Use of TiO2 Nanotube Arrays for Biological Applications

  • Craig A. Grimes
  • Gopal K. Mor


Protein immobilization on solid substrates underlies various experimental approaches in biology and biophysics [1–5]. Immobilized proteins are instrumental in identifying protein–protein, protein–DNA, and protein–molecule interactions for a variety of diagnostic and profiling purposes [5–9]. The support material must have active surface areas for protein binding, and good mechanical, thermal, and chemical stability. Bioelectrocatalytic systems allow the sensitive detection of affinity-based interactions between complementary molecule pairs [10] through electrical signals related to electrochemical reactions, while amperometric biosensors offer a convenient and potential application in the area of biomedical diagnosis as well as environmental analysis [11–13]. In this chapter, we consider the use of co-immobilized TiO2 nanotube arrays as a biosensor platform for H2O2 and glucose detection.

Titanium and its alloys are widely used as implants due to its high strength, biocompatibility and high level of hemocompatibility [14, 15]. The high degree of Ti alloy biocompatibility is due to their ability to form stable and dense thin oxide layers in most environments. It is believed that thicker and more stable TiO2-based oxide surfaces are generally favorable for surface bioactivity [16, 17]. Spark anodization is commonly used to increase the biocompatibility of titanium and its alloys, with the process leading to the formation of a disordered oxide structure several hundred nanometers thick [18, 19]. In contrast to this approach, the electrochemical formation of highly ordered TiO2 nanotube arrays offer a unique surface for biomedical implants that offers both biocompatibility as well as drug eluting properties. We review the use of TiO2 nanotube arrays to enhance apatite formation, cell activity, drug elution, and the application of TiO2 nanotubular membranes for protein separation and drug delivery.


Simulated Body Fluid Simulated Body Fluid Solution Sodium Titanate Magnetoelastic Sensor Supersaturated Calcium Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    DeGrado WF (2003) Computational biology – biosensor design. Nature 423:132–133Google Scholar
  2. 2.
    MacBeath G, Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289:1760–1763Google Scholar
  3. 3.
    Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean RA, Gerstein M, Snyder M (2001) Global analysis of protein activities using proteome chips. Science 293:2101–2105Google Scholar
  4. 4.
    Hultschig C, Kreutzberger J, Seitz H, Konthur Z, Bussow K, Lehrach H (2006) Recent advances of protein microarrays. Curr Opin Chem Biol 10:4–10Google Scholar
  5. 5.
    Phizicky E, Bastiaens PI, Zhu H, Snyder M, Fields S (2003) Protein analysis on a proteomic scale. Nature 422:208–215Google Scholar
  6. 6.
    Hall DA, Zhu H, Zhu X, Royce T, Gerstein M, Snyder M (2004) Regulation of gene expression by a metabolic enzyme. Science 306:482–484Google Scholar
  7. 7.
    Huang J, Zhu H, Haggarty SJ, Spring DR, Hwang H, Jin F, Snyder M, Schreiber SL (2004) Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proc Natl Acad Sci USA 101:16594–16599Google Scholar
  8. 8.
    Haab BB (2006) Applications of antibody array platforms. Curr Opin Biotechnol 17:415–421Google Scholar
  9. 9.
    Robinson WH (2006) Antigen arrays for antibody profiling. Curr Opin Chem Biol 10:67–72Google Scholar
  10. 10.
    Lojou E, Bianco P (2006) Application of the electrochemical concepts and techniques to amperometric biosensor devices. J Electroceram 16:79–91Google Scholar
  11. 11.
    Akyilmaz E, Sezginturk MK, Dinckaya E (2003) A biosensor based on urate oxidase-peroxidase coupled enzyme system for uric acid determination in urine. Talanta 61:73–79Google Scholar
  12. 12.
    Dzyadevych SV, Anh TM, Soldatkin AP, Chien ND, Jaffrezic-Renault N, Chovelon JM (2002) Development of enzyme biosensor based on pH-sensitive field-effect transistors for detection of phenolic compounds. Bioelectrochem 55:79–81Google Scholar
  13. 13.
    Yemini M, Reches M, Gazit E, Rishpon J (2005) Peptide nanotube-modified electrodes for enzyme-biosensor applications. Anal Chem 77:5155–5159Google Scholar
  14. 14.
    Liu XY, Chu PK, Ding CX (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R 47:49–121Google Scholar
  15. 15.
    Long M, Rack HJ (1998) Titanium alloys in total joint replacement – a materials science perspective. Biomater 19:1621–1639Google Scholar
  16. 16.
    Sul YT, Johansson CB, Petronis S, Krozer A, Jeong Y, Wennerberg A (2002) Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomater 23:491–501Google Scholar
  17. 17.
    Yang BC, Uchida M, Kim HM, Zhang XD, Kokubo T (2004) Preparation of bioactive titanium metal via anodic oxidation treatment. Biomater 25:1003–1010Google Scholar
  18. 18.
    Dyer CK, Leach JSL (1978) Breakdown and efficiency of anodic oxide growth on titanium. J Electrochem Soc 125:1032–1038Google Scholar
  19. 19.
    Marchenoir JJC, Loup JP, Masson JE (1980) Study of porous layers formed by anodic-oxidation of titanium at high voltages. Thin Solid Films 66:357–369Google Scholar
  20. 20.
    Ruan C, Yang F, Lei C, Deng J (1998) Thionine covalently tethered to multilayer horseradish peroxidase in a self-assembled monolayer as an electron-transfer mediator. Anal Chem 70:1721–1725Google Scholar
  21. 21.
    Ruan C, Yang R, Chen X, Deng J (1998) A reagentless amperometric hydrogen peroxide biosensor based on covalently binding horseradish peroxidase and thionine using a thiol-modified gold electrode. J Electroanal Chem 455:121–125Google Scholar
  22. 22.
    Wollenberger U, Drungiliene A, Stocklein W, Kulys JJ, Scheller FW (1996) Direct electrocatalytic determination of dissolved peroxidases. Anal Chim Acta 329:231–237Google Scholar
  23. 23.
    Liu S, Chen A (2005) Coadsorption of horseradish peroxidase with thionine on TiO2 nanotubes for biosensing. Langmuir 21:8409–8413Google Scholar
  24. 24.
    Topoglidis E, Cass AEG, Gilardi G, Sadeghi S, Beaumont N, Durrant JR (1998) Protein adsorption on nanocrystalline TiO2 films: an immobilization strategy for bioanalytical devices. Anal Chem 70:5111–5113Google Scholar
  25. 25.
    Zhang JK, Cass AEG (2001) A study of his-tagged alkaline phosphatase immobilization on a nanoporous nickel-titanium dioxide film. Anal Biochem 292:307–310Google Scholar
  26. 26.
    Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC (2001) Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res 16:3331–3334Google Scholar
  27. 27.
    Holt RE, Cotton TM (1989) Surface-enhanced resonance raman and electrochemical investigation of glucose-oxidase catalysis at a silver electrode. J Am Chem Soc 111:2815–2821Google Scholar
  28. 28.
    Clavilier J, Svetlicic V, Zutic V (1995) Thionine self-assembly on polyoriented gold and sulfur-modified gold electrodes. J Electroanal Chem 386:157–163Google Scholar
  29. 29.
    Nassar AEF, Willis WS, Rusling JF (1995) Electron-transfer from electrodes to myoglobin – facilitated in surfactant films and blocked by adsorbed biomacromolecules. Anal Chem 67:2386–2392Google Scholar
  30. 30.
    Xiao P, Garcia BB, Guo Q, Liu D, Cao G (2007) TiO2 nanotube arrays fabricated by anodization in different electrolytes for biosensing. Electrochem Commun 9:2441–2447Google Scholar
  31. 31.
    Zhao G, Lei Y, Zhang Y, Li H, Liu M (2008) Growth and favorable bioelectrocatalysis of multishaped nanocrystal Au in vertically aligned TiO2 nanotubes for hemoprotein. J Phys Chem C 112:14786–14795Google Scholar
  32. 32.
    Xie Y, Zhoua L, Huang H (2007) Bioelectrocatalytic application of titania nanotube array for molecule detection. Biosens Bioelectron 22:2812–2818Google Scholar
  33. 33.
    Pang X, He D, Luo S, Cai Q (2009) An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays composite. Sens Actuators B 137:134–138Google Scholar
  34. 34.
    Rizoli SB, Nascimento B, Osman F, Netto FS, Kiss A, Callum J, Brenneman FD, Tremblay L, Tien HC (2006) Recombinant activated coagulation factor VII and bleeding trauma patients. J Trauma-Inj Infect Crit Care 61:1419–1425Google Scholar
  35. 35.
    Fries D, Haas T, Velik-Salchner C, Lindner K, Innerhofer R (2005) Management of coagulation after multiple trauma. Anaesthesist 54:137–154Google Scholar
  36. 36.
    Wirz S, Knuefermann P, Baumgarten G, Potzsch B, Schaller C, Nadstawek J (2003) Head trauma and blood coagulation disorders. Anaesthaseol Intensiv 44:478–490Google Scholar
  37. 37.
    Roy SC, Paulose M, Grimes CA (2007) The effect of TiO2 nanotubes in the enhancement of blood clotting for the control of hemorrhage. Biomater 28:4667–4672Google Scholar
  38. 38.
    Grimes CA, Ong KG, Loiselle K, Stoyanov PG, Kouzoudis D, Liu Y, Tong C, Tefiku F (1999) Magnetoelastic sensors for remote query environmental monitoring. J Smart Mater Struct 8:639–646Google Scholar
  39. 39.
    Stoyanov PG, Grimes CA (2000) A remote query magnetostrictive viscosity sensor. Sens Actuators A 80:8–14Google Scholar
  40. 40.
    Puckett LG, Barrett G, Kouzoudis D, Grimes CA, Bachas LG (2003) Monitoring blood coagulation with magnetoelastic sensors. Biosens Bioelectron 18:675–681Google Scholar
  41. 41.
    Puckett LG, Lewis JK, Urbas A, Cui X, Gao D, Bachas LG (2005) Magnetoelastic transducers for monitoring coagulation, clot inhibition, and fibrinolysis. Biosens Bioelectron 20:1737–1743Google Scholar
  42. 42.
    Zeng K, Roy SC, Grimes CA (2007) Quantification of blood clotting kinetics, Part I: determination of activated clotting times as a function of heparin concentration using magnetoelastic sensors. Sens Lett 5:439–445Google Scholar
  43. 43.
    Roy SC, Ong KG, Zeng K, Grimes CA (2007) Quantification of blood clotting kinetics, Part II: thromboelastograph analysis and measurement of erythrocyte sedimentation rate using magnetoelastic sensors. Sens Lett 5:446–454Google Scholar
  44. 44.
    de Lacheisserie E duT (1993) Magnetostriction: theory and applications of magnetoelasticity. In: Handbook of chemistry and physics, CRC Press, New YorkGoogle Scholar
  45. 45.
    Ong KG, Leland JM, Zeng K, Barrett G, Zourob M, Grimes CA (2006) A rapid highly-sensitive endotoxin detection system. Biosens Bioelectron 21:2270–2274Google Scholar
  46. 46.
    Guyton AC, Hall JE (2000) Hemostasis and blood coagulation In: A textbook of medical physiology. Saunders WB Company, USA, pp. 390–399Google Scholar
  47. 47.
    Carr ME, Krischnaswami A, Martin E (2007) Method of using platelet contractile force and whole blood clot elastic modulus as clinical markers. US patent 7192726Google Scholar
  48. 48.
    Black J, Hasting G (eds) (1998) Handbook of biomaterial properties. Chapman & Hall, London, pp 179–200Google Scholar
  49. 49.
    Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (1996) Biomaterials science. Academic Press, San Diego, CAGoogle Scholar
  50. 50.
    Uchida M, Kim HM, Kokubo T, Fujibayashi S, Nakamura T (2003) Structural dependence of apatite formation on titania gels in a simulated body fluid. J Biomed Mater Res 64:164–170Google Scholar
  51. 51.
    Lugscheider E, Weber T, Knepper M, Vizethum F (1991) Production of biocompatible coatings by atmospheric plasma spraying. Mater Sci Eng A 139:45–48Google Scholar
  52. 52.
    Ducheyne P, van Raemdonck W, Heughebaert JC, Heughebaert M (1986) Structural analysis of hydroxyapatite coatings on titanium. Biomater 7:97–103Google Scholar
  53. 53.
    Cooley DR, Van Dellen AF, Burgess JO, Windeler AS (1992) The advantages of coated titanium implants prepared by radio frequency sputtering from hydroxyapatite. J Prosthet Dent 67:93–100Google Scholar
  54. 54.
    de Andrade MC, Sader MS, Filgueiras MRT, Ogasawara T (2000) Microstructure of ceramic coating on titanium surface as a result of hydrothermal treatment. J Mater Sci: Mater Med 11:751–755Google Scholar
  55. 55.
    Kim HM, Miyaji F, Kokubo T, Nakamura T (1996) Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res 32:409–417Google Scholar
  56. 56.
    Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000) Enhanced functions of osteoblast on nanophase ceramics. Biomater 21:1803–1810Google Scholar
  57. 57.
    Webster TJ, Schandler LS, Siegel RW, Bizios R (2001) Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. Tissue Eng 7:291–301Google Scholar
  58. 58.
    Oh SH, Finones RR, Daraio C, Chen LH, Jin S (2005) Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomater 26:4938–4943Google Scholar
  59. 59.
    Oh HJ, Lee JH, Kim YJ, Suh SJ, Lee JH, Chi CS (2008) Surface characteristics of porous anodic TiO2 layer for biomedical applications. Mater Chem Phys 109:10–14Google Scholar
  60. 60.
    Kim SE, Lim JH, Lee SC, Nam SC, Kang HG, Choi J (2008) Anodically nanostructured titanium oxides for implant applications. Electrochim Acta 53:4846–4851Google Scholar
  61. 61.
    Xiao XF, Liu RF, Tian T (2008) Preparation of bioactive titania nanotube arrays in HF/Na2HPO4 electrolyte. J Alloys Compd 466:356–362Google Scholar
  62. 62.
    Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solution able to reproduce in-vivo surface-structure changes in bioactive glass-ceramic. J Biomed Mater Res 24:721–734Google Scholar
  63. 63.
    Oh S, Jin S (2006) Titanium oxide nanotubes with controlled morphology for enhanced bone growth. Mater Sci Eng C 26:1301–1306Google Scholar
  64. 64.
    Chen M, Yang X, He F, Liu Y, Zhu S, Cui Z (2003) Effect of NaOH concentration on formation of bone-like apatite layer on NiTi shape memory alloy. Jinshu Xuebao 39:859–864Google Scholar
  65. 65.
    Wang XX, Hayakawa S, Tsuru K, Osaka A (2001) A comparative study of in vitro apatite deposition on heat-, H2O2-, and NaOH-treated titanium surfaces. J Biomed Mater Res 54:172–178Google Scholar
  66. 66.
    Uchida M, Kim HM, Kokubo T, Fujibayashi S, Nakamura T (2002) Effect of water treatment on the apatite-forming ability of NaOH treated titanium metal. J Biomed Mater Res 63:522–530Google Scholar
  67. 67.
    Kunze J, Muller L, Macak JM, Greil P, Schmuki P, Muller FA (2008) Time-dependent growth of biomimetic apatite on anodic TiO2 nanotubes. Electrochim Acta 53:6995–7003Google Scholar
  68. 68.
    Li MO, Xiao X, Liu R (2008) Synthesis and bioactivity of highly ordered TiO2 nanotube arrays. Appl Surf Sci 255:365–367Google Scholar
  69. 69.
    Ma Q, Li M, Hu Z, Chen Q, Hu W (2008) Enhancement of the bioactivity of titanium oxide nanotubes by precalcification. Mater Lett 62:3035–3038Google Scholar
  70. 70.
    Wen HB, Wolke JGC, de Wijin JR, Liu Q, Cui FZ, de Groot K (1997) Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatments. Biomater 18:1471–1478Google Scholar
  71. 71.
    Ostermann PA, Henry SL, Seligson D (1993) The role of local antibiotic therapy in the management of compound fractures. Clin Orthop Relat Res 295:102–111Google Scholar
  72. 72.
    Hendriks JG, van Horn JR, van der Mei HC, Busscher H (2004) Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection. Biomater 25:545–556Google Scholar
  73. 73.
    Popat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA (2007) Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomater 28:4880–4888Google Scholar
  74. 74.
    Popat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA (2007) Titania nanotubes: a novel platform for drug-eluting coatings for medical implants? Small 11:1878–1881Google Scholar
  75. 75.
    Peng L, Mendelsohn AD, LaTempa TJ, Yoriya S, Grimes CA, Desai TA (2009) Long-term small molecule and protein elution from TiO2 nanotubes. Nano Letters 9:1932–1936Google Scholar
  76. 76.
    Dalby MJ, McCloy D, Robertson M, Agheli H, Sutherland D, Affrossman S (2006) Osteoprogenitor response to semiordered and random nanotopographies. Biomater 27:2980–2987Google Scholar
  77. 77.
    Dalby MJ, McCloy D, Robertson M, Wilkinson CD, Oreffo RO (2006) Osteoprogenitor response to defined topographies with nanoscale depths. Biomater 27:1306–1315Google Scholar
  78. 78.
    Popat KC, Daniels RH, Dubrow RS, Hardev V, Desai TA (2006) Nanostructured surfaces for bone biotemplating applications. J Orthop Res 24:619–627Google Scholar
  79. 79.
    Ratner BD (2004) Correlation, surfaces and biomaterials science. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine. Elsevier/Academic Press, Amsterdam, p 765Google Scholar
  80. 80.
    Boyan BD, Hummert TW, Dean DD, Schwartz Z (1996) Role of material surfaces in regulating bone and cartilage cell response. Biomater 17:137–146Google Scholar
  81. 81.
    Balasundarama G, Webster TJ (2006) A perspective on nanophase materials for orthopedic implant applications. J Mater Chem 16:3737–3745Google Scholar
  82. 82.
    Altankov G, Grinnell F, Groth T (1996) Studies on the biocompatibility of materials: fibroblast reorganization of substratum bound fibronectin on surfaces varying in wettability. J Biomed Mater Res 30:385–391Google Scholar
  83. 83.
    Groth T, Altankov G (1996) Studies on cell–biomaterial interaction: role of tyrosine phosphorylation during fibroblast spreading on surfaces varying in wettability. Biomater 17:1227–1234Google Scholar
  84. 84.
    Chen M, Zamora PO, Som P, Pena LA, Osaki S (2003) Cell attachment and biocompatibility of polytetrafluoroethylene (PTFE) treated with glow-discharge plasma of mixed ammonia and oxygen. J Biomater Sci Polym Edit 14:917–935Google Scholar
  85. 85.
    Faucheux N, Schweiss R, Lutzow K, Werner C, Groth T (2004) Self assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomater 25:2721–2730Google Scholar
  86. 86.
    Ikada Y (1994) Surface modification of polymers for medical applications. Biomater 15:725–736Google Scholar
  87. 87.
    Lee JH, Khang G, Lee JW, Lee HB (1998) Interaction of different types of cells on polymer surfaces with wettability gradient. J Colloid Interf Sci 205:323–330Google Scholar
  88. 88.
    Balaur E, Macak JM, Taveira L, Schmuki P (2005) Tailoring the wettability of TiO2 nanotube layers. Electrochem Commun 7:1066–1070Google Scholar
  89. 89.
    Balaur E, Macak JM, Tsuchiya H, Schmuki P (2005) Wetting behaviour of layers of TiO2 nanotubes with different diameters. J Mater Chem 15:4488–4491Google Scholar
  90. 90.
    Bauer S, Park J, von der Mark K, Schmuki P (2008) Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes. Acta Biomater 4:1576–1582Google Scholar
  91. 91.
    Jiang YH, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du JB, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49Google Scholar
  92. 92.
    Park J, Bauer S, von der Mark K, Schmuki P (2007) Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett 7:1686–1691Google Scholar
  93. 93.
    Popat KC, Leoni L, Grimes CA, Desai TA (2007) Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 28:3188–3197Google Scholar
  94. 94.
    Zeman LJ, Zydney A (1996) Microfiltration and Ultrafiltration. CRC Press, New YorkGoogle Scholar
  95. 95.
    Paulose M, Peng L, Popat KC, Varghese OK, LaTempa TJ, Bao N, Desai TA, Grimes CA (2008) Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes. J Membrane Sci 319:199–205Google Scholar
  96. 96.
    Paulose M, Prakasam HE, Varghese OK, Peng L, Popat KC, Mor GK, Desai TA, Grimes CA (2007) TiO2 nanotube arrays of 1,000 μm length by anodization of titanium foil: phenol red diffusion. J Phys Chem C 111:14992–14997Google Scholar
  97. 97.
    Popat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA (2007) Titania nanotubes: a novel platform for drug-eluting coatings for medical implants? Small 11:1878–1881Google Scholar
  98. 98.
    Daoud WA, Pang GK (2006) Direct synthesis of nanowires with anatase and TiO2-B structures at near ambient conditions. J Phys Chem B 110:25746–25750Google Scholar
  99. 99.
    Mor GK, Carvalho MA, Varghese OK, Pishko MV, Grimes CA (2004) A room temperature TiO2-nanotube hydrogen sensor able to self clean photoactively from environmental contamination. J Mater Res 19:628–634Google Scholar
  100. 100.
    Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2005) Enhanced photocleavage of water using titania nanotube arrays. Nano Lett 5:191–195Google Scholar
  101. 101.
    Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218Google Scholar
  102. 102.
    Sharkawy AA, Klitzman B, Truskey GA, Reichert WM (1998) Engineering the tissue, which encapsulates subcutaneous implants. II. Plasma–tissue exchange properties. J Biomed Mater Res 40:586–597Google Scholar
  103. 103.
    Aityan SK, Portnov VI (1986) Computer-simulation of single-file transport. Gen Physiol Biophys 5:351–364Google Scholar
  104. 104.
    Aityan SK, Portnov VI (1988) Analysis of models of single-file diffusion. Gen Physiol Biophys 7:591–611Google Scholar
  105. 105.
    Hahn K, Karger J, Kukla VV (1996) Single-file diffusion observation. Phys Rev Lett 76:2762–2765Google Scholar
  106. 106.
    Serpone N, Pelizzetti E (1989) Photocatalysis – fundamentals and applications. Wiley, New YorkGoogle Scholar
  107. 107.
    Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96Google Scholar
  108. 108.
    Mills A, LeHunte S (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A 108:1–35Google Scholar
  109. 109.
    Matsunaga T, Tomoda R, Nakajima T, Wake H (1985) Photoelectrochemical sterilization of microbial-cells by semiconductor powders. FEMS Microbiol Lett 29:211–214Google Scholar
  110. 110.
    Saito T, Iwase T, Morioka T (1992) Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on streptococci. J Photochem Photobiol B 14:369–379Google Scholar
  111. 111.
    Cai RX, Kubota Y, Shuin T, Sakai H, Hashimoto K, Fujishima A (1992) Induction of cytotoxicity by photoexcited TiO2 particles. Cancer Res 52:2346–2348Google Scholar
  112. 112.
    Maness PC, Samolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65:4094–4098Google Scholar
  113. 113.
    Lu ZX, Zhou L, Zhang ZL, Shi WL, Xie ZX, Xie HY, Pang DW, Shen P (2003) Cell damage induced by photocatalysis of TiO2 thin films. Langmuir 19:8765–8768Google Scholar
  114. 114.
    Seo JW, Chung H, Kim MY, Lee J, Choi IH, Cheon J (2007) Development of water-soluble single-crystalline TiO2 nanoparticles for photocatalytic cancer-cell treatment. Small 3:850–853Google Scholar
  115. 115.
    Kalbacova M, Macak JM, Schmidt-Stein F, Mierke CT, Schmuki P (2008) TiO2 nanotubes: photocatalyst for cancer cell killing. Phys Stat Sol 2:194–196Google Scholar
  116. 116.
    Feng QL, Kim TN, Wu J, Park ES, Kim JO, Lim DY, Cai FZ (1998) Antibacterial effects of Ag-HAp thin films on alumina substrates. Thin Solid Films 335:214–219Google Scholar
  117. 117.
    Kawahara K, Tsuruda K, Morishita M, Uchida M (2000) Antibacterial effect of silver-zeolite on oral bacteria under anaerobic condition. Dent Mater 16:452–455Google Scholar
  118. 118.
    Das K, Bose S, Bandyopadhyay A, Karandikar B, Gibbins BL (2008) Surface coatings for improvement of bone cell materials and antimicrobial activities of Ti implants. J Biomed Mater Res 87:455–460Google Scholar
  119. 119.
    Das K, Bandyopadhyay A, Bose S (2008) Biocompatibility and in situ growth of TiO2 nanotubes on Ti using different electrolyte chemistry. J Am Ceram Soc 91:2808–2814Google Scholar
  120. 120.
    Das K, Balla VK, Bandyopadhyay A, Bose S (2008) Surface modification of laser-processed porous titanium for load-bearing implants. Scr Mater 59:822–825Google Scholar
  121. 121.
    Kunin CM (1987) Detection, prevention and management of urinary tract infection, 4th edn. Lea & Febiger, Philadelphia, PA, pp 245–288Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentPennsylvania State UniversityUniversity ParkUSA
  2. 2.Materials Research InstitutePennsylvania State UniversityUniversity ParkUSA

Personalised recommendations