Skip to main content

Magneto-Optical Properties

  • Chapter
  • First Online:
Magnetic Oxides

Abstract

In the previous chapters, the emphasis is placed on the electronic origins of local and collective molecular magnetism in transition-metal oxides and their behavior in alternating magnetic fields. Models of magnetic resonance based on precessing magnetic moments provide a classical analog to quantum mechanical transitions provided that the internal magnetic fields are large enough to produce the Zeeman energy splittings for the particular frequency of interest. In the energy range that can be easily reached by fields from laboratory electromagnets, electron paramagnetic resonance (EPR) and ferromagnetic resonance (FMR) occur in the microwave bands. However, resonances can also occur in magnetically ordered systems at the energies of magnetic exchange. Since the exchange effects occur in the submillimeter and far-infrared bands, but have the properties of a magnetic-dipole stabilization, this topic will serve as a transition to the subject of magneto-optics that is based on magnetically polarized electric-dipole interactions with optical waves.

In the visible and ultraviolet bands, electric-dipole transitions can produce magneto-optical phenomena without the need for large applied magnetic fields. In this regime, the dielectric permittivity tensor with off-diagonal terms can produce nonreciprocal propagation at optical wavelengths analogous to those from magnetic interactions with RF waves. Faraday rotation of the linear polarization of plane-wave transmission and its complementary Kerr reflection effect are of major importance for discrete fiber-optical technology. In later developments, optical waveguides that simulate their microwave counterparts have shown promise for integrated photonics technology that can benefit from the nonreciprocal properties of magneto-optical control devices. To remain within the scope of this volume, the discussion of materials systems will be focused on the room temperature properties of the garnet family of magnetic oxides, first on the basic host compound yttrium iron garnet and then on the dramatic effects of Bi3 + ion substitutions. The discussion will review the work carried out at Lincoln Laboratory and the Department of Physics of the Massachusetts Institute of Technology where the author was an active participant, but is dawn heavily from the pioneering work of scientists at the Mullard Research Laboratories in England and the Philips Research Laboratories in Eindhoven, the Netherlands and Hamburg, Germany.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The reader is advised that sign conventions vary in the literature of this subject. Wherever possible, the convention from Chap. 6 will be continued.

  2. 2.

    Note that although the anisotropy and exchange terms are presented in vector notation as magnetic fields, only the anisotropy energy in its role as a demagnetizing field that modifies the applied field H 0 is legitimate in the Maxwell sense. H ex has its origins in the chemical bond of the molecule and draws its value and sense from the implications of the indistinguishability of the electron as manifested by the Pauli Exclusion principle. As a consequence, it should be considered as a scalar, separate from the sequence of perturbations affecting an individual cation, and would not influence the removal of degeneracies in the electronic energy level structure.

  3. 3.

    In many cases, these complex permittivity parameters are defined with a positive sign.

  4. 4.

    In this discussion, the symbol N is used instead of n to avoid conflict with the index of refraction n for optical propagation.

  5. 5.

    To remain consistent with the literature of this problem, the frequently-used parameter ωp 2 is introduced. Its relation to the parameter ωE defined to simplify the analysis in Sect. 7.3.1. is given by ωEω0 ± = ωp 2 f ±.

References

  1. B. Lax and K.J. Button, Microwave Ferrites and Ferrimagnetics, (McGraw-Hill, New York, 1962), Chapter 6

    Google Scholar 

  2. S. Geschwind and L.R. Walker, J. Appl. Phys. 30, 163S (1959)

    Article  CAS  Google Scholar 

  3. G.F. Dionne, J. Appl. Phys. 97, 10F103 (2005)

    Article  Google Scholar 

  4. M. Tinkham, J. Appl. Phys. 33, Suppl. 3, 1248 (1962)

    Google Scholar 

  5. G.F. Dionne, J. Appl. Phys. 105, 07A525 (2009)

    Article  Google Scholar 

  6. K.J. Standley and R.A. Vaughn, Electron Spin Relaxation Phenomena in Solids, (Plenum, New York, 1969), Section 1.2

    Google Scholar 

  7. A.H. Morrish, The Physical Principles of Magnetism, (Wiley, New York, 1965), p. 73

    Google Scholar 

  8. G.F. Dionne, J. Appl. Phys. 79, 5172 (1996)

    Article  CAS  Google Scholar 

  9. G.F. Dionne, J. Appl. Phys. 99, 08M913 (2006)

    Article  Google Scholar 

  10. B. Lax and K.J. Button, Microwave Ferrites and Ferrimagnetics, (McGraw-Hill, New York, 1962), Section 6-6

    Google Scholar 

  11. B. Lax and K.J. Button, Microwave Ferrites and Ferrimagnetics, (McGraw-Hill, New York, 1962), Section 7-1

    Google Scholar 

  12. N. Bloembergen, Proc. IRE 44, 1259 (1956)

    Article  CAS  Google Scholar 

  13. Y.R. Shen, Phys. Rev. 133, A511 (1964)

    Article  Google Scholar 

  14. Y.R. Shen and N. Bloembergen, Phys. Rev. 133, A515 (1964)

    Article  Google Scholar 

  15. N. Bloembergen, Nonlinear Optics, (W.A. Benjamin, New York, 1965), p. 27

    Google Scholar 

  16. J.C. Suits, IEEE Trans. Magn. 8, 95 (1972)

    Article  CAS  Google Scholar 

  17. G.A. Allen and G.F. Dionne, J. Appl. Phys. 73, 6130 (1993)

    Article  CAS  Google Scholar 

  18. J.F. Dillon, J. Phys. Radium 20, 374 (1959)

    Article  CAS  Google Scholar 

  19. F.J. Kahn, P.S. Pershan, and J.P. Remeika, Phys. Rev. 186, 891 (1969)

    Article  CAS  Google Scholar 

  20. G.B. Scott, D.E. Lacklison, H.I. Ralph, and J.L. Page, Phys. Rev. B12, 2562 (1975)

    Google Scholar 

  21. S. Wittekoek, T.J.A. Popma, J.M. Robertson, and P.F. Bongers, Phys. Rev. B12, 2777 (1975)

    Google Scholar 

  22. V. Doorman, J.-P. Krumme, and H. Lenz, J. Appl. Phys. 68, 3544 (1990)

    Article  Google Scholar 

  23. G.A. Allen, PhD Thesis, MIT Department of Physics, 1994

    Google Scholar 

  24. G.A. Allen and G.F. Dionne, J. Appl. Phys. 93, 6951 (2003)

    Article  CAS  Google Scholar 

  25. G.F. Dionne and G.A. Allen, J. Appl. Phys. 73, 6127 (1993)

    Article  CAS  Google Scholar 

  26. G.F. Dionne and G.A. Allen, J. Appl. Phys. 75, 6372 (1994)

    Article  CAS  Google Scholar 

  27. G.B. Scott, D.E. Lacklison, and J.L. Page, Phys. Rev. B10, 971 (1974)

    Google Scholar 

  28. G.B. Scott and J.L. Page, Phys. Stat. Solidi b79, 203 (1977)

    Google Scholar 

  29. A.M. Clogston, J. Phys. Radium 20, 151 (1959)

    Google Scholar 

  30. C.F. Buhrer, J. Appl. Phys. 40, 4500 (1969)

    Article  Google Scholar 

  31. K. Matsumoto, S. Sasaki, K. Haraga, Y. Asahara, K. Yamaguchi, and T. Fujii, IEEE Trans. Magn. 28, 2985 (1992)

    Article  CAS  Google Scholar 

  32. Z. Simsa, J. Simsova, D. Zemanova, J. Cermak, and M. Nevriva, Czech. J. Phys. B 34, 1102 (1984)

    Google Scholar 

  33. Y. Tanabe and S. Sugano, J. Phys. Soc. (Japan) 9, 753 (1954)

    Google Scholar 

  34. D.E. Lacklison, G.B. Scott, and J.L. Page, Solid State Commun. 14, 861 (1974)

    Article  CAS  Google Scholar 

  35. D.R. Lide, Ed., Handbook of Chemistry and Physics, 73rd Ed., (CRC Press, Boca Raton, FL, 1992–1993)

    Google Scholar 

  36. D.L. Wood and J.P. Remeika, J. Appl. Phys. 38, 1038 (1967)

    Article  CAS  Google Scholar 

  37. S. Wittekoek and D.E. Lacklison, Phys. Rev. Lett. 28, 740 (1972); also A.B. McLay and M.F. Crawford, Phys. Rev. 44, 986 (1933)

    Google Scholar 

  38. P. Hansen, W. Tolksdorf, and K. Witter, IEEE Trans. Magn. 17, 3211 (1981)

    Article  Google Scholar 

  39. P. Hansen, K. Witter, and W. Tolksdorf, Phys. Rev. B 27, 6608 (1983)

    Google Scholar 

  40. S.H. Wemple, S.L. Blank, J.A. Seman, and W.A. Biolsi, Phys. Rev. B 9, 2134 (1974)

    Google Scholar 

  41. S. Wittekoek and T.J.A. Popma, J. Appl. Phys. 44, 5560 (1973)

    Article  CAS  Google Scholar 

  42. A. Thavendrarajah, M. Pardavi-Horvath, P.E. Wigen, and M. Gomi, IEEE Trans. Magn. 25, 4015 (1989)

    Article  CAS  Google Scholar 

  43. G.F. Dionne and G.A. Allen, J. Appl. Phys. 95, 7333 (2004)

    Article  CAS  Google Scholar 

  44. G.F. Dionne, J. Appl. Phys. 41, 4874 (1970)

    Article  CAS  Google Scholar 

  45. Y. Tanabe, T. Moriya, and S. Sugano, Phys. Rev. Letts. 15, 1023 (1965)

    Google Scholar 

  46. J.P. van der Ziel, J.F. Dillon, and J.P. Remeika, 17th Annu. Conf. Magn. Magn. Mater., AIP Conf. Proc. No. 5, 254 (1971)

    Google Scholar 

  47. B. Andlauer, J. Schneider, and W. Wettling, Appl. Phys. 10, 189 (1976)

    Article  CAS  Google Scholar 

  48. G. Winkler, Magnetic Garnets, (Vierweg, Braunschweig, 1981), Chapter 4

    Google Scholar 

  49. T. Tepper, C.A. Ross, and G.F. Dionne, IEEE Trans. Magn. 40, 1685 (2004)

    Article  CAS  Google Scholar 

  50. A. Rajamani, G.F. Dionne, D. Bono, and C.A. Ross, J. Appl. Phys. 98, 063907 (2005)

    Article  Google Scholar 

  51. D.S. Schmool, N. Keller, M. Guyot, R. Krishnan, and M. Tessier, J. Appl. Phys. 86, 5712 (1999)

    Article  CAS  Google Scholar 

  52. G.F. Dionne A.R. Taussig, M. Bolduc, L. Bei, and C.A. Ross, J. Appl. Phys. 101, 09C524 (2007)

    Google Scholar 

  53. N.S. Rogado, J. Li, A.W. Sleight, and M.A. Subramanian, Adv. Mater. (Weinhein, Ger.) 17, 2225 (2005)

    Google Scholar 

  54. H. Guo, J. Burgess, S. Street, A. Gupta, T.G. Calarese, and M.A. Subramanian, Appl. Phys. Lett. 89, 022509 (2006)

    Article  Google Scholar 

  55. M. Guillot, H. Le Gall, J.M. Desvignes, and M. Artinian, J. Appl. Phys. 70, 6401 (1991)

    Article  CAS  Google Scholar 

  56. J. Ostorero and M. Guillot, J. Appl. Phys. 83, 6756 (1998)

    Article  CAS  Google Scholar 

  57. F.M. Johnson and A.H. Nethercot, Jr., Phys. Rev. 114, 705 (1959)

    Article  CAS  Google Scholar 

  58. S. Foner, J. Phys. Radium 20, 336 (1959)

    Google Scholar 

  59. E.S. Dayhoff, Phys. Rev. 107, 84 (1957)

    Article  CAS  Google Scholar 

  60. G.S. Heller, J.J. Stickler, and J.B. Thaxter, J. Appl. Phys. 32, 307S (1961)

    Article  Google Scholar 

  61. J.J. Stickler and G.S. Heller, J. Appl. Phys. 33, 1302 (1962)

    Article  CAS  Google Scholar 

  62. R.C. Ohlmann and M. Tinkham, Phys. Rev. 123, 425 (1961)

    Article  CAS  Google Scholar 

  63. F. Keffer, A.J. Sievers III, and M. Tinkham, J. Appl. Phys. 32, 65S (1961)

    Article  Google Scholar 

  64. H. Kondoh, J. Phys. Soc. Japan, 15, 1970 (1960)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald F. Dionne .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dionne, G.F. (2009). Magneto-Optical Properties. In: Magnetic Oxides. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0054-8_7

Download citation

Publish with us

Policies and ethics