Advertisement

Electromagnetic Properties

  • Gerald F. Dionne
Chapter

Abstract

In the previous chapters, the emphasis is placed on the electronic origins of static magnetism in electrically insulating compounds, beginning with isolated moments of transition metal ions coupled paramagnetically and progressing to the various spontaneous magnetic systems. Apart from occasional references to their application in magnetic recording by the switching of magnetic domains and their use as permanent magnets in applications requiring electrical insulation, few indications are given that relate to their important applications in time-varying magnetic fields and as electromagnetic transmission media.

The most common usage of ferrimagnetism is for high permeability cores of inductors and transformers that typically operate at audio frequencies, i.e., below 20 kHz, and most commonly 60 Hz for power applications. Despite their generally lower magnetization when compared with ferromagnetic metal alloys, the reduction of eddy current losses makes these oxide materials an attractive alternative to laminated magnetic steel in many cases.

In the partially magnetized state, the frequency dependence of the permeability results from three causes (1) magnetization rotation, (2) magnetic domain wall resonance, and (3) gyromagnetic resonance within individual domains. The former two arise from longitudinal coupling between the alternating magnetic field and the domain magnetization vectors, and usually occur in the frequency range below 1 GHz. The third is the same transverse interaction effect that is exploited in magnetic resonance, where a magnetic field renders the material single domain. It can set in below 1 GHz, usually after the longitudinal permeability has been reduced to small values by damping effects, and can cause large absorption over a band that reaches to several GHz, depending on the anisotropy and geometrical demagnetizing fields.

Keywords

Electron Paramagnetic Resonance Domain Wall Relaxation Rate Spin Wave Lattice Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H.B.G. Casimir, Magnetism and Very Low Temperatures, (Dover, New York, 1961); also H.B.G. Casimir and F.K. du Pre, Physica 5, 507 (1938)Google Scholar
  2. 2.
    C.J. Gorter, Paramagnetic Relaxation, (Elsevier, Amsterdam, 1947)Google Scholar
  3. 3.
    A.H. Morrish, The Physical Principles of Magnetism, (Wiley, New York, 1965), Chapter 3Google Scholar
  4. 4.
    K.J. Standley and R.A. Vaughan, Electron Spin Relaxation Phenomena in Solids, (Plenum, New York, 1969), pp. 10–14Google Scholar
  5. 5.
    C.B.P. Finn, R. Orbach, and W.P. Wolf, Proc. Phys. Soc. (London) 77, 261 (1961)Google Scholar
  6. 6.
    R. Orbach, Proc. R. Soc. (London) A264, 458 (1961)Google Scholar
  7. 7.
    K.J. Standley and R.A. Vaughan, Electron Spin Relaxation Phenomena in Solids, (Plenum, New York, 1969), p. 37Google Scholar
  8. 8.
    G.F. Dionne, Phys. Rev. 139, A1648 (1965)Google Scholar
  9. 9.
    P.L. Scott and C.D. Jefferies, Phys. Rev. 127, 32 (1962)Google Scholar
  10. 10.
    J.H. Van Vleck, J. Chem. Phys. 7, 72 (1939)CrossRefGoogle Scholar
  11. 11.
    J.H. Van Vleck, Phys. Rev. 57, 426 (1940)CrossRefGoogle Scholar
  12. 12.
    R.D. Mattuck and M.W.P. Strandberg, Phys. Rev. 119, 1204 (1960)CrossRefGoogle Scholar
  13. 13.
    G.E. Pake, Paramagnetic Resonance, (W.A. Benjamin, New York, 1962), Chapter 2Google Scholar
  14. 14.
    G.F. Dionne, Can. J. Phys. 42, 2419 (1964)CrossRefGoogle Scholar
  15. 15.
    B. Bleaney and K.W.H. Stevens, Rep. Prog. Phys. XVI, 108 (1953)CrossRefGoogle Scholar
  16. 16.
    K.D. Bowers and J. Owen, Rep. Prog. Phys. XVIII, 304 (1955)Google Scholar
  17. 17.
    J.P. Gordon, H.J. Zeiger, and C.H. Townes, Phys. Rev. 95, 282 (1954)CrossRefGoogle Scholar
  18. 18.
    J. Vanier, Can. J. Phys. 42, 494 (1964)Google Scholar
  19. 19.
    C. Kittel, Phys. Rev. 73, 155 (1948); 76, 743 (1949)Google Scholar
  20. 20.
    A.H. Morrish, The Physical Principles of Magnetism, (Wiley, New York, 1965), Chapter 10Google Scholar
  21. 21.
    B. Lax and K.J. Button, Microwave Ferrites and Ferrimagnetics, (McGraw Hill, New York, 1962), Chapters 4–6Google Scholar
  22. 22.
    G.F. Dionne and J.B. Goodenough, Mater. Res. Bull. 7, 749 (1972)CrossRefGoogle Scholar
  23. 23.
    A.B. Smith and R.V. Jones, J. Appl. Phys. 34, 1283 (1963)Google Scholar
  24. 24.
    A.B. Smith, Rev. Sci. Instrum. 39, 378 (1968)Google Scholar
  25. 25.
    G.F. Dionne, J. Appl. Phys. 40, 4486 (1969); 41, 831 (1970)Google Scholar
  26. 26.
    G.F. Dionne, J. Appl. Phys. 41, 2264 (1970)Google Scholar
  27. 27.
    L. Landau and E. Lifshitz, Physik. Z. Sowjetunion 8, 153 (1935)Google Scholar
  28. 28.
    T.L. Gilbert, Phys. Rev. 100, 1243 (1955)Google Scholar
  29. 29.
    A.H. Morrish, The Physical Principles of Magnetism, (Wiley, New York, 1965), p. 550Google Scholar
  30. 30.
    H.J. Van Hook and F. Euler, J. Appl. Phys. 40, 4001 (1969)Google Scholar
  31. 31.
    E. Schloemann, Proc. Conf. Magn. Magn. Mater., AIEE Spec. Publ. T-10, 600 (1956)Google Scholar
  32. 32.
    E. Schloemann, J. Phys. Chem. Solids 6, 242 (1958)Google Scholar
  33. 33.
    S. Geshwind and A.M. Clogston, Phys. Rev. 108, 49 (1957)Google Scholar
  34. 34.
    E. Schloemann, J. Appl. Phys.38, 5027 (1967)Google Scholar
  35. 35.
    M. Sparks, Ferromagnetic Relaxation Theory, (McGraw-Hill, New York, 1964); also M. Sparks, Phys. Rev. 36, 49 (1957)Google Scholar
  36. 36.
    G.F. Dionne, Mater. Res. Bull. 5, 939 (1970)Google Scholar
  37. 37.
    G.F. Dionne, J. Appl. Phys. 40, 1839 (1969)Google Scholar
  38. 38.
    C.E. Patton, Phys. Rev. 179, 352 (1969)Google Scholar
  39. 39.
    Q.H.F. Vrehen, J. Appl. Phys. 40, 1849 (1969)Google Scholar
  40. 40.
    P.-G. de Gennes, C. Kittel, and A.M. Portis, Phys. Rev. 116, 323 (1959)Google Scholar
  41. 41.
    P.E. Seiden, Phys. Rev. 133, A728 (1964)Google Scholar
  42. 42.
    J.H. Van Vleck, J. Appl. Phys. 35, 882 (1964)Google Scholar
  43. 43.
    B.W. Faughan and M.W.P. Strandberg, J. Phys. Chem, Solids 19, 155 (1961)Google Scholar
  44. 44.
    A.M. Stoneham Proc. Phys. Soc. 85, 107 (1965)Google Scholar
  45. 45.
    K.J. Standley and R.A. Vaughan, Electron Spin Relaxation Phenomena in Solids, (Plenum, New York, 1969), Chapter 4Google Scholar
  46. 46.
    G.F. Dionne, IEEE Trans. Magn. 28, 3201 (1992); also G.F. Dionne and R.G. West, AIP Conf. Proc. 10, 169 (1972)Google Scholar
  47. 47.
    G.F. Dionne and G.L. Fitch, J. Appl. Phys. 87, 4963 (2000)Google Scholar
  48. 48.
    K.J. Standley and R.A. Vaughan, Electron Spin Relaxation Phenomena in Solids, (Plenum, New York, 1969), Appendix 6BGoogle Scholar
  49. 49.
    R.C. LeCraw and E.G. Spencer, J. Phys. Soc. Jpn 17, Suppl. B-1, 401 (1962)Google Scholar
  50. 50.
    J. H. Van Vleck and R. Orbach, Phys. Rev. Lett. 11, 65 (1963)Google Scholar
  51. 51.
    E.M. Georgy, R.C. Le Craw, and M.D. Sturge, J. Appl. Phys. 37, 1303 (1966)Google Scholar
  52. 52.
    A.L. Kipling, P.W. Smith, J. Vanier, and G.A. Woonton, Can. J. Phys. 39, 1859 (1961)Google Scholar
  53. 53.
    A. Thavendrarajah, M. Pardavi-Horváth, P.E. Wigen, and M. Gomi, IEEE Trans. Magn. 25, 4015 (1989)Google Scholar
  54. 54.
    M. Pardavi-Horváth, L. Bottyán, I.S. Szücs, P.E. Wigen, and M. Gomi, Hyperfine Interact. 54, 639 (1990)Google Scholar
  55. 55.
    F.J. Rachford, M. Levy, R.M. Osgood, Jr., A. Kumar, and H. Bakhru, J. Appl. Phys. 85, 5217 (1999)Google Scholar
  56. 56.
    G.F. Dionne, J. Appl. Phys. 91, 7367 (2002)Google Scholar
  57. 57.
    G.F. Dionne, J. Appl. Phys. 57, 3727 (1985)Google Scholar
  58. 58.
    G.F. Dionne, J. Appl. Phys. 64, 1323 (1988); also G.F. Dionne, Anisotropy and Relaxation Effects ofCo 2 + in LiTi Ferrites, MIT Lincoln Laboratory Technical Report TR-688, 15 August 1984 AD-A146550Google Scholar
  59. 59.
    N. Matsushita, T. Nakamura, and M. Abe, IEEE Trans. Magn. 38, 3111 (2002)Google Scholar
  60. 60.
    J. Llabres, J. Nicolas, and R. Sproussi, Appl. Phys. 12, 87 (1977)Google Scholar
  61. 61.
    D. Dale, G. Hu, V. Balbarin, and Y. Suzuki, Mater. Res. Soc. Symp. Proc., 603, 95 (2000)CrossRefGoogle Scholar
  62. 62.
    C. Herring and C. Kittel, Phys. Rev. 81, 869 (1951)Google Scholar
  63. 63.
    E.F. Schloemann, IEEE Trans. Magn. 34, 3830 (1998)Google Scholar
  64. 64.
    E.F. Schloemann, J.J. Green, and U. Milano, J. Appl. Phys. 31, 386S (1960)Google Scholar
  65. 65.
    R.C. LeCraw, E.G. Spencer, and C.S. Porter, Phys. Rev. 110, 1311 (1958)Google Scholar
  66. 66.
    G.F. Dionne, J. Appl. Phys. 43, 1221 (1972)Google Scholar
  67. 67.
    P.W. Anderson and H. Suhl, Phys. Rev. 100, 1788 (1955)Google Scholar
  68. 68.
    H. Suhl, Proc. IRE 44, 1270 (1956)Google Scholar
  69. 69.
    H. Suhl, Phys. Rev. 101, 1437 (1956)Google Scholar
  70. 70.
    N. Bloembergen and S. Wang, Phys. Rev. 93, 72 (1954); also Fig. 5.9 in B. Lax and K.J. Button, Microwave Ferrites and Ferrimagnetics, (McGraw Hill, New York, 1962)Google Scholar
  71. 71.
    C.E. Patton, J. Appl. Phys. 40, 2837 (1969)Google Scholar
  72. 72.
    J.F. Dillon, J. Appl. Phys. 31, 1605 (1960)Google Scholar
  73. 73.
    L.R. Walker, Phys. Rev. 105, 390 (1957)Google Scholar
  74. 74.
    B. Lax and K.J. Button, Microwave Ferrites and Ferrimagnetics, (McGraw Hill, New York, 1962), p. 180Google Scholar
  75. 75.
    P.J.B. Clarricoats, Microwave Ferrites, (Wiley, New York, 1961), Chapter 4Google Scholar
  76. 76.
    A.H. Morrish, The Physical Principles of Magnetism, (Wiley, New York, 1965), p. 563Google Scholar
  77. 77.
    D.D. Stancil, Theory of Magnetostatic Waves, (Springer, New York, 1993)Google Scholar
  78. 78.
    M. Chen, M.A. Tsankov, J.O. Nash, and C.E. Patton, Phys. Rev. 49, 12773 (1994)Google Scholar
  79. 79.
    J. Smit and H.P.J. Wijn, Ferrites, (Wiley, New York, 1959), Part DGoogle Scholar
  80. 80.
    G.F. Dionne, IEEE Trans. Magn. 39, 3121 (2003)Google Scholar
  81. 81.
    R.A. Becker, Introduction to Theoretical Mechanics, (McGraw-Hill, New York, 1954), p. 144Google Scholar
  82. 82.
    G. Rado, R. Wright, and W. Emmerson, Phys. Rev. 80, 273 (1950)Google Scholar
  83. 83.
    J.A. Weiss, N.G. Watson, and G.F. Dionne, IEEE MTT-S Int. Microwave Symp. Digest 1989, p. 145; also J.A. Weiss, N.G. Watson, and G.F. Dionne, Appl. Microwave, Fall, 74 (1990)Google Scholar
  84. 84.
    Y. Akaiwa and T. Okazaki, IEE Trans. Magn. 24, 863 (1974)Google Scholar
  85. 85.
    E.W. Gorter, Proc. IRE 43, 1945 (1955)Google Scholar
  86. 86.
    D. Stopples, P.G.T. Boonen, U. Enz, and L.A.H. Van Hoof, J. Magn. Magn. Mater. 37, 116 (1983)Google Scholar
  87. 87.
    G.F. Dionne, Phys. Rev. 137, A743 (1965)Google Scholar
  88. 88.
    B. Lax and K.J. Button, Microwave Ferrites and Ferrimagnetics, (McGraw Hill, New York, 1962), p. 299Google Scholar
  89. 89.
    G.F. Dionne, D.E. Oates, D.H. Temme, and J.A. Weiss, Lincoln Lab. J. 9, 19 (1996)Google Scholar
  90. 90.
    G.F. Dionne, J.A. Weiss, and G.A. Allen, IEEE Trans. Magn. 24, 2817 (1988)Google Scholar
  91. 91.
    B. Lax and K.J. Button, Microwave Ferrites and Ferrimagnetics, (McGraw Hill, New York, 1962), p. 150Google Scholar
  92. 92.
    P.J.B. Clarricoats, Microwave Ferrites, (Wiley, New York, 1961), p. 63, with α = 0Google Scholar
  93. 93.
    D.M. Pozar, Microwave Engineering, (Wiley, New York, 1998), p. 503Google Scholar
  94. 94.
    N. Bloembergen, Proc. IRE 44, 1259 (1956)Google Scholar
  95. 95.
    S. Chikazumi, Physics of Magnetism, (Wiley, New York, 1997), p. 348Google Scholar
  96. 96.
    P.J.B. Clarricoats, Microwave Ferrites, (Wiley, New York, 1961), p. 92Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Massachusetts Institute of TechnologyLexingtonUSA

Personalised recommendations