Conclusions and New Directions

  • Craig A. Grimes
  • Gopal K. Mor


We considered four synthesis generations of TiO2 nanotube arrays [1–3]. The first being aqueous solutions using HF as reported by Gong and co-workers [4], the second as reported by Cai et al. [5] using buffered KF or NaF aqueous solutions to achieve nanotube array lengths of several microns. The third synthesis generation, as initially reported by Paulose and co-workers [6–10], dwelt on the use of organic electrolytes, which extended the achievable nanotube array growth up to 1 mm. A fourth synthesis generation involves replacement of the fluorine ions, used in the first three synthesis generations with, most notably, chlorine as reported by Allam et al. [11, 12]. Each synthesis generation has provided new material properties, which in turn have enabled new applications.

First generation nanotube arrays, obtained in HF aqueous electrolytes, resulted in nanotubes with a pore size from 22 to 76 nm and a maximum achievable thickness of about 500 nm. A pore size of 120 nm and length of 1.1 μm were grown in acidic HF (i.e., 0.3 wt% HF + 1.0 M H3PO4) based electrolytes, while a pore size of about 90–140 nm and length 0.69–2.47 μm was achieved using acidic NH4F (NH4F/H3PO4) based electrolytes with non-Pt based transition elements (Fe, Co, Cu, Ta, and W) as counter electrodes [13]. An enabling discovery was that addition of acetic acid to the anodization electrolyte transformed the nanotubes from something quite fragile, prone to breaking during handling, to something mechanically robust. Conical shape nanotubes can be obtained by linearly varying the anodization voltage [14], while nanotube wall thickness can be varied through temperature for aqueous electrolytes [15], or acid content for organic electrolytes [1].


High Resolution Transmission Electron Microscope High Resolution Transmission Electron Microscope Nitrogen Doping Organic Electrolyte Transport Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Shankar K, Basham JI, Allam NK, Varghese OK, Mor GK, Feng X, Paulose M, Seabold JA, Choi KS, Grimes CA (2009). A review of recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J Phys Chem C 113:6327–6359CrossRefGoogle Scholar
  2. 2.
    Grimes CA (2007) Synthesis and application of highly-ordered arrays of TiO2 nanotubes. J Mater Chem 17:1451–1457CrossRefGoogle Scholar
  3. 3.
    Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol Energy Mater Sol Cells 90:2011–2075CrossRefGoogle Scholar
  4. 4.
    Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC (2001) Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res 16:3331–3334CrossRefGoogle Scholar
  5. 5.
    Cai Q, Paulose M, Varghese OK, Grimes CA (2005) The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J Mater Res 20:230–236CrossRefGoogle Scholar
  6. 6.
    Paulose M, Shankar K, Yoriya S, Prakasam HE, Varghese OK, Mor GK, Latempa TA, Fitzgerald A, Grimes CA (2006) Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length. J Phys Chem B 110:16179–16184CrossRefGoogle Scholar
  7. 7.
    Paulose M, Prakasam HE, Varghese OK, Peng L, Popat KC, Mor GK, Desai TA, Grimes CA (2007) TiO2 Nanotube arrays of 1,000 μm in length by anodization of titanium foil: Phenol red diffusion. J Phys Chem C 111:14992–14997CrossRefGoogle Scholar
  8. 8.
    Albu SP, Ghicov A, Macak JM, Schmuki P (2007) 250 μm long anodic TiO2 nanotubes with hexagonal self-ordering. Physica Status Solidi 1:R65–R67Google Scholar
  9. 9.
    Prakasam HE, Shankar K, Paulose M, Grimes CA (2007) A new benchmark for TiO2 nanotube array growth by anodization. J Phys Chem C 111:7235–7241CrossRefGoogle Scholar
  10. 10.
    Yoriya S, Paulose M, Varghese OK, Mor GK, Grimes CA (2007) Fabrication of vertically oriented TiO2 nanotube arrays using dimethyl sulfoxide electrolytes. J Phys Chem C 111:13770–13776CrossRefGoogle Scholar
  11. 11.
    Allam NK, Grimes CA (2007) Formation of vertically oriented TiO2 nanotube arrays using a fluoride free HCl aqueous electrolyte. J Phys Chem C 111:13028–13032CrossRefGoogle Scholar
  12. 12.
    Allam NK, Shankar K, Grimes CA (2008) Photoelectrochemical and water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytes. J Mater Chem 18:2341–2348CrossRefGoogle Scholar
  13. 13.
    Allam NK, Grimes CA (2008) Effect of cathode material on the morphology and photoelectrochemical properties of vertically oriented TiO2 nanotube arrays. Sol Energy Mater Sol Cells 92:1468–1475CrossRefGoogle Scholar
  14. 14.
    Mor GK, Varghese OK, Paulose M, Mukherjee N, Grimes CA (2003) Fabrication of tapered, conical-shaped titania nanotubes. J Mater Res 18:2588–2593CrossRefGoogle Scholar
  15. 15.
    Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2005) Enhanced photocleavage of water using titania nanotube arrays. Nano Lett 5:191–195CrossRefGoogle Scholar
  16. 16.
    Yoriya S, Mor GK, Sharma S, Grimes CA (2008) Synthesis of ordered arrays of discrete, partially crystalline titania nanotubes by Ti anodization using diethylene glycol electrolytes. J Mater Chem 18:3332–3336CrossRefGoogle Scholar
  17. 17.
    Shankar K, Mor GK, Prakasam HE, Yoriya S, Paulose M, Varghese OK, Grimes CA (2007) Highly-ordered TiO2 nanotube-arrays up to 220 μm in length: Use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18:065707CrossRefGoogle Scholar
  18. 18.
    Shankar K, Mor GK, Fitzgerald A, Grimes CA (2007) Cation effect on the electrochemical formation of very high aspect ratio TiO2 nanotube arrays in formamide-water mixtures. J Phys Chem C 111:21–26CrossRefGoogle Scholar
  19. 19.
    Ruan C, Paulose M, Varghese OK, Mor GK, Grimes CA (2005) Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. J Phys Chem B 109: 15754–15759CrossRefGoogle Scholar
  20. 20.
    Paulose M, Peng L, Popat KC, Varghese OK, LaTempa TJ, Bao N, Desai TA, Grimes CA (2008) Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes. J Membrane Sci 319:199–205CrossRefGoogle Scholar
  21. 21.
    Grimes CA, Varghese OK, Ranjan S (2008) Light, water, hydrogen: The solar generation of hydrogen by water photoelectrolysis. Springer, New YorkGoogle Scholar
  22. 22.
    Varghese OK, Gong D, Paulose M, Ong KG, Grimes CA, Dickey EC (2003) Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J Mater Res 18:156–165CrossRefGoogle Scholar
  23. 23.
    Sharma S, Varghese OK, LaTempa TJ, Mor GK, Allam NK, Grimes, CA (2009) Enhanced crystallization and photoelectrochemical performance of titania nanotube array photoanodes by a post-thermal anneal vapor treatment. J Mater Chem 19:3895–3898CrossRefGoogle Scholar
  24. 24.
    Varghese OK, Gong D, Paulose M, Ong KG, Grimes CA (2003) Hydrogen sensing using titania nanotubes, Sens Actuators B 93:338–344; Varghese OK, Mor GK, Grimes CA, Paulose M, Mukherjee N (2004) A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. J Nanosci Nanotechnol 4:733–737; Varghese OK, Gong D, Paulose M, Ong KG, Dickey EC, Grimes CA (2003) Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv Mater 15:624–662; Mor GK, Varghese OK, Paulose M, Ong KG, Grimes CA (2006) Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements. Thin Solid Films 496:42–48Google Scholar
  25. 25.
    Paulose M, Varghese OK, Mor GK, Grimes CA, Ong KG (2006) Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes. Nanotechnology 17:398–402CrossRefGoogle Scholar
  26. 26.
    Varghese OK, Yang X, Kendig J, Paulose M, Zeng K, Palmer C, Ong KG, Grimes CA (2006) A transcutaneous hydrogen sensor: From design to application. Sens Lett 4:120–128CrossRefGoogle Scholar
  27. 27.
    Mor GK, Varghese OK, Paulose M, Grimes CA (2003) A self-cleaning room temperature titania-nanotube hydrogen gas sensor. Sens Lett 1:42–46CrossRefGoogle Scholar
  28. 28.
    Mor GK, Carvalho MA, Varghese OK, Pishko MV, Grimes CA (2004) A room temperature TiO2 nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J Mater Res 19:628–634CrossRefGoogle Scholar
  29. 29.
    Allam NK, Feng X, Grimes CA (2008) Self-assembled fabrication of vertically oriented Ta2O5 nanotube arrays, and membranes thereof, by one-step Tantalum anodization. Chem Mater 20:6477–6481. Ruckh T, Porter JR, Allam NK, Feng X, Grimes CA, Popat KC (2009) Nanostructured tantala as a template for enhanced osseointegration. Nanotechnology 20:045102Google Scholar
  30. 30.
    Shin Y, Lee S (2009) A freestanding membrane of highly ordered anodic ZrO2 nanotube arrays. Nanotechnology 20:Art. No. 105301Google Scholar
  31. 31.
    LaTempa TJ, Grimes CA (2009) Hematite nanotube arrays by potentiostatic anodization of Ti foil: Photoelectrochemical properties. J Phys Chem C 113 (in press)Google Scholar
  32. 32.
    Varghese OK, Paulose M, Shankar K, Mor GK, Grimes CA (2005) Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. J Nanosci Nanotechnol 5:1158–1165CrossRefGoogle Scholar
  33. 33.
    Shankar K, Mor GK, Prakasam HE, Yoriya S, Paulose M, Varghese OK, Grimes CA (2007) Highly-ordered TiO2 nanotube arrays up to 220 μm in length: Use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18:065707–065711CrossRefGoogle Scholar
  34. 34.
    Mor GK, Prakasam HE, Varghese OK, Shankar K, Grimes CA (2007) Vertically oriented Ti–Fe–O nanotube array films: Toward a useful material architecture for solar spectrum water photoelectrolysis. Nano Lett 7:2356–2364CrossRefGoogle Scholar
  35. 35.
    Mor GK, Varghese OK, Wilke RHT, Sharma S, Shankar K, Latempa TJ, Choi KS, Grimes CA (2008) p-Type Cu–Ti–O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Lett 8:1906–1911CrossRefGoogle Scholar
  36. 36.
    Zhao J, Wang X, Kang Y, Xu X, Li Y (2008) Photoelectrochemical activities of W-doped titania nanotube arrays fabricated by anodization. IEEE Photonics Technol Lett 20:1213–1215CrossRefGoogle Scholar
  37. 37.
    Chen SG, Paulose M, Ruan C, Mor GK, Varghese OK, Grimes CA (2006) Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes: Preparation, characterization, and application to photoelectrochemical cells. J Photochem Photobiol A 177:177–184CrossRefGoogle Scholar
  38. 38.
    Seabold JA, Shankar K, Wilke RHT, Paulose M, Varghese OK, Grimes CA, Choi KS (2008) Photoelectrochemical properties of heterojunction CdTe/TiO2 electrodes constructed using highly ordered TiO2 nanotube arrays. Chem Mater 20:5266–5273CrossRefGoogle Scholar
  39. 39.
    Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218CrossRefGoogle Scholar
  40. 40.
    Zhu K, Neale NR, Miedaner A, Frank AJ (2006) Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett 7:69–74CrossRefGoogle Scholar
  41. 41.
    Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2007) High efficiency double heterojunction polymer photovoltaic cells using highly ordered TiO2 nanotube arrays. Appl Phys Lett 91:152111CrossRefGoogle Scholar
  42. 42.
    Shankar K, Mor GK, Paulose M, Varghese OK, Grimes CA (2008) Effect of device geometry on the performance of TiO2 nanotube array-organic semiconductor double heterojunction solar cells. J Non-Cryst Solids 354:2767–2771CrossRefGoogle Scholar
  43. 43.
    Shankar K, Mor GK, Prakasam HE, Varghese OK, Grimes CA (2007) Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells. Langmuir 23:12445–12449CrossRefGoogle Scholar
  44. 44.
    Popat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA (2007) Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 28:4880–4888CrossRefGoogle Scholar
  45. 45.
    Popat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA (2007) Titania nanotubes: A novel platform for drug-eluting coatings for medical implants? Small 11:1878–1881CrossRefGoogle Scholar
  46. 46.
    Popat KC, Leoni L, Grimes CA, Desai TA (2007) Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 28:3188–3197CrossRefGoogle Scholar
  47. 47.
    Peng L, Mendelsohn AD, LaTempa TJ, Yoriya S, Grimes CA, Desai TA (2009) Long-term small molecule and protein elution from TiO2 nanotubes. Nano Lett 9:1932–1936Google Scholar
  48. 48.
    Liu S, Chen A (2005) Coadsorption of horseradish peroxidase with thionine on TiO2 nanotubes for biosensing. Langmuir 21:8409–8413CrossRefGoogle Scholar
  49. 49.
    Xie Y, Zhoua L, Huang H (2007) Bioelectrocatalytic application of titania nanotube array for molecule detection. Biosens Bioelectron 22:2812–2818CrossRefGoogle Scholar
  50. 50.
    Roy SC, Paulose M, Grimes CA (2007) The effect of TiO2 nanotubes in the enhancement of blood clotting for the control of hemorrhage. Biomaterials 28:4667–4672CrossRefGoogle Scholar
  51. 51.
    Fabregat-Santiago F, Barea EM, Bisquert J, Mor GK, Shankar K, Grimes CA (2008) High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping. J Am Chem Soc 130:11312–11316CrossRefGoogle Scholar
  52. 52.
    Bisquert J (2008) Physical electrochemistry of nanostructured devices. Phys Chem Chem Phys 10:49–72CrossRefGoogle Scholar
  53. 53.
    Bisquert J (2003) Chemical capacitance of nanostructured semiconductors: Its origin and significance for nanocomposite solar cells. Phys Chem Chem Phys 5:5360–5364CrossRefGoogle Scholar
  54. 54.
    Bisquert J, Fabregat-Santiago F, Mora-Seró I, Garcia-Belmonte G, Barea EM, Palomares E (2007) A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors. Inorganica Chim Acta 361:684–698CrossRefGoogle Scholar
  55. 55.
    Kopidakis N, Benkstein KD, van de Lagemaat J, Frank AJ (2003) Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells. J Phys Chem B 107:11307–11315CrossRefGoogle Scholar
  56. 56.
    Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F, Ferriols NS, Bogdanoff P, Pereira EC (2000) Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution. J Phys Chem B 104:2287–2298CrossRefGoogle Scholar
  57. 57.
    Bisquert J (2002) Theory of the impedance of electron diffusion and recombination in a thin layer. J Phys Chem B 106:325–333CrossRefGoogle Scholar
  58. 58.
    Fabregat-Santiago F, Bisquert J, Garcia-Belmonte G, Boschloo G, Hagfeldt A (2005) Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Solar Energy Mater Solar Cells 87:1–4CrossRefGoogle Scholar
  59. 59.
    Wang Q, Ito S, Grätzel M, Fabregat-Santiago F, Mora-Seró I, Bisquert J, Bessho T, Imai H (2006) Characteristics of high efficiency dye-sensitized solar cells. J Phys Chem B 50:25210–25221CrossRefGoogle Scholar
  60. 60.
    Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269CrossRefGoogle Scholar
  61. 61.
    Lemon BI, Hupp JT (1996) Photochemical quartz crystal microbalance study of the nanocrystalline titanium dioxide semiconductor electrode/water interface: Simultaneous photoaccumulation of electrons and protons. J Phys Chem 100:14578–14580CrossRefGoogle Scholar
  62. 62.
    Patermarakis G, Moussoutzanis K (1995) Mathematical models for the anodization conditions and structural features of porous anodic Al2O3 films on aluminum. J Electrochem Soc 142:737–743CrossRefGoogle Scholar
  63. 63.
    Muñoz AG (2007) Semiconducting properties of self-organized TiO2 nanotubes. Electrochim Acta 52:4167–4176CrossRefGoogle Scholar
  64. 64.
    Ghicov A, Tsuchiya H, Hahn R, Macak JM, Muñoz AG, Schmuki P (2006) TiO2 nanotubes: H+ insertion and strong electrochromic effects. Electrochem Commun 8:528–532CrossRefGoogle Scholar
  65. 65.
    Fabregat-Santiago F, Mora-Seró I, Garcia-Belmonte G, Bisquert J (2003) Cyclic voltammetry studies of nanoporous semiconductors. Capacitive and reactive properties of nanocrystalline TiO2 electrodes in aqueous electrolyte. J Phys Chem B 107:758–768CrossRefGoogle Scholar
  66. 66.
    Fabregat-Santiago F, Bisquert J, Palomares E, Otero L, Kuang D, Zakeeruddin SM, Gratzel M (2007) Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. J Phys Chem C 111:6550–6560CrossRefGoogle Scholar
  67. 67.
    Sze SM (1981) Physics of semiconductor devices, 2nd edn. John Wiley and Sons, New YorkGoogle Scholar
  68. 68.
    Yan SG, Hupp JT (1996) Semiconductor-based interfacial electron-transfer reactivity: Decoupling kinetics from pH-dependent band energetics in a dye-sensitized titanium dioxide aqueous solution system. J Phys Chem 100:6867–6870CrossRefGoogle Scholar
  69. 69.
    Wang Q, Zhang Z, Zakeeruddin SM, Gratzel M (2008) Enhancement of the performance of dye-sensitized solar cell by formation of shallow transport levels under visible light illumination. J Phys Chem C 112:7084–7092CrossRefGoogle Scholar
  70. 70.
    Chappel S, Grinis L, Ofir A, Zaban A (2005) Extending the current collector into the nanoporous matrix of dye sensitized electrodes. J Phys Chem B 109:1643–1647CrossRefGoogle Scholar
  71. 71.
    Varghese OK, Paulose M, LaTempa TJ, Grimes CA (2009) High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett 9:731–737CrossRefGoogle Scholar
  72. 72.
    Buesseler KO, Doney SC, Karl DM, Boyd PW, Fei C, Coale KH, De Baar JWH, Falkowski PG, Johnson KS, Lampitt RS, Michaels AF, Nagvi SWA, Smetacek V, Takeda S, Watson AJ (2008) Ocean iron fertilization- moving forward in a sea of uncertainty. Science 319:162–163CrossRefGoogle Scholar
  73. 73.
    Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrochemical reduction of carbon dioxide in aqueous suspensions of semiconductor powder. Nature 277:637–638CrossRefGoogle Scholar
  74. 74.
    Halmann M, Ulman M, Blajeni BA (1983) Photochemcial solar collector for the photoassisted reduction of aqueous carbon dioxide. Solar Energy 31:429–431CrossRefGoogle Scholar
  75. 75.
    Cook RL, MacDuff RC, Sammells AF (1988) Photoelectrochemical carbon dioxide reduction to hydrocarbons at ambient temperature and pressure. J Electrochem Soc 135:3069–3070CrossRefGoogle Scholar
  76. 76.
    Adachi K, Ohta K, Mizuna T (1994) Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide. Solar Energy 53:187–190CrossRefGoogle Scholar
  77. 77.
    Anpo M, Yamashita H, Ichihashi Y, Ehara S (1995) Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. J Electroanal Chem 396:21–26CrossRefGoogle Scholar
  78. 78.
    Thampi KR, Kiwi J, Gratzel M (1987) Methanation and photomethanation of carbon dioxide at room temperature and atmospheric pressure. Nature 327:506–508CrossRefGoogle Scholar
  79. 79.
    Melsheimer J, Guo W, Ziegler D, Wesemann M, Schlogl R (1991) Methanation of carbon dioxide over Ru/titania at room temperature: explorations for a photoassisted catalytic reaction. Catal Lett 11:157–168CrossRefGoogle Scholar
  80. 80.
    Tan SS, Zou L, Hu E (2007) Photosynthesis of hydrogen and methane as key components for clean energy system. Sci Technol Adv Mater 9:89–92Google Scholar
  81. 81.
    Tan SS, Zou L, Hu E (2006) Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets. Catal Today 115:269–273CrossRefGoogle Scholar
  82. 82.
    Lo C-C, Hung C-H, Yuan C-S, Wu J-F (2007) Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Solar Energy Mater Solar Cells 91:1765–1774CrossRefGoogle Scholar
  83. 83.
    Nishimura A, Sugiura N, Kato S, Maruyama N (2004) High yield CO2 conversion into CH4 by photocatalyst multiplayer film, 2nd International Energy Conversion Engineering Conference, 16–19 August 2004. Rhode Island, USAGoogle Scholar
  84. 84.
    Lindgren T, Mwabora JM, Avendano E, Jonsson J, Hoel A, Granqvist CG, Lindquist SE (2007) Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive dc magnetron sputtering. J Phys Chem B 107:5709–5716CrossRefGoogle Scholar
  85. 85.
    Emeline AV, Kuznetsov VN, Rybchuk VK, Serpone N (2008) Visibe-light-active titania photocatalysts: The case of N-doped TiO2S- Properties and some fundamental issues. Inter J Photoenergy 258394:1–19CrossRefGoogle Scholar
  86. 86.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysts in nitrogen-doped titanium oxides. Science 293:269–271CrossRefGoogle Scholar
  87. 87.
    Chen X, Lou Y, Samia ACS, Burda C, Gole JL (2005) Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: Comparison to a commercial nanopowder. Adv Funct Mater 15:41–49CrossRefGoogle Scholar
  88. 88.
    Liu G, Li F, Wang D-W, Tang D-M, Liu C, Ma X, Lu GQ, Cheng H-M (2008) Electron field emission of a nitrogen-doped TiO2 nanotube array, Nanotechnology 19 025606:1–6Google Scholar
  89. 89.
    Torres GR, Lindgren T, Lu J, Granqvist CG, Lindquest SE (2004) Photoelectrochemical study of nitrogen doped titanium dioxide for water oxidation. J Phys Chem B 108:5995–6003CrossRefGoogle Scholar
  90. 90.
    Batzill M, Morales EH, Diebold U (2006) Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase, Phys Rev Lett 96 Art. No. 026103Google Scholar
  91. 91.
    Henderson MA, White JM, Uetsuka H, Onishi H (2003) Photochemical charge transfer and trapphing at the interface between an organic adlayer and an oxide semiconductor. J Am Chem Soc 125:14974–14975CrossRefGoogle Scholar
  92. 92.
    Gerischer H (1979) Solar photoelectrolysis with semiconductor electrodes. In: Seraphin BO (ed) Solar energy conversion: Solid-state physics aspects, vol 31, Topics in applied physics. Springer, NY, pp 115–172Google Scholar
  93. 93.
    Munoz AG (2007) Semiconducting properties of self-organized TiO2 nanotubes. Electrochim Acta 52:4167–4176CrossRefGoogle Scholar
  94. 94.
    Sayama K, Arakawa H (1993) Photocatalytic decomposition of water and photocatalytic reduction of carbon dioxide over ZrO2 catalyst. J Phys Chem 97:531–533CrossRefGoogle Scholar
  95. 95.
    Yu KP, Yu WY, Kuo MC, Liou YC, Chien SH (2008) Pt/titania nanotube: A potential catalyst for CO2 adsorption and hydrogenation. Appl Catal B 84:112–118CrossRefGoogle Scholar
  96. 96.
    Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: Principles, mechanisms and selected results. Chem Rev 95:735–758CrossRefGoogle Scholar
  97. 97.
    Salvador P (1984) Hole diffusion length in n-TiO2 single crystals and sintered electrodes: Photoelectrochemical determination and comparative analysis. J. Appl Phys 55:2979–2983CrossRefGoogle Scholar
  98. 98.
    Dloczik L, Ileperuma O, Lauermann I, Peter LM, Ponomarev EA, Redmond G, Shaw NJ, Uhlendorf I (1997) Dynamic response of dye-sensitized nanocrystalline solar cells: Characterization by intensity-modulated photocurrent spectroscopy. J Phys Chem B 101:10281–10286CrossRefGoogle Scholar
  99. 99.
    Tanaka K, Miyahara K, Toyoshima I (1984) Adsorption of CO2 on TiO2 and Pt/TiO2 studied by X-ray photoelectron spectroscopy and Auger electron spectroscopy. J Phys Chem 88:3504–3508CrossRefGoogle Scholar
  100. 100.
    Varghese OK, Grimes CA (2003) Metal oxide nanoarchitectures for environmental sensing. J Nanosci Nanotechnol 3:277–293CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentPennsylvania State UniversityUniversity ParkUSA
  2. 2.Materials Research InstitutePennsylvania State UniversityUniversity ParkUSA

Personalised recommendations