Piezoelectric-Based Nanomechanical Cantilever Sensors

  • Nader Jalili


This chapter provides a relatively general overview of piezoelectric-based nano- mechanical cantilever sensors (NMCS) with their applications in many cantilever-based imaging and manipulation systems such as atomic force microscopy (AFM) and its varieties. Some new concepts in modeling these systems are also introduced along with highlighting the issues related to nonlinear effects at such small scale, the Poisson’s effect, and piezoelectric materials nonlinearity. More specifically, both linear and nonlinear models of piezoelectric NMCS are presented with their applications in biological and ultrasmall mass sensing and detection.

It might be worth noting that a comprehensive modeling and treatment of these systems including both linear and nonlinear vibration analyses, system identification, as well as practical applications in ultrasmall mass sensing, laser-free imaging, and nanoscale manipulation and positioning, will appear in a new book by the author (Jalili in press). In order to avoid potential overlaps while also keeping this chapter focused, only a small part of the aforementioned book is presented here with a major emphasis on piezoelectric-based nanomechanical cantilever sensors.


Piezoelectric Material Surface Stress Torsional Vibration Piezoelectric Layer Effective Nonlinearity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams JD, Parrott G, Bauer C, Sant T, Manning L, Jones M, Rogers B, McCorkle D, Ferrell TL (2003) Nanowatt chemical vapor detection with a self-sensing piezoelectric microcantilever array. Appl Phys Lett 83(16):3428–3430CrossRefGoogle Scholar
  2. Afshari M, Jalili N (2007a) Towards nonlinear modeling of molecular interactions arising from adsorbed biological species on the microcantilever surface. Int J Non-Linear Mech. 42(4): 588–595CrossRefGoogle Scholar
  3. Afshari M, Jalili N (2008) Nanomechanical cantilever biosensors: Conceptual design, recent developments and practical implementation, chapter 13 of biomedical applications of vibration and acoustics for imaging and characterization. ASME Press 13:353–374Google Scholar
  4. Arafat HN, Nayfeh AH, Chin C (1998) Nonlinear nonplanar dynamics of parametrically excited cantilever beams. Nonlinear Dyn 15:31–61MATHCrossRefGoogle Scholar
  5. Arntz Y, Seelig JD, Lang HP, Zhang J, Hunzicker P, Ramseyer JP, Meyer E, Hegener M, Gerber Ch (2003) Label-free protein assay based on a nanomechanical cantilever array. Nanotechnology 14(1):86CrossRefGoogle Scholar
  6. Baselt DR, Lee GU, Colton RJ (1996) Biosensor based on force microscope technology. J Vac Sci Technol B, 14(2):789–793CrossRefGoogle Scholar
  7. Berger R, Gerber Ch, Gimzewski JK (1996) Thermal analysis using micromechanical calorimeter. Appl Phys Lett 69(1):40–42CrossRefGoogle Scholar
  8. Berger R, Delamarche E, Lang HP, Gerber C, Gimzewski JK, Meyer E, Guntherodt H-J (1997) Surface stress in the self-assembly of alkanethiols on gold. Science 276:2021–2023CrossRefGoogle Scholar
  9. Bhadbhade V, Jalili N, Mahmoodi SN (2008) A novel piezoelectrically actuated flexural/torsional vibrating beam gyroscope. J Sound Vib 311:1305–1324CrossRefGoogle Scholar
  10. Bizet K, Gabrielli C, Perrot H, Therasse J (1998) Validation of antibody-based recognition by piezoelectric transducers through electroacoustic admittance analysis. Biosens Bioelectron 13(3–4):259–269CrossRefGoogle Scholar
  11. Braun T, Barwich V, Ghatkesar MK, Bredekamp AH, Gerber C, Hegner M, Lang HP (2005) Micromechanical mass sensors for biomolecular detection in a physiological environment. Phys Rev 72:031907Google Scholar
  12. Britton CL, Jones RL, Oden PI, Hu Z, Warmack RJ, Smith SF, Bryan WL, Rochelle JM (2000) Multiple-input microcantilever sensors. Ultramicroscopy 82:17–21CrossRefGoogle Scholar
  13. Chen GY, Thundat T, Wachter EA, Warmack RJ (1995) Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers. J Appl Phys 77(8):3618–3622CrossRefGoogle Scholar
  14. Corbeil J, Lavrik N, Rajic S, Datskos PG (2002) Self-leveling uncooled microcantilever thermal detector. Appl Phys Lett 81:1306CrossRefGoogle Scholar
  15. Crespo da Silva MRM, Glynn CC (1978) Nonlinear flexural-flexural-torsional dynamics of inextensional beams: I. Equations of motion J Struct Mech 6(4):437–448CrossRefGoogle Scholar
  16. Dadfarnia M, Jalili N, Liu Z, Dawson DM (2004a) An observer-based piezoelectric control of flexible Cartesian robot arms: theory and experiment. Control Eng Pract 12:1041–1053CrossRefGoogle Scholar
  17. Dareing DW, Thundat T (2005) Simulation of adsorption-induced stress of a microcantilever sensor. J Appl Phys 97:043526CrossRefGoogle Scholar
  18. Datskos PG, Sauers I (1999) Detection of 2-mercaptoethanol using gold-coated micromachined cantilevers. Sens Actuators B 61:75–82CrossRefGoogle Scholar
  19. Datskos PG, Oden PI, Thundat T, Wachter EA, Warmack RJ, Hunter SR (1996) Remote infrared radiation detection using piezoresistive microcantilevers. Appl Phys Lett 69(20):2986–2988CrossRefGoogle Scholar
  20. Eslimy-Isfahany SHR, Banerjee JR (2000) Use of generalized mass in the interpretation of dynamic response of bending-torsion coupled beams. J Sound Vib 238(2):295–308CrossRefGoogle Scholar
  21. Esmailzadeh E, Jalili N (1998a) Optimum design of vibration absorbers for structurally damped Timoshenko beams. ASME J Vib Acous 120(4):833–841CrossRefGoogle Scholar
  22. Gfeller KY, Nugaeva N, Hegner M (2005) Rapid biosensor for detection of antibiotic-selective growth of Escherichia coli. Appl Environ Microbiol 71(5):2626–2631CrossRefGoogle Scholar
  23. Gimzewski JK, Gerber Ch, Meyer E, Schlittler RR (1994) Observation of a chemical reaction using a micromechanical sensor. Chem Phys Lett 217:589–594CrossRefGoogle Scholar
  24. Grigorov AV, Davis ZJ, Rasmussen PA, Boisen A (2004) A longitudinal thermal actuation principle for mass detection using a resonant microcantilever in a fluid medium. Microelectronic Eng 73–74:881–886CrossRefGoogle Scholar
  25. Gupta A, Akin D, Bashir A (2004a) Detection of bacterial cells and antibodies using surface micromachined thin silicon cantilever resonators. J Vac Sci Technol 32(4):2785–2791Google Scholar
  26. Hagan MF, Majumdar A, Chakraborty AK (2004) Nanomechanical forces generated by surface grafted DNA. J Phys Chem B 106:10163–10173CrossRefGoogle Scholar
  27. Hansen KM, Ji H-F, Wu G, Datar R, Cote R, Majumdar A, Thundat T (2001) Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. Anal Chem 73 (7):1567–1571CrossRefGoogle Scholar
  28. Hsieh S, Shaw SW, Pierre C (1994) Normal modes for large amplitude vibration of a cantilever beam. Int J Solids Struct 31:1981–2014MATHCrossRefGoogle Scholar
  29. Huber F, Hegner M, Gerber C, Guntherodt H-J, Lang HP (2006) Label free analysis of transcription factors using microcantilever arrays. Biosens Bioelectron 21:1599–1605CrossRefGoogle Scholar
  30. Ibach H (1997) The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surf Sci Rep 29:193–263CrossRefGoogle Scholar
  31. Ilic B, Czaplewski D, Zalalutdinov M, Craighead HG, Neuzil P, Campagnolo C,Batt C (2001) Single cell detection with micromechanical oscillators. J Vac Sci Technol B 19(6):2825–2828CrossRefGoogle Scholar
  32. Ilic B, Czaplewsky D, Craighead HG, Neuzil P, Campagnolo C, Batt C (2000) Mechanical resonant immunospecific biological detector. Appl Phys Lett 77:450–452CrossRefGoogle Scholar
  33. Ilic B, Yang Y, Craighead HG (2004) Virus detection using nanoelectromechanical devices. Appl Phys Lett 85(13):2604CrossRefGoogle Scholar
  34. Itoh T, Lee C, Suga T (1996) Deflection detection and feedback actuation using a self-excited piezoelectric Pb(Zr,Ti)O3 microcantilever for dynamic scanning force microscopy. Appl Phys Lett 69(14):2036–2038CrossRefGoogle Scholar
  35. Jensenius H, Thaysen J, Rasmussen AA, Veje LH, Hansen O, Boisen A (2001) A microcantilever-based alcohol vapor sensor-application and response model. Appl Phys Lett 76(18):2615–2617CrossRefGoogle Scholar
  36. Ji H-F, Hansen KM, Hu Z, Thundat T (2001) Detection of pH variation using modified microcantilever sensors. Sens Actuators B-Chem 72(3):233–238CrossRefGoogle Scholar
  37. Kirstein K-U, Li Y, Zimmermann M, Vancura C, Volden T, Song WH, Lichtenberg J, Hierlemannn A (2005) Cantilever-based biosensors in CMOS technology. Proceedings of the design, automation and test in Europe conference and exhibition (DATE’05):1340–1341Google Scholar
  38. Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003), Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508MATHCrossRefGoogle Scholar
  39. Lang HP, Berger R, Battiston F, Ramseyer J-P, Meyer E, Andreoli C, Brugger J, Vettiger P, Despont M, Mezzacasa T, Scandella L, Güntherodt H-J, Gerber Ch, Gimzewski JK (1998) A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors. Appl Phys A 66(7):S61–S64CrossRefGoogle Scholar
  40. Lee D, Ono T, Esashi M (2000) High-speed imaging by electro-magnetically actuated probe with dual spring. J Microelectromech Syst 9(4):419–424CrossRefGoogle Scholar
  41. Lee J, Hwang K, Park J (2005a) Immunoassay of prostate-specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever. Biosens Bioelectron 20:2157CrossRefGoogle Scholar
  42. Lee JH, Yoon KH, Hwang KS, Park J, Ahn S, Kim TS (2004) Label free novel electrical detection using micromachined PZT monolithic thin film cantilever for the detection of C-reactive protein. Biosens Bioelectron 20:269–275CrossRefGoogle Scholar
  43. Liu W, Montana V, Chapman ER, Mohideen U, Parpura, V (2003) Botulinum toxin type B micromechanosensor. Proc Nat Acad Sci USA 100(23):13621–13625CrossRefGoogle Scholar
  44. Lockhart DJ, Winzeler EA (2000) Genomics, gene expression and DNA arrays. Nature 405: 827–836CrossRefGoogle Scholar
  45. Lu P, Shen F, O’Shea SJ, Lee KH, Ng TY (2001) Analysis of surface effects on mechanical properties of microcantilevers. Mater Phys Mech 4:51–55Google Scholar
  46. Mahmoodi SN, Khadem SE, Jalili N (2006) Theoretical development and closed-form solution of nonlinear vibrations of a directly excited nanotube-reinforced composite cantilever beam. Arch Appl Mech 75 153–163MATHCrossRefGoogle Scholar
  47. Mahmoodi SN, Afshari M, Jalili N (2008a) Nonlinear vibrations of piezoelectric microcantilevers for biologically-induced surface stress sensing. J Commun Nonlinear Sci Numer Simul 13:1964–1977CrossRefGoogle Scholar
  48. Mahmoodi SN, Jalili N (2008) Coupled flexural-torsional nonlinear vibrations of piezoelectrically-actuated microcantilevers with application to friction force microscopy. ASME J Vib Acoust 130(6) 061003:1–10Google Scholar
  49. Mahmoodi SN, Jalili N (2007) Nonlinear vibrations and frequency response analysis of piezoelectrically-driven microcantilevers. Int J Non-Linear Mech 42(4):577–587CrossRefGoogle Scholar
  50. Malatkar P, Nayfeh AH (2002) Calculation of the jump frequencies in the response of SDOF non-linear systems. J Sound Vib 254(5):1005–1011CrossRefGoogle Scholar
  51. McFarland AW, Poggi MA, Doyle MJ, Bottomley LA, Colton JS (2005) Influence of surface stress on the resonance behavior of microcantilevers. Appl Phys Lett 87:053505CrossRefGoogle Scholar
  52. McKendry R, Zhang J, Arntz Y, Strunz T, Hegner M, Lang HP, Baller MK, Certa U, Meyer E, Guntherodt H-J, Gerber C (2002) Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc Nat Acad Sci USA 99(15):9783–9788CrossRefGoogle Scholar
  53. Meirovitch L (1997) Principles and techniques of vibrations. Prentice Hall, IncGoogle Scholar
  54. Nagakawa Y, Shafer R, Guntherodt H (1998) Picojoule and submillisecond calorimetry with micromechanical probes. Appl Phys Lett 73:2296CrossRefGoogle Scholar
  55. Nayfeh AH, Nayfeh JF, Mook DT (1992) On methods for continuous systems with quadratic and cubic nonlinearities. Nonlinear Dynam 3:145–162CrossRefGoogle Scholar
  56. Nayfeh AH (1973) Perturbation methods, Wiley, New JerseyMATHGoogle Scholar
  57. Oden PI, Chen GY, Steele RA, Warmack RJ, Thundat T (1999) Viscous drag measurements utilizing microfabricated cantilevers. Appl Phys Lett 68(26):3814–3816CrossRefGoogle Scholar
  58. Onran AG, Degertekin AG, Hadimioglu B, Sulchek T, Quate CF (2002) Actuation of atomic force microscope cantilevers in fluids using acoustic radiation pressure. Fifteenth IEEE international micro electro mechanical systems conference, Las Vegas, NevadaGoogle Scholar
  59. Pei J, Tian F, Thundat T (2004) Glucose biosensor based on the microcantilever. Anal Chem 76:3194CrossRefGoogle Scholar
  60. Perazzo T, Mao M, Kwon O, Majumdar A, Varesi JB, Norton P (1999) Infrared vision using uncooled micro-optomechanical camera. Appl Phys Lett 74 (23):3567–3569CrossRefGoogle Scholar
  61. Preumont A (2002) Vibration control of active structures: An introduction, 2nd edn. Kluwer Academic Publishers, DordrechtMATHGoogle Scholar
  62. Rabe U, Hirsekorn S, Reinstädtler M, Sulzbach T, Lehrer Ch, Arnold W (2007) Influence of the cantilever holder on the vibrations of AFM cantilevers. Nanotechnology 18:044008CrossRefGoogle Scholar
  63. Rangelow IW, Grabiec P, Gotszalk T, Edinger K (2002) Piezoresistive SXM Sensors, Surf Interface Anal 33:59–64CrossRefGoogle Scholar
  64. Rappe AK, Casewit CJ, Colewell KS, Goddard III WA, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114(25):10024–10035CrossRefGoogle Scholar
  65. Ren Q, Zhao Y-P (2004) Influence of surface stress on frequency of microcantilever-based biosensors. Microsyst Technol 10:307–314CrossRefGoogle Scholar
  66. Salehi-Khojin A, Hosseini MR and Jalili N (2009a) Underlying mechanics of active nanocomposites with tunable properties. Composites Sci Technol 69:545–552CrossRefGoogle Scholar
  67. Savran CA, Burg TP, Fritz J, Manalis SR (2003) Microfabricated mechanical biosensor with inherently differential readout. Appl Phys Lett 83(20):1659CrossRefGoogle Scholar
  68. Schell-Sorokin AJ, Tromp RM (1990) Mechanical stress in (Sub)monolayer epitaxial films. Phys Rev Lett 64(9):1039–1042CrossRefGoogle Scholar
  69. Shuttleworth R (1950) The surface tension of solids. Proc Phys Soc 63(5):444–457CrossRefGoogle Scholar
  70. Stachowiak JC, Yue M, Castelino K, Chakraborty A, Majumdar A (2006) Chemomechanics of surface stresses induced by DNA hybridization. Langmuir 22:263–268CrossRefGoogle Scholar
  71. Stoney GG (1909) The tension of metallic films deposited by electrolysis. Proc R Soc Lond A 82:172–175CrossRefGoogle Scholar
  72. Su M, Li S, Dravid VP (2003) Microcantilever resonance-based DNA detection with nanoparticle probes. Appl Phys Lett 82(20):3562CrossRefGoogle Scholar
  73. Takaway T, Fukudaz T, Takadaz T (1997) Flexural – torsion coupling vibration control of fiber composite cantilevered beam by using piezoceramic actuators. Smart Mater Struct 6:477–484CrossRefGoogle Scholar
  74. Thundat T, Warmack RJ, Chen GY, Allison DP (1994) Thermal and ambient-induced deflections of scanning force microscope cantilevers. Appl Phys Lett 64:2894–2898CrossRefGoogle Scholar
  75. Thundat T, Sharp S, Fisher W, Warmack R, Wachter E (1995) Micromechanical radiation dosimeter. Appl Phys Lett 66:1563CrossRefGoogle Scholar
  76. Tian F, Pei J, Hedden D, Brown G, Thundat T (2004) Observation of the surface stress induced in microcantilevers by electrochemical redox processes. Ultramicroscopy 100:217CrossRefGoogle Scholar
  77. Townsend PH, Barnett DM, Brunner TA (1987) Elastic relationship in layered composite media with approximation for the case of thin films on a thick substrate. J Appl Phys 62(11): 4438–4444CrossRefGoogle Scholar
  78. Volkert CA, Minor AM (2007) Focused ion beam microscopy and micromachining. MRS Bull 32:389CrossRefGoogle Scholar
  79. Wachter EA, Thundat T (1995) Micromechanical sensors for chemical and physical measurements. Rev Sci Instrum 66(6):3662–3667CrossRefGoogle Scholar
  80. Weigert S, Dreier M, Hegner M (1996) Frequency shifts of cantilevers vibrating in various media. Appl Phys Lett 69(19):2834–2836CrossRefGoogle Scholar
  81. Xie WC, Lee HP, Lim SP (2003) Nonlinear dynamic analysis of MEMS switches by nonlinear modal analysis. Nonlinear Dyn 31:243–256.MATHCrossRefGoogle Scholar
  82. Yang M, Zhang X, Vafai K, Ozkan CS (2003) High sensitivity piezoresistive cantilever design and optimization for analyte-receptor binding. J Micromech Microeng 13:864–872CrossRefGoogle Scholar
  83. Yue M, Lin H, Dedrick DE, Satyanarayana S, Majumdar A, Bedekar AS, Jenkins JW, Sundaram S (2004) A 2-D microcantilever array for multiplexed biomolecular analysis. J Microelectromech Syst 13(2):290–299CrossRefGoogle Scholar
  84. Zhang J, Feng H (2004) Antibody-immobilized microcantilever for the detection of Escherichia coli. Anal Sci 20:585CrossRefGoogle Scholar
  85. Zhang W, Meng G (2005) Nonlinear dynamical system of micro-cantilever under combined parametric and forcing excitations in MEMS. Sens Actuators A 119:291CrossRefGoogle Scholar
  86. Ziegler C (2004) Cantilever-based biosensors. Anal Bioanal Chem 379:946–959Google Scholar
  87. Zurn S, Hsieh M, Smith G, Markus D, Zang M, Hughes G, Nam Y, Arik M, Polla D (2001) Fabrication and structural characterization of a resonant frequency PZT microcantilever. Smart Mater Struct 10:252–263CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial Engineering373 Snell Engineering Center Northeastern UniversityBostonUSA

Personalised recommendations