Physical Principles and Constitutive Models of Piezoelectric Materials

  • Nader Jalili


This chapter presents a detailed discussion on physical principles and constitutive models of piezoelectric materials and structures. Starting with an elementary level in the fundamentals of piezoelectricity, the constitutive models of piezoelectric materials are presented. To complete the chapter and provide the readers with practical information, the engineering applications of piezoelectric materials and structures with a special emphasis to piezoelectric-based actuators and sensors are presented. More specifically, the applications of piezoelectric actuators and sensors in ultra-fine micro/nano-scale positioning and manipulation are reviewed briefly, leaving the details to Chaps. 3–5. Finally, a brief discussion on future directions and outlooks for piezoelectric materials and systems is given.


Piezoelectric Material Electric Displacement Elastic Stiffness Strontium Titanate Barium Strontium Titanate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Afshari M, Jalili N (2007a) Towards nonlinear modeling of molecular interactions arising from adsorbed biological species on the microcantilever surface. Int J Non-Linear Mech. 42(4): 588–595CrossRefGoogle Scholar
  2. Afshari M, Jalili N (2008) Nanomechanical cantilever biosensors: Conceptual design, recent developments and practical implementation, chapter 13 of biomedical applications of vibration and acoustics for imaging and characterization. ASME Press 13:353–374Google Scholar
  3. Aoshima S, Yoshizawa N, Yabuta T (1992) Compact mass axis alignment device with piezoelements for optical fibers. IEEE Photon Technol Lett 4:462–464CrossRefGoogle Scholar
  4. Ballas RG (2007) Piezoelectric multilayer beam bending actuators: Static and dynamic behavior and aspects of sensor integration, SpringerGoogle Scholar
  5. Banks HT, Ito K (1988) A unified framework for approximation in inverse problems for distributed parameter systems. Control Theory Adv Technol 4(1):73–90MathSciNetGoogle Scholar
  6. Banks HT, Kunisch K (1989) Estimation techniques for distributed parameter systems. Birkhauser, Boston, MAMATHCrossRefGoogle Scholar
  7. Bashash S, Jalili N (2006a) Underlying memory-dominant nature of hysteresis in piezoelectric materials. J Appl Phys 100:014103CrossRefGoogle Scholar
  8. Bashash S, Jalili N (2007a) Intelligent rules of hysteresis in feedforward trajectory control of piezoelectrically-driven nanostages. J Micromech Microeng 17:342–349CrossRefGoogle Scholar
  9. Baz A, Ro J (1996) Vibration control of plates with active constrained layer damping. Smart Mater Struct 5:272CrossRefGoogle Scholar
  10. Bent AA, Hagood NW (1993) Development of piezoelectric fiber composites for structural actuation. Proceedings of AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, AIAA Paper No. 93–1717, La Jolla, CAGoogle Scholar
  11. Berlincourt D (1981) Piezoelectric ceramics: Characteristics and applications. J Acoust Soc Am. 70:1586–1595CrossRefGoogle Scholar
  12. Billson D, Hutchins D (1993) Development of novel piezoelectric ultrasonic transducers for couplant-free non-destructive testing. Br J Non-Destructive Test 35:705–709Google Scholar
  13. Binnie G, Rohrer H, Gerber CH, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49:57–61CrossRefGoogle Scholar
  14. Caliano G, Lamberti N, Iula A, Pappalardo M (1995) Piezoelectric bimorph static pressure sensor. Sens Actuators A: Phys 46:176–178CrossRefGoogle Scholar
  15. Chen GY, Thundat T, Wachter EA, Warmack RJ (1995) Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers. J Appl Phys 77(8):3618–3622CrossRefGoogle Scholar
  16. Curie J, Curie P (1880) Développement, par pression, de l’électricité polaire dans les cristaux hémièdres à faces inclines. Comptes Rendus de l’Académie des Sciences, Paris 91:294–295Google Scholar
  17. Damjanovic D (1998) Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys 61:1267–1324CrossRefGoogle Scholar
  18. Frecker MI, Ananthasuresh GK, Nishiwaki S, Kikuchi N, Kota S (1997) Topological synthesis of compliant mechanism using multi-criteria optimization. ASME Trans J Mech Design 119:238–245CrossRefGoogle Scholar
  19. Fukada E (2000) History and recent progress in piezoelectric polymers. IEEE Trans Ultrason Ferroelectr Freq Control 47:1277CrossRefGoogle Scholar
  20. Giurgiutiu V, Chaudhry Z, Rogers CA (1995) Stiffness issues in the design of ISA displacement amplification devices: Case study of a hydraulic displacement amplifier. Smart structures and materials. Paper # 2443-12, SPIE. 2443:105–119CrossRefGoogle Scholar
  21. Glazounov AE, Zhang QM, Kim C (1998) Piezoelectric actuators generating torsional displacement from the d15 shear strain. Appl Phys Lett 72:2526CrossRefGoogle Scholar
  22. Goldfarb M, Celanovic N (1997a) A lumped parameter electromechanical model for describing the nonlinear behavior of piezoelectric actuators. ASME J Dyn Syst Measur Control 119:478–485MATHCrossRefGoogle Scholar
  23. Gurjar M, Jalili N (2007) Towards ultrasmall mass detection using adaptive self-sensing piezoelectrically-driven cantilevers. IEEE/ASME Trans Mechatronics 12(6):680–688CrossRefGoogle Scholar
  24. Haitjema H (1996) Dynamic probe calibration in the μm region with nanometer accuracy. Precision Eng 19:98–104CrossRefGoogle Scholar
  25. Hesselbach J, Ritter R, Thoben R, Reich C, Pokar G (1998) Visual control and calibration of parallel robots for microassembly. Proceedings of SPIE, vol 3519. Boston, MA, pp 50–61Google Scholar
  26. Hu H, Ben-Mrad R (2003) On the classical Preisach model for hysteresis in piezoceramic actuators. Mechatronics 13:85–94CrossRefGoogle Scholar
  27. Hu H, Georgiou HMS, Ben-Mrad R (2005) Enhancement of tracking ability in piezoceramic actuators subject to dynamic excitation conditions. IEEE/ASME Trans Mechatr 10(2):230–239CrossRefGoogle Scholar
  28. Itoh T (1993) Micro-machine technology tackles challenge of motor miniaturization. J Electron Eng 30(313):58–62Google Scholar
  29. Jalili N, Wagner J, Dadfarnia M (2003) A piezoelectric driven ratchet actuator mechanism with application to automotive engine valves. Int J Mechatron. 13:933–956.CrossRefGoogle Scholar
  30. Jalili N, Knowles DW (2004) Structural vibration control using an active resonator absorber: modeling and control implementation. Smart Mater Struct 13(5):998–1005CrossRefGoogle Scholar
  31. Knowles D, Jalili N, Khan T (2001) On the nonlinear modeling and identification of piezoelectric inertial actuators. Proceedings of 2001 international mechanical engineering congress and exposition (IMECE’01), New York, NY, NovGoogle Scholar
  32. Kota S, Hetrick J, Li Z, Saggere L (1999) Tailoring unconventional actuators using compliant transmissions: design methods and applications. IEEE/ASME Trans Mechatron 4(4)Google Scholar
  33. Krejci P, Kuhnen K (2001) Inverse control of systems with hysteresis and creep. IEE Proc Control Theory Appl 148:185–192CrossRefGoogle Scholar
  34. Mahmoodi SN, Afshari M, Jalili N (2008a) Nonlinear vibrations of piezoelectric microcantilevers for biologically-induced surface stress sensing. J Commun Nonlinear Sci Numer Simul 13:1964–1977CrossRefGoogle Scholar
  35. Meldrum DR (1997) A biomechatronic fluid-sample-handling system for DNA processing. IEEE/ASME Trans Mechatron 2:99–109CrossRefGoogle Scholar
  36. Mele EJ, Kral P (2002) Electric polarization of heteropolar nanotubes as a geometric phase. Phys Rev Lett 88:568031–568034CrossRefGoogle Scholar
  37. Nakamura K, Ogura H, Maeda S, Sangawa U, Aoki S, Sato T (1995) Evaluation of the microwobble motor fabricated by concentric build-up process. Proc MEMS:374–379Google Scholar
  38. Park KH, Lee JH, Kim SH, Kwak YK (1995) High speed micro positioning system based on coarse/fine pair control. Mechatronics 5(6):645–663CrossRefGoogle Scholar
  39. Saeidpourazar R, Jalili N (2008a) Towards fused vision and force robust feedback control of nanorobotic-based manipulation and grasping. mechatronics. Int J 18:566–577Google Scholar
  40. Salehi-Khojin A, Jalili N (2008a) A comprehensive model for load transfer in nanotube reinforced piezoelectric polymeric composites subjected to electro-thermo-mechanical loadings. J Composites Part B Eng 39(6):986–998CrossRefGoogle Scholar
  41. Salehi-Khojin A, Bashash S, Jalili N (2008) Modeling and experimental vibration analysis of nanomechanical cantilever active probes. J Micromech Microeng 18, 085008:1–11Google Scholar
  42. Salehi-Khojin A, Hosseini MR and Jalili N (2009a) Underlying mechanics of active nanocomposites with tunable properties. Composites Sci Technol 69:545–552CrossRefGoogle Scholar
  43. Sato T (1994) Step from 2- to 3-D process break grounds for microfabricated wobble motors. J Electron Eng 31(332):67–70Google Scholar
  44. Schitter G, Stemmer A (2004) Identification and open-loop tracking control of a piezoelectric tube scanner for high-speed scanning probe microscopy. IEEE Trans Control Syst Technol 12:449–454CrossRefGoogle Scholar
  45. Schmoeckel F, Fahlbusch S, Seyfried J, Buerkle A, Fatikow S (2000) Development of a microrobot-based micromanipulation cell in scanning electron microscope (SEM). Proc SPIE 4194:13-20, Boston, MAGoogle Scholar
  46. Sepaniak M, Datskos P, Lavrik N, Tipple C (2002) Microcantilever transducers: A new approach in sensor technology. Anal Chem 74(21):568ACrossRefGoogle Scholar
  47. Sodano HA, Inman DJ, Park G (2005) Comparison of piezoelectric energy harvesting devices for recharging batteries. J Intell Mater Syst Struct 16:799–807CrossRefGoogle Scholar
  48. Sodano HA, Park G, Inman DJ (2004) An investigation into the performance of macro-fiber composites for sensing and structural vibration applications. Mech Syst Signal Process 18(3):683–697CrossRefGoogle Scholar
  49. Tomikawa Y, Okada S (2003) Piezoelectric angular acceleration sensor. Proc IEEE Ultras Symp 2:1346–1349Google Scholar
  50. Tzou HS, Lee HJ, Arnold SM (2004) Smart materials, precision sensors/actuators, smart structures, and structronic systems. Mech of Adv Mat Struc 11:367–393CrossRefGoogle Scholar
  51. Uhea S, Tomikawa Y (1993) Ultrasonic motors: Theory and application, Oxford University Press, UKGoogle Scholar
  52. Wilkie WK, Bryant RG, High JW, Fox RL, Hellbaum RF, Jalink A, Little BD, Mirick PH (2000) Low-cost piezocomposite actuator for structural control applications. Proceedings of 7th SPIE international symposium on smart structures and materials, Newport Beach, CAGoogle Scholar
  53. Xu Y, Meckl PH (2004) Time-optimal motion control of piezoelectric actuator: STM application, Proceedings of the 2004 American control conference, vol 5. pp 4849–4854Google Scholar
  54. Yang J (2005) An Introduction to the theory of piezoelectricity, Springer, Berlin, HeidelbergMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial Engineering373 Snell Engineering Center Northeastern UniversityBostonUSA

Personalised recommendations