Piezoelectric-Based Micro- and Nano-Positioning Systems



This chapter provides an overview of piezoelectric-based micro- and nano-positioning systems with their widespread applications in scanning probe-based microscopy and imaging. Starting from single-axis nano-positioning actuators to 3D positioning piezoactive systems, this chapter presents a complete overview of the piezoelectric-based nano-positioning systems.


Atomic Force Microscope Scan Tunneling Microscope Piezoelectric Actuator Hysteresis Nonlinearity Slide Mode Control Strategy 


  1. Abramovitch DY, Anderson AB, Pao LY, Schitter G (2007) A tutorial on the mechanics dynamics and control of atomic force microscopes. Proceedings of the 2007 American control conference, New York, 11–13 JulyGoogle Scholar
  2. Aderiaens H, Koning W, Baning R (2000) Modeling piezoelectric actuators. IEEE/ASME Trans Mechatron 5:331–341CrossRefGoogle Scholar
  3. Akahori H, Haga Y, Matsunaga T, Totsu K, Iseki H, Esashi M, Wada H (2005) Piezoelectric 2D microscanner for precise laser treatment in the human body. Third IEEE/EMBS special topic conference on microtechnology in medicine and biology, Oahu, Hawaii, pp 166–169Google Scholar
  4. Ang WT, Garmon FA, Khosla PK, Riviere CN (2003) Rate-dependent hysteresis in piezoelectric actuators. Proceedings of IEEE international conference on intelligent robots and systems, vol 2. 1975–1980, Las Vegas, NVGoogle Scholar
  5. Aoshima S, Yoshizawa N, Yabuta T (1992) Compact mass axis alignment device with piezoelements for optical fibers. IEEE Photon Technol Lett 4:462–464CrossRefGoogle Scholar
  6. Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Optics Lett 11:288–290CrossRefGoogle Scholar
  7. Bardeen J (1961) Tunneling from a many-particle point of view. Phys Rev Lett 6:57–59CrossRefGoogle Scholar
  8. Bashash S (2005) Nonlinear modeling and control of piezoelectrically-driven nanostagers with application to scanning tunneling microscopy. M.Sc. Thesis. Clemson University, Clemson, SCGoogle Scholar
  9. Bashash S (2008) Modeling and control of piezoactive micro and nano systems. PhD Dissertation, Department of Mechanical Engineering, Clemson University, Clemson, SCGoogle Scholar
  10. Bashash S, Jalili N (2006a) Underlying memory-dominant nature of hysteresis in piezoelectric materials. J Appl Phys 100:014103CrossRefGoogle Scholar
  11. Bashash S, Jalili N (2007a) Intelligent rules of hysteresis in feedforward trajectory control of piezoelectrically-driven nanostages. J Micromech Microeng 17:342–349CrossRefGoogle Scholar
  12. Bashash S, Jalili N (2007b) Robust multiple-frequency trajectory tracking control of piezoelectrically-driven micro/nano positioning systems. IEEE Trans Control Syst Technol 15:867–878CrossRefGoogle Scholar
  13. Bashash S, Jalili N (2008) A polynomial-based linear mapping strategy for compensation of hysteresis in piezoelectric actuators. ASME Trans J Dyn Syst Measur Control 130:031008(1–10)Google Scholar
  14. Bashash S, Jalili N (2009) Robust adaptive control of coupled parallel piezo-flexural nano-positioning stages. IEEE/ASME Trans Mechatron 14(1):11–20CrossRefGoogle Scholar
  15. Baumgarten PK (1971) Electrostatic spinning of acrylic microfibers. J Colloid Interface Sci 36:71CrossRefGoogle Scholar
  16. Binnie G, Rohrer H, Gerber CH, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49:57–61CrossRefGoogle Scholar
  17. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:93–96CrossRefGoogle Scholar
  18. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49:57–61CrossRefGoogle Scholar
  19. Chen BM, Lee TH, Hang CC, Guo Y, Weerasooriya S (1999) An H almost disturbance decoupling robust controller design for a piezoelectric bimorph actuator with hysteresis. IEEE Trans Contr Syst Technol 7:160–174CrossRefGoogle Scholar
  20. Crick FHC, Hughes AFW (1950) The physical properties of cytoplasm: A study by means of the magnetic particle method. Exp Cell Res 1:37–80CrossRefGoogle Scholar
  21. Curtis R, Mitsui T, Ganz E (1997) Ultrahigh vacuum high speed scanning tunneling microscope. Rev Sci Instrum 68:2790–2796CrossRefGoogle Scholar
  22. Fukuda T, Dong L (2003) Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations. Proc IEEE 91:1803–1818CrossRefGoogle Scholar
  23. Gonda S, Doi T, Kurosawa T, Tanimura Y, Hisata N, Yamagishi T, Fujimoto H, Yukawa H (1999) Accurate topographic images using a measuring atomic force microscope. Appl Surf Sci 144–145:505–509CrossRefGoogle Scholar
  24. Henke A, Kümmel MA, Wallaschek J (1999) A piezoelectrically driven wire feeding system for high performance wedge wedge-bonding machines. Mechatronics 9:757–767CrossRefGoogle Scholar
  25. Hesselbach J, Ritter R, Thoben R, Reich C, Pokar G (1998) Visual control and calibration of parallel robots for microassembly. Proceedings of SPIE, vol 3519. Boston, MA, pp 50–61Google Scholar
  26. Hiremath S, Jalili N (2006) Optimal control of electrospinning for fabrication of nonwoven textile-based sensors and actuators. Proceedings of 3rd international conference of textile research, Cairo, Egypt, Apr 2006Google Scholar
  27. Hiremath S (2006) Development of an automated electrospinning process for nanofiber-based electronic-textile fabrication. MS Thesis, Department of Mechanical Engineering Clemson, DecGoogle Scholar
  28. Huang YC, Cheng CH (2004) Robust tracking control of a novel piezodriven monolithic flexure-hinge stage. Proceedings of IEEE international conference on control applications, vol 2. Taipei, Taiwan, pp 977–982Google Scholar
  29. Hwang CL, Chen YM, Jan C (2005) Trajectory tracking of large displacement piezoelectric actuators using a nonlinear observer-based variable structure control. IEEE Trans Control Syst Technol 13:56–66CrossRefGoogle Scholar
  30. Jalili N, Olgac N (1998) Time-optimal/sliding mode control implementation for robust tracking of uncertain flexible structures. Int J Mechatron 8(2):121–142CrossRefGoogle Scholar
  31. Kajiwara K, Hayatu M, Imaoka S, Fujita T (1997) Application of large-scale active microvibration control system using piezoelectric actuators to semiconductor manufacturing equipment. Proceedings of SPIE, vol 3044. Bellingham, WA, pp 258–269Google Scholar
  32. Kallio P, Koivo HN (1995) Microtelemanipulation: a survey of the application areas. Proceedings of the international conference on recent advances in mechatronics, ICRAM’95, Istanbul, Turkey, Aug, pp 365–372Google Scholar
  33. Kaqawa Y, Wakatsuki N, Takao T, Yoichi T (2006) A tubular piezoelectric vibrator gyroscope. IEEE Sens J 6:325–330CrossRefGoogle Scholar
  34. Laxminarayana K, Jalili N (2005) Functional nanotube-based textiles: pathway to next generation fabrics with enhanced sensing capabilities. Textile Res J 75(9):670–680CrossRefGoogle Scholar
  35. Lining S, Changhai R, Weibin R, Liguo C, Kong M (2004) Tracking control of piezoelectric actuator based on a new mathematical model. J Micromech Microeng 14:1439–1444CrossRefGoogle Scholar
  36. Lopez SJ, Miribel CP, Montane E, Puig VM, Bota SA, Samitier J, Simu U, Johansson S (2001) High accuracy piezoelectric-based microrobot for biomedical applications. IEEE Symp Emer Technol Factory Autom ETFA 2:603–609Google Scholar
  37. Moheimani SOR, Fleming AJ (2006) Piezoelectric transducers for vibration control and damping, Springer, New YorkMATHGoogle Scholar
  38. Ping G, Musa J (1997) Generalized Preisach model for hysteresis nonlinearity of piezoceramic actuators. Precision Eng 20:99–111CrossRefGoogle Scholar
  39. Saeidpourazar R, Jalili N (2008a) Towards fused vision and force robust feedback control of nanorobotic-based manipulation and grasping. mechatronics. Int J 18:566–577Google Scholar
  40. Saeidpourazar R, Jalili N (2009) Towards microcantilever-based force sensing and manipulation: modeling, control development and implementation. Int J Robotics Res 28(4):464–483CrossRefGoogle Scholar
  41. Salah M, McIntyre M, Dawson DM, Wagner JR (2007) Robust tracking control for a piezoelectric actuator. Proceedings of the American Control Conference, New York, NYGoogle Scholar
  42. Salapaka S, Sebastian A, Cleveland JP, Salapaka MV (2002) High bandwidth nano-positioner: a robust control approach. Rev Sci Instrum 73:3232–3241CrossRefGoogle Scholar
  43. Sastry S, Bodson M (1989) Adaptive control: stability, convergence, and robustness, Englewood Cliffs, NJMATHGoogle Scholar
  44. Shaoze Y, Fuxing Z, Zhen Q, Shizhu W (2006) A 3-DOFs mobile robot driven by a piezoelectric actuator. Smart Mater Struct 15:N7–N13CrossRefGoogle Scholar
  45. Slotine JJ, Sastry SS (1983) Tracking control of non-linear systems using sliding surface with application to robot manipulators. Int J Control 38:465–492MathSciNetMATHCrossRefGoogle Scholar
  46. Slotine JJ (1984) Sliding controller design for nonlinear systems. Int J Control 40:421–434MATHCrossRefGoogle Scholar
  47. Stroscio JA, Kaiser WJ (1993) Scanning tunneling microscopy. Academic Press, pp 149–150Google Scholar
  48. Su CY, Stepanenko Y, Svoboda J, Leung TP (2000) Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis. IEEE Trans Automatic Control 45:2427–2432MathSciNetMATHCrossRefGoogle Scholar
  49. Takayuki S, Kazuya U, Eiji M, Shiro S (2004) Fabrication and characterization of diamond AFM probe integrated with PZT thin film sensor and actuator. Sens Actuators A Phys 114:398–405CrossRefGoogle Scholar
  50. Tzen JJ, Jeng SL, Chieng WH (2003) Modeling of piezoelectric actuator for compensation and controller design. Precis Eng 27:70–76CrossRefGoogle Scholar
  51. Yang JS, Fang HY (2003) A piezoelectric gyroscope based on extensional vibrations of rods. Int J Appl Electromagn Mech 17:289–300Google Scholar
  52. Zhou J, Wen C, Zhang Y (2004) Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis. IEEE Trans Control Syst Technol 49:1751–1757MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial Engineering373 Snell Engineering Center Northeastern UniversityBostonUSA

Personalised recommendations