Skip to main content

Fabrication of TiO2 Nanotube Arrays by Electrochemical Anodization: Four Synthesis Generations

  • Chapter
  • First Online:

Abstract

One-dimensional (1-D) nanowire and nanotube systems with high surface-to-volume ratios have been found to possess significant, useful, and unique properties. The synthesis of highly ordered 1-D materials using localized chemical dissolution with controlled, field-assisted oxidation and dissolution reactions is particularly noteworthy for it permits achievement of a precisely ordered, nanoscale self-assembly. Comparative studies show that ordered arrays of TiO2 outperform colloidal TiO2 for photocatalytic applications [1–5], sensing [6–9], photoelectrolysis [10–16], polymer-based bulk heterojunction photovoltaics [17–19], dye-sensitized solar cells [20–26], biofluids filtration, drug delivery and other biomedical applications [27–30]. Initial investigations indicate that they also may be useful for energy storage devices such as Li-ion batteries and supercapacitors; these applications of TiO2 nanotube arrays are among those discussed in the subsequent chapters.

TiO2 nanotubes and arrays thereof have been produced by a number of methods. These include: using a template of nanoporous alumina [31–34], sol-gel transcription processes using organo-gelator templates [35, 36], seeded growth mechanisms [37], and hydrothermal techniques [38–40]. None of these methods, however, offer superior control over the nanotube dimensions than does the anodization of titanium in a fluoride-based electrolyte [41–48].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adachi M, Murata Y, Harada M, Yoshikawa S (2000) Formation of titania nanotubes with high photo-catalytic activity. Chem Lett 29:942–943

    Article  Google Scholar 

  2. Chu SZ, Inoue S, Wada K, Li D, Haneda H, Awatsu S (2003) Highly porous (TiO2-SiO2-TeO2)/Al2O3/TiO2 composite nanostructures on glass with enhanced photocatalysis fabricated by anodization and sol-gel process. J Phys Chem B 107:6586–6589

    Article  CAS  Google Scholar 

  3. Lai Y, Sun L, Chen Y, Zhuang H, Lin C, Chin JW (2006) Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity. J Electrochem Soc 153:D123–D127

    Article  CAS  Google Scholar 

  4. Macak JM, Zlamal M, Krysa J, Schmuki P (2007) Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small 3:300–304

    Article  CAS  Google Scholar 

  5. Albu SP, Ghicov A, Macak JM, Hahn R, Schmuki P (2007) Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano Lett 7:1286–1289

    Article  CAS  Google Scholar 

  6. Varghese OK, Gong D, Paulose M, Ong KG, Dickey EC, Grimes CA (2003) Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv Mater 15:624–627

    Article  CAS  Google Scholar 

  7. Mor GK, Carvalho MA, Varghese OK, Pishko MV, Grimes CA (2004) A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J Mater Res 19:628–634

    Article  CAS  Google Scholar 

  8. Varghese OK, Mor GK, Grimes CA, Paulose M, Mukherjee N (2004) A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. J Nanosci Nanotechnol 4:733–737

    Article  CAS  Google Scholar 

  9. Paulose M, Varghese OK, Mor GK, Grimes CA, Ong KG (2006) Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes. Nanotechnol 17:398–402

    Article  CAS  Google Scholar 

  10. Varghese OK, Yang X, Kendig J, Paulose M, Zeng K, Palmer C, Ong KG, Grimes CA (2006) A transcutaneous hydrogen sensor: from design to application. Sensor Lett 4:120–128

    Article  CAS  Google Scholar 

  11. de Taconni NR, Chenthamarakshan CR, Yogeeswaran G, Watcharenwong A, de Zoysa RS, Basit NA, Rajeshwar K (2006) Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: influence of process variables on morphology and photoelectrochemical response. J Phys Chem B 110:25347–25355

    Article  CAS  Google Scholar 

  12. Varghese OK, Paulose M, Shankar K, Mor GK, Grimes CA (2005) Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. J Nanosci Nanotechnol 5:1158–1165

    Article  CAS  Google Scholar 

  13. Xie Y, Zhou LM, Huang H (2006) Enhanced photoelectrochemical current response of titania nanotube array. Mater Lett 60:3558–3560

    Article  CAS  Google Scholar 

  14. Mohapatra SK, Misra M, Mahajan VK, Raja KS (2007) Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting: application of TiO2−x C x nanotubes as a photoanode and Pt/TiO2 nanotubes as a cathode. J Phys Chem C 111:8677–8685

    Article  CAS  Google Scholar 

  15. Sun WT, Yu Y, Pan HY, Gao XF, Chen Q, Peng LM (2008) CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J Am Chem Soc 130:1124–1125

    Article  CAS  Google Scholar 

  16. Bae S, Shim E, Yoon J, Joo H (2008) Enzymatic hydrogen production by light-sensitized anodized tubular TiO2 photoanode. Sol Energy Mater Sol Cells 92:402–409

    Article  CAS  Google Scholar 

  17. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2007) High efficiency double heterojunction polymer photovoltaic cells using highly ordered TiO2 nanotube arrays. Appl Phys Lett 91:152111 (3pp)

    Article  CAS  Google Scholar 

  18. Shankar K, Mor GK, Prakasam HE, Varghese OK, Grimes CA (2007) Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells. Langmuir 23:12445–12449

    Article  CAS  Google Scholar 

  19. Yu BY, Tsai A, Tsai SP, Wong KT, Yang Y, Chu CW, Shyue JJ (2008) Efficient inverted solar cells using TiO2 nanotube arrays. Nanotechnol 19:255202 (5pp)

    Article  CAS  Google Scholar 

  20. Uchida S, Chiba R, Tomiha M, Masaki N, Shirai M (2002) Application of titania nanotubes to a dye-sensitized solar cell. Electrochem 70:418–420

    CAS  Google Scholar 

  21. Adachi M, Murata Y, Okada I, Yoshikawa Y (2003) Formation of titania nanotubes and applications for dye-sensitized solar cells. J Electrochem Soc 150:G488–G493

    Article  CAS  Google Scholar 

  22. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218

    Article  CAS  Google Scholar 

  23. Paulose M, Shankar K, Varghese OK, Mor GK, Hardin B, Grimes CA (2006) Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes. Nanotechnol 17:1446–1448

    Article  CAS  Google Scholar 

  24. Zhu K, Neale NR, Miedaner A, Frank AJ (2006) Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett 7:69–74

    Article  CAS  Google Scholar 

  25. Shankar K, Mor GK, Prakasam HE, Yoriya S, Paulose M, Varghese OK, Grimes CA (2007) Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnol 18:065707 (11pp)

    Article  CAS  Google Scholar 

  26. Shankar K, Bandara J, Paulose M, Wietasch H, Varghese OK, Mor GK, LaTempa TJ, Thelakkat M, Grimes CA (2008) Highly efficient solar cells using TiO2 nanotube arrays sensitized with a donor-antenna dye. Nano Lett 8:1654–1659

    Article  CAS  Google Scholar 

  27. Popat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA (2007) Titania nanotubes: a novel platform for drug-eluting coatings for medical implants. Small 3:1878–1881

    Article  CAS  Google Scholar 

  28. Popat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA (2007) Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomater 28:4880–4888

    Article  CAS  Google Scholar 

  29. Roy SC, Paulose M, Grimes CA (2007) The effect of TiO2 nanotubes in the enhancement of blood clotting for the control of hemorrhage. Biomater 28:4667–4672

    Article  CAS  Google Scholar 

  30. Park J, Bauer S, von der Mark K, Schmuki P (2007) Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett 7:1686–1691

    Article  CAS  Google Scholar 

  31. Hoyer P (1996) Formation of a titanium dioxide nanotube array. Langmuir 12:1411–1413

    Article  CAS  Google Scholar 

  32. Lakshmi BB, Dorhout PK, Martin CR (1997) Sol-gel template synthesis of semiconductor nanostructures. Chem Mater 9:857–862

    Article  CAS  Google Scholar 

  33. Imai H, Takei Y, Shimizu K, Matsuda M, Hirashima H (1999) Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. J Mater Chem 9:2971–2972

    Article  CAS  Google Scholar 

  34. Michailowski A, AlMawlwai D, Cheng GS, Moskovits M (2001) Highly regular anatase nanotubule arrays fabricated in porous anodic templates. Chem Phys Lett 349:1–5

    Article  CAS  Google Scholar 

  35. Jung JH, Kobayashi H, van Bommel KJC, Shinkai S, Shimizu T (2002) Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template. Chem Mater 14:1445–1447

    Article  CAS  Google Scholar 

  36. Kobayashi S, Hamasaki N, Suzuki M, Kimura M, Shirai H, Hanabusa K (2002) Preparation of helical transition-metal oxide tubes using organogelators as structure-directing agents. J Am Chem Soc 124:6550–6551

    Article  CAS  Google Scholar 

  37. Tian ZRR, Voigt JA, Liu J, McKenzie B, Xu HF (2003) Large oriented arrays and continuous films of TiO2-based nanotubes. J Am Chem Soc 125:12384–12385

    Article  CAS  Google Scholar 

  38. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Formation of titanium oxide nanotube. Langmuir 14:3160–3163

    Article  CAS  Google Scholar 

  39. Chen Q, Zhou WZ, Du GH, Peng LH (2002) Trititanate nanotubes made via a single alkali treatment. Adv Mater 14:1208–1211

    Article  CAS  Google Scholar 

  40. Yao BD, Chan YF, Zhang XY, Zhang WF, Yang ZY, Wang N (2003) Formation mechanism of TiO2 nanotubes. Appl Phys Lett 82:281–283

    Article  CAS  Google Scholar 

  41. Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC (2001) Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res 16:3331–3334

    Article  CAS  Google Scholar 

  42. Mor GK, Varghese OK, Paulose M, Mukherjee N, Grimes CA (2003) Fabrication of tapered, conical-shaped titania nanotubes. J Mater Res 18:2588–2593

    Article  CAS  Google Scholar 

  43. Cai Q, Paulose M, Varghese OK, Grimes CA (2005) The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J Mater Res 20:230–236

    Article  CAS  Google Scholar 

  44. Ruan C, Paulose M, Varghese OK, Grimes CA (2006) Enhanced photoelectrochemical-response in highly ordered TiO2 nanotube-arrays anodized in boric acid containing electrolyte. Sol Energy Mater Sol Cells 90:1283–1295

    Article  CAS  Google Scholar 

  45. Macak JM, Tsuchiya H, Schmuki P (2005) High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew Chem Int Ed 44:2100–2102

    Article  CAS  Google Scholar 

  46. Macak JM, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P (2005) Smooth anodic TiO2 nanotubes. Angew Chem Int Ed 44:7463–7465

    Article  CAS  Google Scholar 

  47. Balaur E, Macak JM, Tsuchiya H, Schmuki P (2005) Wetting behaviour of layers of TiO2 nanotubes with different diameters. J Mater Chem 15:4488–4491

    Article  CAS  Google Scholar 

  48. Macak JM, Schmuki P (2006) Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes. Electrochim Acta 52:1258–1264

    Article  CAS  Google Scholar 

  49. Zwilling V, Aucouturier M, Darque-Ceretti E (1999) Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach. Electrochim Acta 45:921–929

    Article  CAS  Google Scholar 

  50. Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Aucouturier M (1999) Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal 27:629–637

    Article  CAS  Google Scholar 

  51. Paulose M, Shankar K, Yoriya S, Prakasam HE, Varghese OK, Mor GK, Latempa TJ, Fitzgerald A, Grimes CA (2006) Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length. J Phys Chem B 110:16179–16184

    Article  CAS  Google Scholar 

  52. Yoriya S, Prakasam HE, Varghese OK, Shankar K, Paulose M, Mor GK, Latempa TJ, Grimes CA (2006) Initial studies on the hydrogen gas sensing properties of highly-ordered high aspect ratio TiO2 nanotube-arrays 20 µm to 222 µm in length. Sens Lett 4:334–339

    Article  CAS  Google Scholar 

  53. Shankar K, Mor GK, Fitzgerald A, Grimes CA (2007) Cation effect on the electrochemical formation of very high aspect ratio TiO2 nanotube arrays in formamide–water mixtures. J Phys Chem C 111:21–26

    Article  CAS  Google Scholar 

  54. Prakasam HE, Shankar K, Paulose M, Grimes CA (2007) A new benchmark for TiO2 nanotube array growth by anodization. J Phys Chem C 111:7235–7241

    Article  CAS  Google Scholar 

  55. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2005) Enhanced photocleavage of water using titania nanotube arrays. Nano Lett 5:191–195

    Article  CAS  Google Scholar 

  56. Patermarakis G, Moussoutzanis K (1995) Mathematical models for the anodization conditions and structural features of porous anodic Al2O3 films on aluminum. J Electrochem Soc 142:737–743

    Article  CAS  Google Scholar 

  57. Woo-Jin L, Alhoshan M, Smyrl WH (2006) Titanium dioxide nanotube arrays fabricated by anodizing processes electrochemical properties. J Electrochem Soc 153:B499–B505

    Article  CAS  Google Scholar 

  58. Perathoner S, Passalacqua R, Centi G, Su DS, Weinberg G (2007) Photoactive titania nanostructured thin films: synthesis and characteristics of ordered helical nanocoil array. Catal Today 122:3–13

    Article  CAS  Google Scholar 

  59. Bai J, Zhou B, Li L, Liu Y, Zheng Q, Shao J, Zhu X, Cai W, Liao J, Zou L (2008) The formation mechanism of titania nanotube arrays in hydrofluoric acid electrolyte. J Mater Sci 43:1880–1884

    Article  CAS  Google Scholar 

  60. Quan X, Yang S, Ruan X, Zhao H (2005) Preparation of titania nanotubes and their environmental applications as electrode. Environ Sci Technol 39:3770–3775

    Article  CAS  Google Scholar 

  61. Zhao J, Wang X, Chen R, Li L (2005) Fabrication of titanium oxide nanotube arrays by anodic oxidation. Solid State Commun 34:705–710

    Article  CAS  Google Scholar 

  62. Thompson GE, Furneaux RC, Wood GC, Richardson JA, Goode JS (1978) Nucleation and growth of porous anodic films on aluminum. Nature 272:433–435

    Article  CAS  Google Scholar 

  63. Mor GK, Varghese OK, Paulose M, Grimes CA (2003) A self-cleaning, room-temperature titania-nanotube hydrogen gas sensor. Sens Lett 1:42–46

    Article  CAS  Google Scholar 

  64. Vitiello RP, Macak JM, Ghicov A, Tsuchiya H, Dick LFP, Schmuki P (2006) N-Doping of anodic TiO2 nanotubes using heat treatment in ammonia. Electrochem Commun 8:544–548

    Article  CAS  Google Scholar 

  65. Prida VM, Hernandez-Velez M, Pirota KR, Menendez A, Vazquez M (2005) Synthesis and magnetic properties of Ni nanocylinders in self-aligned and randomly disordered grown titania nanotubes. Nanotechnol 16:2696–2702

    Article  CAS  Google Scholar 

  66. Macak JM, Tsuchiya H, Berger S, Bauer S, Fujimoto S, Schmuki P (2006) On wafer TiO2 nanotube-layer formation by anodization of Ti-films on Si. Chem Phys Lett 428:421–425

    Article  CAS  Google Scholar 

  67. Nainville I, Lemarchand A, Badiali JP (1996) Growth and morphology of thick films formed on a metallic surface. Electrochim Acta 41:1855–1862

    Article  CAS  Google Scholar 

  68. Tsuchiya H, Macak JM, Taveira L, Balaur E, Ghicov A, Sirotna K, Schmuki P (2005) Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes. Electrochem Commun 7:576–580

    Article  CAS  Google Scholar 

  69. Tsuchiya H, Macak JM, Ghicov A, Taveira L, Schmuki P (2005) Self-organized porous TiO2 and ZrO2 produced by anodization. Corros Sci 47:3324–3335

    Article  CAS  Google Scholar 

  70. Ghicov A, Tsuchiya H, Macak JM, Schmuki P (2005) Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochem Commun 7:505–509

    Article  CAS  Google Scholar 

  71. Tian T, Xiao XF, Liu RF, She HD, Hu XF (2007) Study on titania nanotube arrays prepared by titanium anodization in NH4F/H2SO4 solution. J Mater Sci 42:5539–5543

    Article  CAS  Google Scholar 

  72. Bauer S, Kleber S, Schmuki P (2006) TiO2 nanotubes: tailoring the geometry in H3PO4/HF electrolytes. Electrochem Commun 8:1321–1325

    Article  CAS  Google Scholar 

  73. Premchand YD, Djenizian T, Vacandio F, Knauth P (2006) Fabrication of self-organized TiO2 nanotubes from columnar titanium thin films sputtered on semiconductor surfaces. Electrochem Commun 8:1840–1844

    Article  CAS  Google Scholar 

  74. Yu XF, Li YX, Ge WY, Yang QB, Zhu NF, Zadeh KK (2006) Formation of nanoporous titanium oxide films on silicon substrates using an anodization process. Nanotechnol 17:808–814

    Article  CAS  Google Scholar 

  75. Bockris JO (1947) Electrolytic polarization: 1. Overpotential of hydrogen on some less common metals at high current densities. Influence of current density and time. Trans Faraday Soc 43:417–429

    Article  CAS  Google Scholar 

  76. Nozik AJ (1978) Photoelectrochemistry: applications to solar energy conversion. Ann Rev Phys Chem 29:189–222

    Article  CAS  Google Scholar 

  77. Allam NK, Grimes CA (2008) Effect of cathode material on the morphology and photoelectrochemical properties of vertically oriented TiO2 nanotube arrays. Sol Energy Mater Sol Cells 92:1468–1475

    Article  CAS  Google Scholar 

  78. Nakayama K, Kubo T, Tsubokura A, Nishikitani Y, Masuda H (2006) Anodic formation of high-aspect-ratio titania nanotubes. ECS Meeting Abstracts 502:819

    Google Scholar 

  79. Richter C, Wu Z, Panaitescu E, Willey R, Menon L (2007) Ultra-high aspect ratio titania nanotubes. Adv Mater 19:946–948

    Article  CAS  Google Scholar 

  80. Richter C, Panaitescu E, Willey R, Menon L (2007) Titania nanotubes prepared by anodization in fluorine-free acids. J Mater Res 22:1624–1631

    Article  CAS  Google Scholar 

  81. Hahn R, Macak JM, Schmuki P (2007) Rapid anodic growth of TiO2 and WO3 nanotubes in fluoride free electrolytes. Electrochem Commun 9:947–952

    Article  CAS  Google Scholar 

  82. Chen X, Schriver M, Suen T, Mao SS (2007) Fabrication of 10 nm diameter TiO2 nanotube arrays by titanium anodization. Thin Solid Films 515:8511–8514

    Article  CAS  Google Scholar 

  83. Allam NK, Grimes CA (2007) Formation of vertically oriented TiO2 nanotube arrays using a fluoride free HCl aqueous electrolyte. J Phys Chem C 111:13028–13032

    Article  CAS  Google Scholar 

  84. Frayret JP, Pointeau R, Caprani A (1981) Anodic behavior of titanium in acidic chloride containing media (HCl-NaCl) – influence of the constituents of the medium.1. Study of the stationary current calculation of the overall reaction orders. Electrochim Acta 26:1783–1788

    Article  CAS  Google Scholar 

  85. Allam NK, Shankar K, Grimes CA (2008) Photoelectrochemical and water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytes. J Mat Chem 18:2341–2348

    Article  CAS  Google Scholar 

  86. Schultze JW, Lohrengel MM, Ross D (1983) Nucleation and growth of anodic oxide films. Electrochim Acta 28:973–984

    Article  CAS  Google Scholar 

  87. Samuni A (1972) Precursors of metal-complexed hydroperoxyl radical. J Phys Chem 76:2207–2213

    Article  CAS  Google Scholar 

  88. Sever RR, Root TW (2003) DFT study of solvent coordination effects on titanium-based epoxidation catalysts. part two: reactivity of titanium hydroperoxo complexes in ethylene epoxidation. J Phys Chem B 107:4090–4099

    Article  CAS  Google Scholar 

  89. Wu JM (2004) Low-temperature preparation of titania nanorods through direct oxidation of titanium with hydrogen peroxide. J Crystal Growth 269:347–355

    Article  CAS  Google Scholar 

  90. Arabatzis IM, Falaras P (2003) Synthesis of porous nanocrystalline TiO2 foam. Nano Lett 3:249–251

    Article  CAS  Google Scholar 

  91. Raja KS, Misra M, Paramguru K (2005) Formation of self-ordered nanotubular structure of anodic oxide layer on titanium. Electrochim Acta 51:154–165

    Article  CAS  Google Scholar 

  92. Haber F (1900) On autoxidation and its connection to the theory of the ions and the galvanic cells. Z Electrochem 7:441–448

    Article  Google Scholar 

  93. Mor GK, Varghese OK, Paulose M, Ong KG, Grimes CA (2006) Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements. Thin Solid Films 496:42–48

    Article  CAS  Google Scholar 

  94. Ramo J, Saarinen K, Sillanpaa M (2002) Uniform corrosion of titanium in alkaline hydrogen peroxide conditions: influence of transition metals and inhibitors calcium and silicate. Mater Corros 53:898–901

    Article  CAS  Google Scholar 

  95. Panaitescu E, Richter C, Menon L (2008) A study of titania nanotube synthesis in chloride-ion-containing media. J Electrochem Soc 155:E7–E13

    Article  CAS  Google Scholar 

  96. Cai Q, Yang L, Yu Y (2006) Investigations on the self-organized growth of TiO2 nanotube arrays by anodic oxidization. Thin Solid Films 515:1802–1806

    Article  CAS  Google Scholar 

  97. Taveira LV, Macák JM, Tsuchiya H, Dick LFP, Schmuki P (2005) Initiation and growth of self-organized TiO2 nanotubes anodically formed in NH4F/(NH4) 2SO4 electrolytes. J Electrochem Soc 152:B405–B410

    Article  CAS  Google Scholar 

  98. Lu N, Quan X, Li JY, Chen S, Yu HT, Chen GH (2007) Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability. J Phys Chem C 111:11836–11842

    Article  CAS  Google Scholar 

  99. Taveira LV, Macák JM, Sirotna K, Dick LFP, Schmuki P (2006) Voltage oscillations and morphology during the galvanostatic formation of self-organized TiO2 nanotubes. J Electrochem Soc 153:B137–B143

    Article  CAS  Google Scholar 

  100. Macak JM, Sirotna K, Schmuki P (2005) Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochim Acta 50:3679–3684

    Article  CAS  Google Scholar 

  101. Hahn R, Ghicov A, Salonen J, Lehto VP, Schmuki P (2007) Carbon doping of self-organized TiO2 nanotube layers by thermal acetylene treatment. Nanotechnol 18:105604 (4pp)

    Article  CAS  Google Scholar 

  102. Jaroenworaluck A, Regonini D, Bowen CR, Stevens R, Macro DA (2007) Micro and nanostructure of TiO2 anodised films prepared in a fluorine-containing electrolyte. J Mater Sci 42:6729–6734

    Article  CAS  Google Scholar 

  103. Yang DJ, Kim HG, Cho SJ, Choi WY (2008) Thickness-conversion ratio from titanium to TiO2 nanotube fabricated by anodization method. Mater Lett 62:775–779

    Article  CAS  Google Scholar 

  104. Yang DJ, Kim HG, Cho SJ, Choi WY (2008) Vertically oriented titania nanotubes prepared by anodic oxidation on Si substrates. IEEE Trans Nanotechnol 7:131–134

    Article  Google Scholar 

  105. Macak JM, Taveira LV, Tsuchiya H, Sirotna MJ, Schmuki P (2006) Influence of different fluoride containing electrolytes on the formation of self-organized titania nanotubes by Ti anodization. J Electroceram 16:29–34

    Article  CAS  Google Scholar 

  106. Christophersen M, Carstensen J, Voigt K, Foll H (2003) Organic and aqueous electrolytes used for etching macro- and mesoporous silicon. Phys Status Solidi A 197:34–38

    Article  CAS  Google Scholar 

  107. Liu Z, Zhang X, Nishimoto S, Jin M, Tryk DA, Murakami T, Fujishima A (2008) Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol. J Phys Chem C 112:253–259

    Article  CAS  Google Scholar 

  108. Furneaux RC, Rigby WR, Davidson AP (1989) The formation of controlled-porosity membranes from anodically oxidized aluminum. Nature 337:147–149

    Article  CAS  Google Scholar 

  109. Varela H, Torresi RM, Buttry DA (2000) Mixed cation and anion transport during redox cycling of a self-doped polyaniline derivative in nonaqueous media. J Electrochem Soc 147:4217–4223

    Article  CAS  Google Scholar 

  110. Pletnev MA, Shirobokov IB, Ovechkina OE, Reshetnikov SM (1995) Effect of tetraalkylammonium salts on the cathodic evolution of hydrogen in concentrated acidic bromide solutions. Prot Met 31:317–320

    CAS  Google Scholar 

  111. Oguzie EE, Okolue BN, Ebenso EE, Onuoha GN, Onuchukwu AI (2004) Evaluation of the inhibitory effect of methylene blue dye on the corrosion of aluminium in hydrochloric acid. Mater Chem Phys 87:394–401

    Article  CAS  Google Scholar 

  112. Yoriya S, Paulose M, Varghese OK, Mor GK, Grimes CA (2007) Fabrication of vertically oriented TiO2 nanotube arrays using dimethyl sulfoxide electrolytes. J Phys Chem C 111:13770–13776

    Article  CAS  Google Scholar 

  113. López CM, Choi KS (2005) Enhancement of electrochemical and photoelectrochemical properties of fibrous Zn and ZnO electrodes. Chem Commun 26:3328–3330

    Article  CAS  Google Scholar 

  114. Antato C, López CM, Choi KS (2007) Synthesis and characterization of polycrystalline Sn and SnO2 films with wire morphologies. Electrochem Commun 9:1519–1524

    Article  CAS  Google Scholar 

  115. Paulose M, Prakasam HE, Varghese OK, Peng L, Popat KC, Mor GK, Desai TA, Grimes CA (2007) TiO2 nanotube arrays of 1000 µm length by anodization of titanium foil: phenol red diffusion. J Phys Chem C 111:14992–14997

    Article  CAS  Google Scholar 

  116. Wang J, Lin Z (2008) Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization. Chem Mater 20:1257–1261

    Article  CAS  Google Scholar 

  117. Yoriya S, Mor GK, Sharma S, Grimes CA (2008) Synthesis of ordered arrays of discrete, partially crystalline titania nanotubes by Ti anodization using diethylene glycol electrolytes. J Mater Chem 18:3332–3336

    Article  CAS  Google Scholar 

  118. Grimes CA (2007) Synthesis and application of highly ordered arrays of TiO2 nanotubes. J Mater Chem 17:1451–1457

    Article  CAS  Google Scholar 

  119. Chanmanee W, Watcharenwong A, Chenthamarakshan RC, Kajitvichyanukul P, de Tacconi NR, Rajeshwar K (2007) Titania nanotubes from pulse anodization of titanium foils. Electrochem Commun 9:2145–2149

    Article  CAS  Google Scholar 

  120. Yin Y, Jin Z, Hou F, Wang X (2007) Synthesis and morphology of TiO2 nanotube arrays by anodic oxidation using modified glycerol-based electrolytes. J Am Ceram Soc 90:2384–2389

    Article  CAS  Google Scholar 

  121. Kaneco S, Chen Y, Westerhoff P, Crittenden JC (2007) Fabrication of uniform size titanium oxide nanotubes: impact of current density and solution conditions. Scri Mater 56:373–376

    Article  CAS  Google Scholar 

  122. Fraunholcz N (2004) Separation of waste plastics by froth flotation – a review Part 1. Miner Eng 17:261–268

    Article  CAS  Google Scholar 

  123. Jasper JJ (1972) The surface tension of pure liquid compounds. J Phys Chem Ref Data 1:841–1010

    Article  CAS  Google Scholar 

  124. Feng X, Macak JM, Schmuki P (2007) Robust self-organization of oxide nanotubes over a wide pH range. Chem Mater 19:1534–1536

    Article  CAS  Google Scholar 

  125. Watcharenwong A, Chanmanee W, de Tacconi NR, Chenthamarakshan CR, Kajitvichyanukul P, Rajeshwar K (2007) Self-organized TiO2 nanotube arrays by anodization of Ti substrate: effect of anodization time, voltage and medium composition on oxide morphology and photoelectrochemical response. J Mater Res 22:3186–3195

    Article  CAS  Google Scholar 

  126. Yu-Xin Y, Zheng-Guo J, Feng H (2007) Fabrication and properties of TiO2 nanotube arrays using glycerol–DMSO–H2O electrolyte. Acta Phys Chim Sin 23:1797–1802

    Google Scholar 

  127. Mor GK, Varghese OK, Paulose M, Grimes CA (2005) Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films. Adv Funct Mater 15:1291–1296

    Article  CAS  Google Scholar 

  128. Beranek R, Hildebrand H, Schmuki P (2003) Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochem Solid State Lett 6:B12–B14

    Article  CAS  Google Scholar 

  129. Paulose M, Mor GK, Varghese OK, Shankar K, Grimes CA (2006) Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays. J Photochem Photobiol A 178:8–15

    Article  CAS  Google Scholar 

  130. Patermarakis G, Karayannis HS (1995) The mechanism of growth of porous anodic Al2O3 films on aluminum at high film thicknesses. Electrochim Acta 40:2647–2656

    Article  CAS  Google Scholar 

  131. Leenheer AJ, Miedaner A, Curtis CJ, van Hest MFAM, Ginley DS (2007) Fabrication of nanoporous titania on glass and transparent conducting oxide substrates by anodization of titanium films. J Mater Res 22:681–687

    Article  CAS  Google Scholar 

  132. Parkhutik VP, Shershulsky VI (1992) Theoretical modeling of porous oxide-growth on aluminum. J Phys D 25:1258–1263

    Article  CAS  Google Scholar 

  133. Macdonald DD (1993) On the formation of voids in anodic oxide-films on aluminum. J Electrochem Soc 140:L27–L30

    Article  CAS  Google Scholar 

  134. Diggle JW, Downie TC, Goulding CW (1970) Dissolution of porous oxide films on aluminium. Electrochim Acta 15:1079–1084

    Article  CAS  Google Scholar 

  135. Wood GC, O’Sullivan JP (1970) Anodizing of aluminium in sulphate solutions. Electrochim Acta 15:1865–1870

    Article  CAS  Google Scholar 

  136. Patermarakis G, Lenas P, Papayiannis G (1991) Kinetics of growth of porous anodic Al2O3 films on Al metal. Electrochim Acta 36:709–725

    Article  CAS  Google Scholar 

  137. Li AP, Muller F, Birner A, Nielsch K, Gosele U (1998) Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J Appl Phys 84:6023–6026

    Article  CAS  Google Scholar 

  138. Jessensky O, Muller F, Gosele U (1998) Self-organized formation of hexagonal pore arrays in anodic alumina. Appl Phys Lett 72:1173–1175

    Article  CAS  Google Scholar 

  139. Delplancke JL, Winand R (1988) Galvanostatic anodization of titanium.2. Reactions efficiencies and electrochemical-behavior model. Electrochim Acta 33:1551–1559

    Article  CAS  Google Scholar 

  140. Sul YT, Johansson CB, Jeong Y, Albrektsson T (2001) The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med Eng Phys 23:329–346

    Article  CAS  Google Scholar 

  141. Hwang BJ, Hwang JR (1993) Kinetic-model of anodic-oxidation of titanium in sulfuric acid. J Appl Electrochem 23:1056–1062

    Article  CAS  Google Scholar 

  142. Siejka J, Ortega C (1977) O-18 study of field-assisted pore formation in compact anodic oxide-films on aluminum. J Electrochem Soc: Solid State Sci Technol 124:883–891

    CAS  Google Scholar 

  143. Thompson GE (1997) Porous anodic alumina: fabrication, characterization and applications. Thin Solid Films 297:192–201

    Article  CAS  Google Scholar 

  144. Lohrengel MM (1993) Thin anodic oxide layers on aluminum and other valve metals – high-field regime. Mater Sci Eng R Rep 11:243–294

    Article  Google Scholar 

  145. Pakes A, Thompson GE, Skeldon P, Morgan PC (2003) Development of porous anodic films on 2014–T4 aluminium alloy in tetraborate electrolyte. Corros Sci 45:1275–1287

    Article  CAS  Google Scholar 

  146. Chen SG, Paulose M, Ruan C, Mor GK, Varghese OK, Kouzoudis D, Grimes CA (2006) Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes: preparation, characterization, and application to photoelectrochemical cells. J Photochem Photobiol 177:177–184

    Article  CAS  Google Scholar 

  147. Melody B, Kinard T, Lessner P (1998) The non-thickness-limited growth of anodic oxide films on valve metals. Electrochem Solid State Lett 1:126–129

    Article  CAS  Google Scholar 

  148. Krembs GM (1963) Residual tritiated water in anodized tantalum films. J Electrochem Soc 110:938–940

    Article  Google Scholar 

  149. Li YM, Young L (2001) Non-thickness-limited growth of anodic oxide films on tantalum. J Electrochem Soc 148:B337–B342

    Article  CAS  Google Scholar 

  150. Lu Q, Hashimoto T, Skeldon P, Thompson GE, Habazaki H, Shimizu K (2005) Nanoporous anodic niobium oxide formed in phosphate/glycerol electrolyte. Electrochem Solid State Lett 8:B17–B20

    Article  CAS  Google Scholar 

  151. Izutsu K (2002) Electrochemistry in Nonaqueous Solutions. Wiley-VCH, Germany.

    Book  Google Scholar 

  152. Rice MJ, Kraus CA (1953) The viscosity and the conductance-viscosity product of electrolyte solutions in bromine. Proc Natl Acad Sci 39:1118–1124

    Article  CAS  Google Scholar 

  153. Lee W, Ji R, Gosele U, Nielsch K (2006) Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nature Mater 5:741–747

    Article  CAS  Google Scholar 

  154. Guntherschulze A, Betz H (1952) Electrolytkondensatoren. Hebert Cram, Stuttgart

    Google Scholar 

  155. Cabrera N, Mott NF (1948) Theory of the oxidation of metals. Rep Prog Phys 12:163–184

    Article  Google Scholar 

  156. Verwey EJW (1935) Electrolytic conduction of a solid insulator at high fields – The formation of the anodic oxide film on aluminium. Phys 2:1059–1063

    CAS  Google Scholar 

  157. Zhang L, Macdonald DD, Sikora E, Sikora J (1998) On the kinetics of growth of anodic oxide firms. J Electrochem Soc 145:898–905

    Article  CAS  Google Scholar 

  158. Olsson COA, Verge MG, Landolt D (2004) EQCM study of anodic film growth on valve metals. J Electrochem Soc 151:B652–B660

    Article  CAS  Google Scholar 

  159. Cattarin S, Musiani M, Tribollet B (2002) Nb electrodissolution in acid fluoride medium – Steady-state and impedance investigations. J Electrochem Soc 149:B457–B464

    Article  CAS  Google Scholar 

  160. Kalugin ON, Lebed AV, Vyunnik IN (1998) Properties of 1–1 electrolytes solutions in ethylene glycol at temperatures from 5 to 175 degrees C – Part 2 Limiting ion conductances and ion-molecule interactions. J Chem Soc Faraday Trans 94:2103–2107

    Article  CAS  Google Scholar 

  161. Shirobokov IB, Pletnev MA, Povolyako TA, Reshetnikov SM (1995) On the role of the structurization of solvent in the inhibition of cathodic evolution of hydrogen. Prot Met 31:516–519

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig A. Grimes .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Grimes, C.A., Mor, G.K. (2009). Fabrication of TiO2 Nanotube Arrays by Electrochemical Anodization: Four Synthesis Generations. In: TiO2 Nanotube Arrays. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0068-5_1

Download citation

Publish with us

Policies and ethics