Advertisement

Magnetic Ions in Oxides

  • Gerald F. Dionne
Chapter

Abstract

To establish the pattern of this book, a logical first step is to review the Periodic table of chemical elements, to identify the transition groups within it, and to explain the local influences of the chemical bonding environment in which the various ions reside in a crystal lattice of an oxide. By the terminology of transition groups is meant those elements for which the inner shells remain unfilled while electrons occupying outer shells participate in chemical bonding. Consequently, the electrons of the unfilled inner shells are responsible for a variety of magnetic properties because of the magnetic moments carried by their unpaired spins.

From the theory of atomic spectra, the angular momentum of the electron spin is coupled to the angular momentum that is derived from the motion of the electron in its orbit about the nucleus, that is, the orbital angular momentum. The strength of spin–orbit coupling is a key factor in determining the extent to which the orbital moment contributes to the magnetic properties and conversely, to what extent the spins interact with the lattice. When placed in a crystal lattice, the magnetic ion is subjected to two effective fields that separately influence the spin and orbital momenta – the crystal electric field of the lattice site that captures or “quenches” the orbital moment by a Stark effect, and the exchange interaction that orders the spin into a collective ferromagnetic or antiferromagnetic state. The origin of the crystal and exchange fields is reviewed first. The role of spin–orbit coupling is examined later in relation to magnetocrystalline anisotropy and magnetostriction.

Keywords

Crystal Field Octahedral Site Orbital Angular Momentum Orbit Coupling Orbital State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M.J. Buerger, Elementary Crystallography, (John Wiley, New York, 1956)Google Scholar
  2. 2.
    W. Borchardt-Ott, Crystallography, (Springer, New York, 1995)CrossRefGoogle Scholar
  3. 3.
    C.J. Ballhausen, Introduction to Ligand Field Theory, (McGraw-Hill, New York, 1962)Google Scholar
  4. 4.
    H.L. Schläfer and G. Gliemann, Basic Principles of Ligand Field Theory, (Wiley-Interscience, New York, 1969)Google Scholar
  5. 5.
    J.S. Griffith, The Theory of Transition-Metal Ions, (Cambridge University Press, London, 1961)Google Scholar
  6. 6.
    J.H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities, (Oxford University Press, London, 1932)Google Scholar
  7. 7.
    E.U. Condon and G.H. Shortley, The Theory of Atomic Spectra, (Cambridge University Press, London, 1963)Google Scholar
  8. 8.
    H.B. Kramers, Proc. Amsterdam Acad. Sci. 32, 1176 (1929)Google Scholar
  9. 9.
    J.H. Van Vleck, Phys. Rev. 41, 208 (1932)Google Scholar
  10. 10.
    W.G. Penney and R. Schlapp, Phys. Rev. 41, 194 (1932); R. Schlapp and W.G. Penney, Phys. Rev. 42, 666 (1932)Google Scholar
  11. 11.
    W. Low, Paramagnetic Resonance in Solids, (Academic Press, New York, 1960), p. 15Google Scholar
  12. 12.
    C.J. Ballhausen, Introduction to Ligand Field Theory, (McGraw-Hill, New York, 1962), p. 93Google Scholar
  13. 13.
    W. Low, Paramagnetic Resonance in Solids, (Academic Press, New York 1960) p. 22Google Scholar
  14. 14.
    M.H.L. Pryce and W.A. Runciman, Disc. Faraday Soc. 26, 34 (1958)Google Scholar
  15. 15.
    G.F. Dionne and B.J. Palm, J. Magn. Reson 68, 355 (1986)Google Scholar
  16. 16.
    M.T. Hutchings, Solid State Phys. 16, 227 (1964)Google Scholar
  17. 17.
    J.H. Van Vleck, Discuss. Faraday Soc. 26 90 (1958)Google Scholar
  18. 18.
    K.W.H. Stevens, Proc. Phys. Soc. A65, 209 (1952)Google Scholar
  19. 19.
    M.S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory, Applications to the Physics of Condensed Matter, (Springer, 2008)Google Scholar
  20. 20.
    H.A. Bethe, Ann. Phys 3, 133 (1929)Google Scholar
  21. 21.
    R.S. Mulliken, J. Chem. Phys. 3, 375 (1935)Google Scholar
  22. 22.
    C.J. Ballhausen, Introduction to Ligand Field Theory, (McGraw-Hill, New York, 1962), p. 100Google Scholar
  23. 23.
    L.E. Orgel, J. Chem. Phys. 23, 1004 (1955)Google Scholar
  24. 24.
    H.L. Schläfer and G. Gliemann, Basic Principles of Ligand Field Theory, (Wiley-Interscience, New York, 1969), Chapter 1Google Scholar
  25. 25.
    C.J. Ballhausen, Introduction to Ligand Field Theory, (McGraw-Hill, New York, 1962), p. 20Google Scholar
  26. 26.
    J.C. Slater, Phys. Rev. 35, 509 (1930)Google Scholar
  27. 27.
    G. Racah, Phys. Rev. 62, 438 (1942); G. Racah also Phys. Rev. 63, 367 (1943)Google Scholar
  28. 28.
    K.R. Lea, M.J.M. Leask, and W.P. Wolf, J. Chem. Phys. Solids 23, 138 (1967)Google Scholar
  29. 29.
    L.E. Orgel, Introduction to Transition-Metal Chemistry: Ligand-Field Theory, (John Wiley, New York, 1959)Google Scholar
  30. 30.
    E.C. Stoner, Proc. Leeds Phil. Soc. 2, 391 (1933)Google Scholar
  31. 31.
    M.R. Ibarra, R. Mahendiran, C. Marquina, B. Garcia-Landa, and J. Blasco, Phys. Rev. B 57, R3217 (1998 II)Google Scholar
  32. 32.
    O.G. Holmes and D.S. McClure, J. Chem Phys. 26, 1686 (1957)Google Scholar
  33. 33.
    Y. Tanabe and S. Sugano, J. Phys. Soc. Japan 9, 753 (1954)Google Scholar
  34. 34.
    J.M. Baker, B. Bleaney, and K.D. Bowers, Proc. Phys. Soc. (London) 69, 1205 (1956); also A.L. Kipling, P.W. Smith, J. Vanier, and G.A. Woonton, Can. J. Phys. 39, 1859 (1961)Google Scholar
  35. 35.
    M.M. Schieber, Experimental Magnetochemistry, (John Wiley, New York, 1967), p. 250Google Scholar
  36. 36.
    A. Abragam and M.H.L. Pryce, Proc. R. Soc. A205, 135 (1951)Google Scholar
  37. 37.
    H.A. Jahn and E. Teller, Proc. R. Soc. (London) A161, 220 (1937)Google Scholar
  38. 38.
    H.A Jahn, Proc. R. Soc. (London) A164, 117 (1938)Google Scholar
  39. 39.
    J.H. Van Vleck, Phys. Rev. 57, 426 (1940)Google Scholar
  40. 40.
    J.B. Goodenough, Magnetism and the Chemical Bond, (Wiley Interscience, New York, 1963), Chapter III, Sections IE and IFGoogle Scholar
  41. 41.
    J.B. Goodenough, J. Phys. Chem. Solids 25, 151 (1964)Google Scholar
  42. 42.
    M. Kaplan and B. Vekhter, Cooperative Phenomena in Jahn–Teller Crystals, (Plenum, New York, 1995)Google Scholar
  43. 43.
    E. Cartmell and G.W.A. Fowles, Valency and Molecular Structure, (Butterworths, London, 1961), Chapter XGoogle Scholar
  44. 44.
    C.J. Ballhausen, Introduction to Ligand Field Theory, (McGraw-Hill, New York, 1962), p. 161Google Scholar
  45. 45.
    C.J. Ballhausen and H.B. Gray, Molecular Electronic Structures, an Introduction, (Benjamin/Cummings, Reading, MA, 1980)Google Scholar
  46. 46.
    M. Wolfsberg and L. Helmholz, J. Chem Phys. 20, 837 (1952)Google Scholar
  47. 47.
    G.F. Dionne, Covalent Electron Transfer Theory of Superconductivity, (MIT Lincoln Laboratory Technical Rept. 885, 1992), NTIS No. ADA2539757Google Scholar
  48. 48.
    G.F. Dionne, J. Appl. Phys. 99, 08M913 (2006)Google Scholar
  49. 49.
    L. Pauling, The Nature of the Chemical Bond, (Cornell University Press, New York, 1960)Google Scholar
  50. 50.
    C. Kittel, Introduction to Solid State Physics, (Wiley, New York, 1966), p. 90Google Scholar
  51. 51.
    R. Chang, Chemistry in Action, (Random House, New York, 1988), Chapter 9Google Scholar
  52. 52.
    E. Cartmell and G.W.A. Fowles, Valency and Molecular Structure, (Butterworths, London, 1961), pp. 92–94Google Scholar
  53. 53.
    C.J. Ballhausen and H.B. Gray, Molecular Electronic Structures, an Introduction, (Benjamin/Cummings, Reading, MA, 1980), p. 84Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Massachusetts Institute of TechnologyLexingtonUSA

Personalised recommendations