Journal of Neurophysiology 86:1445–1458.

    CAS  PubMed  Google Scholar 

  • Shamma SA, Fleshman JW, Wiser PR, and Versnel H (1993) Organization of response areas in ferret primary auditory cortex. Journal of Neurophysiology 69:367–383.

    CAS  PubMed  Google Scholar 

  • Shamma SA, Versnel H, and Kowalski N (1995) Ripple analysis in ferret primary auditory cortex. I. Response characteristics of single units to sinusoidal rippled spectra. Auditory Neuroscience 1:233–254.

    Google Scholar 

  • Shannon RV (2005) Speech and music have different requirements for spectral resolution. International Review of Neurobiology 70:121–134.

    Article  PubMed  Google Scholar 

  • Shannon RV, Fu QJ, and Galvin J, 3rd (2004) The number of spectral channels required for speech recognition depends on the difficulty of the listening situation. Acta Otolaryngologica Supplement 552:50–54.

    Article  Google Scholar 

  • Shannon RV, Zeng FG, and Wygonski J (1998) Speech recognition with altered spectral distribution of envelope cues. Journal of the Acoustical Society of America 104:2467–2476.

    Article  CAS  PubMed  Google Scholar 

  • Sharpee T, Rust NC, and Bialek W (2004a) Analyzing neural responses to natural signals: maximally informative dimensions. Neural Computation 16:223–250.

    Article  PubMed  Google Scholar 

  • Sharpee T, Sugihara H, Kurgansky AV, Rebrik S, Stryker MP, and Miller KD (2004b) Probing feature selectivity of neurons in primary visual cortex with natural stimuli. Proceedings of the Society for Photo and Optical Instrumentation Engineering 5467:212–222.

    Google Scholar 

  • Sharpee TO (2007) Comparison of information and variance maximization strategies for characterizing neural feature selectivity. Statistical Medicine 26:4009–4031.

    Article  Google Scholar 

  • Sharpee TO, Miller KD, and Stryker MP (2008) On the importance of static nonlinearity in estimating spatiotemporal neural filters with natural stimuli. Journal of Neurophysiology 99:2496–2509.

    Article  PubMed  Google Scholar 

  • Sharpee TO, Sugihara H, Kurgansky AV, Rebrik SP, Stryker MP, and Miller KD (2006) Adaptive filtering enhances information transmission in visual cortex. Nature 439:936–942.

    Article  CAS  PubMed  Google Scholar 

  • Shen J-X, Xu Z-M, and Yao Y-D (1999) Evidence for columnar organization in the auditory cortex of the mouse. Hearing Research 137:174–177.

    Article  CAS  PubMed  Google Scholar 

  • Simons DJ and Carvell GE (1989) Thalamocortical response transformation in the rat vibrissa/barrel system. Journal of Neurophysiology 61:311–330.

    CAS  PubMed  Google Scholar 

  • Smith ZM, Delgutte B, and Oxenham AJ (2002) Chimaeric sounds reveal dichotomies in auditory perception. Nature 416:87–90.

    Article  CAS  PubMed  Google Scholar 

  • Soeta Y and Nakagawa S (2006) Complex tone processing and critical band in the human auditory cortex. Hearing Research 222:125–132.

    Article  PubMed  Google Scholar 

  • Sohya K, Kameyama K, Yanagawa Y, Obata K, and Tsumoto T (2007) GABAergic neurons are less selective to stimulus orientation than excitatory neurons in layer II/III of visual cortex, as revealed by in vivo functional Ca2+ imaging in transgenic mice. Journal of Neuroscience 27:2145–2149.

    Article  CAS  PubMed  Google Scholar 

  • Stiebler I, Neulist R, Fichtel I, and Ehret G (1997) The auditory cortex of the house mouse: left-right differences, tonotopic organization and quantitative analysis of frequency representation. Journal of Comparative Physiology A 181:559–571.

    Article  CAS  Google Scholar 

  • Suga N (1984) The extent to which biosonar information is represented in the bat auditory cortex. In: Edelman GM, Gall WE, and Cowan WM (eds). Dynamic Aspects of Neocortical Function. John Wiley & Sons, New York, New York, pp. 315–373.

    Google Scholar 

  • Suga N (1995) Sharpening of frequency tuning by inhibition in the central auditory system: tribute to Yasuji Katsuki. Neuroscience Research 21:287–299.

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto S, Sakurada M, Horikawa J, and Taniguchi I (1997) The columnar and layer-specific response properties of neurons in the primary auditory cortex of Mongolian gerbils. Hearing Research 112:175–185.

    Article  CAS  PubMed  Google Scholar 

  • Sun YJ, Wu GK, Liu BH, Li P, Zhou M, Xiao Z, Tao HW, and Zhang LI (2010) Fine-tuning of pre-balanced excitation and inhibition during auditory cortical development. Nature 465:927–931.

    Article  CAS  PubMed  Google Scholar 

  • Sutter ML (2005) Spectral processing in auditory cortex. International Review of Neurobiology 70:253–298.

    Article  PubMed  Google Scholar 

  • Sutter ML and Loftus WC (2003) Excitatory and inhibitory intensity tuning in auditory cortex: evidence for multiple inhibitory mechanisms. Journal of Neurophysiology 90:2629–2647.

    Article  CAS  PubMed  Google Scholar 

  • Sutter ML and Schreiner CE (1991) Physiology and topography of neurons with multipeaked tuning curves in cat primary auditory cortex. Journal of Neurophysiology 65:1207–1226.

    CAS  PubMed  Google Scholar 

  • Sutter ML and Schreiner CE (1995) Topography of intensity tuning in cat primary auditory cortex: single-neuron versus multiple-neuron recordings. Journal of Neurophysiology 73:190–204.

    CAS  PubMed  Google Scholar 

  • Sutter ML, Schreiner CE, McLean M, O’Connor KN, and Loftus WC (1999) Organization of inhibitory frequency receptive fields in cat primary auditory cortex. Journal of Neurophysiology 82:2358–2371.

    CAS  PubMed  Google Scholar 

  • Swadlow HA (2003) Fast-spike interneurons and feedforward inhibition in awake sensory neocortex. Cerebral Cortex 13:25–32.

    Article  PubMed  Google Scholar 

  • Swadlow HA and Gusev AG (2002) Receptive-field construction in cortical inhibitory interneurons. Nature Neuroscience 5:403–404.

    Article  CAS  PubMed  Google Scholar 

  • Tan AY and Wehr M (2009) Balanced tone-evoked synaptic excitation and inhibition in mouse auditory cortex. Neuroscience 163:1302–1315.

    Article  CAS  PubMed  Google Scholar 

  • Tan AY, Zhang LI, Merzenich MM, and Schreiner CE (2004) Tone-evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons. Journal of Neurophysiology 92:630–634.

    Article  PubMed  Google Scholar 

  • Tan AY, Atencio CA, Polley DB, Merzenich MM, and Schreiner CE (2007) Unbalanced synaptic inhibition can create intensity-tuned auditory cortex neurons. Neuroscience 146:449–462.

    Article  CAS  PubMed  Google Scholar 

  • Theunissen FE, Sen K, and Doupe AJ (2000) Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds. Journal of Neuroscience 20:2315–2331.

    CAS  PubMed  Google Scholar 

  • Theunissen FE and Shaevitz SS (2006) Auditory processing of vocal sounds in birds. Current Opinion in Neurobiology 16:400–407.

    Article  CAS  PubMed  Google Scholar 

  • Thomas H, Tillein J, Heil P, and Scheich H (1993) Functional organization of auditory cortex in the mongolian gerbil (Meriones unguiculatus). I. Electrophysiological mapping of frequency representation and distinction of fields. European Journal of Neuroscience 5:882–897.

    Article  CAS  PubMed  Google Scholar 

  • Tian B and Rauschecker JP (2004) processing of frequency-modulated sounds in the lateral belt cortex of the rhesus monkey. Journal of Neurophysiology 92:2993–3013.

    Article  PubMed  Google Scholar 

  • Ulanovsky N, Las L, Farkas D, and Nelken I (2004) Multiple time scales of adaptation in auditory cortex neurons. Journal of Neuroscience 24:10440–10453.

    Article  CAS  PubMed  Google Scholar 

  • Valentine PA and Eggermont JJ (2004) Stimulus dependence of spectro-temporal receptive fields in cat primary auditory cortex. Hear Res 196:119–133.

    Article  PubMed  Google Scholar 

  • Versnel H and Shamma SA (1998) Spectral-ripple representation of steady-state vowels in primary auditory cortex. Journal of the Acoustical Society of America 103:2502–2514.

    Article  CAS  PubMed  Google Scholar 

  • Volkov IO and Galaziuk AV (1989) Reactions of tonic-type neurons in the cat auditory cortex to tones of various frequency and intensity. Neirofiziologiia 21:498–506.

    CAS  PubMed  Google Scholar 

  • Volkov IO and Galazjuk AV (1991) Formation of spike response to sound tones in cat auditory cortex neurons: interaction of excitatory and inhibitory effects. Neuroscience 43:307–321.

    Article  CAS  PubMed  Google Scholar 

  • von Helmholtz HLF (1863) Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik. Vieweg und Sohn, Braunschweig.

    Google Scholar 

  • Wallace MN, Kitzes LM, and Jones EG (1991) Intrinsic inter- and intralaminar connections and their relationship to the tonotopic map in cat primary auditory cortex. Experimental Brain Research 86:527–544.

    CAS  Google Scholar 

  • Wallace MN and Palmer AR (2008) Laminar differences in the response properties of cells in the primary auditory cortex. Experimental Brain Research 184:179–191.

    Article  CAS  Google Scholar 

  • Wang K and Shamma S (1995) Representation of spectral profiles in primary auditory cortex. IEEE Transactions on Speech and Audio Processing 3:382–395.

    Article  Google Scholar 

  • Wang X (2007) A sharper view from the top. Nature Neuroscience 10:1509–1511.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Lu T, Bendor D, and Bartlett E (2008) Neural coding of temporal information in auditory thalamus and cortex. Neuroscience 157:484–494.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Lu T, Snider RK, and Liang L (2005) Sustained firing in auditory cortex evoked by preferred stimuli. Nature 435:341–346.

    Article  CAS  PubMed  Google Scholar 

  • Wehr M and Zador AM (2003) Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426:442–446.

    Article  CAS  PubMed  Google Scholar 

  • Wehr M and Zador AM (2005) Synaptic mechanisms of forward suppression in rat auditory cortex. Neuron 47:437–445.

    Article  CAS  PubMed  Google Scholar 

  • Weinberger NM (2007) Auditory associative memory and representational plasticity in the primary auditory cortex. Hearing Research 229:54–68.

    Article  PubMed  Google Scholar 

  • Wenstrup JJ and Grose CD (1995) Inputs to combination-sensitive neurons in the medial geniculate body of the mustached bat: the missing fundamental. Journal of Neuroscience 15:4693–4711.

    CAS  PubMed  Google Scholar 

  • Winer JA (1984a) Anatomy of layer IV in cat primary auditory cortex (AI). Journal of Comparative Neurology 224:535–567.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA (1984b) The pyramidal cells in layer III of cat primary auditory cortex (AI). Journal of Comparative Neurology 229:476–496.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA (1992) The functional architecture of the medial geniculate body and the primary auditory cortex. In: Webster DB, Popper AN, and Fay RR (eds). Springer Handbook of Auditory Research, volume 1, The Mammalian Auditory Pathway: Neuroanatomy. Springer-Verlag, New York, pp. 222–409.

    Google Scholar 

  • Winer JA (2006) Decoding the auditory corticofugal systems. Hearing Research 212:1–8.

    Article  PubMed  Google Scholar 

  • Winguth SD and Winer JA (1986) Corticocortical connections of cat primary auditory cortex (AI): laminar organization and identification of supragranular neurons projecting to area AII. Journal of Comparative Neurology 248:36–56.

    Article  CAS  PubMed  Google Scholar 

  • Winkler I, Denham SL, and Nelken I (2009) Modeling the auditory scene: predictive regularity representations and perceptual objects. Trends in Cognitive Sciences 13:532–540.

    Article  PubMed  Google Scholar 

  • Woody CD and Gruen E (1987) Acetylcholine reduces net outward currents measured in vivo with single electrode voltage clamp techniques in neurons of the motor cortex of cats. Brain Research 424:193–198.

    Article  CAS  PubMed  Google Scholar 

  • Woolley SM, Fremouw TE, Hsu A, and Theunissen FE (2005) Tuning for spectro-temporal modulations as a mechanism for auditory discrimination of natural sounds. Nature Neuroscience 8:1371–1379.

    Article  CAS  PubMed  Google Scholar 

  • Woolley SM, Gill PR, and Theunissen FE (2006) Stimulus-dependent auditory tuning results in synchronous population coding of vocalizations in the songbird midbrain. Journal of Neuroscience 26:2499–2512.

    Article  CAS  PubMed  Google Scholar 

  • Wu GK, Arbuckle R, Liu B-h, Tao HW, and Zhang LI (2008) Lateral sharpening of cortical frequency tuning by approximately balanced inhibition. Neuron 58:132–143.

    Article  CAS  PubMed  Google Scholar 

  • Wu GK, Li P, Tao HW, and Zhang LI (2006) Nonmonotonic synaptic excitation and imbalanced inhibition underlying cortical intensity tuning. Neuron 52:705–715.

    Article  CAS  PubMed  Google Scholar 

  • Xiang Z, Huguenard JR, and Prince DA (1998) Cholinergic switching within neocortical inhibitory networks. Science 281:985–988.

    Article  CAS  PubMed  Google Scholar 

  • Yan J and Suga N (1996) The midbrain creates and the thalamus sharpens echo-delay tuning for the cortical representation of target-distance information in the mustached bat. Hearing Research 93:102–110.

    Article  CAS  PubMed  Google Scholar 

  • Young ED (2008) Neural representation of spectral and temporal information in speech. Philosophical Transactions of the Royal Society of London, series B, Biological Sciences 363:923–945.

    Article  Google Scholar 

  • Young ED and Brownell WE (1976) response to tones and noise of single cells in dorsal cochlear nucleus of unanesthetized cats. Journal of Neurophysiology 39:282–300.

    CAS  PubMed  Google Scholar 

  • Yu JJ and Young ED (2000) Linear and nonlinear pathways of spectral information transmission in the cochlear nucleus. Proceedings of the National Academy of Sciences of the United States of America 97:11780–11786.

    Article  CAS  PubMed  Google Scholar 

  • Zhang LI, Tan AYY, Schreiner CE, and Merzenich MM (2003) Topography and synaptic shaping of direction selectivity in primary auditory cortex. Nature 424:201–205.

    Article  CAS  PubMed  Google Scholar 

  • Zhang M and Alloway KD (2004) Stimulus-induced intercolumnar synchronization of neuronal activity in rat barrel cortex: a laminar analysis. Journal of Neurophysiology 92:1464–1478.

    Article  PubMed  Google Scholar 

  • Zhou X and Merzenich MM (2007) Intensive training in adults refines A1 representations degraded in an early postnatal critical period. Proceedings of the National Academy of Sciences of the United States of America 104:15935–15940.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work supported by NIH grants DC 02260 and MH 077970 (C.E.S.) and DC 09635 (R.C.F.). Fruitful collaborations and always lively, illuminating and stimulating interactions with Dr. Jeffery Winer over the last 20 years have influenced much of the thinking presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph E. Schreiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schreiner, C.E., Froemke, R.C., Atencio, C.A. (2011). Spectral Processing in Auditory Cortex. In: Winer, J., Schreiner, C. (eds) The Auditory Cortex. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0074-6_13

Download citation

Publish with us

Policies and ethics