Applications of Carbon Nanomaterials as Electrical Interconnects and Thermal Interface Materials



A brief review on CNT structure, electrical property, heat transport, and synthesis methods, CNT applications as electrical interconnects and TIMs, CNT integration into circuits and packaging, with focus on CNT transfer technology, are presented. In comparison with CNT/polymer composites, nanographite/polymer composites are more promising for TIM applications, which is discussed together with current thermal measurement techniques, commercialized and non-commercialized.


Carbon nanotubes Graphene Thermal interface materials Nano interconnect Thermal property measurements 


  1. 1.
    Moore GE, Progress in Digital Integrated Electronics. International Electron Devices Meetings 1975: 11–13.Google Scholar
  2. 2.
    Steinlesberger G, Engelhardt M, Schindler G, Steinhogl W, von Glasow A, Mosig K, Bertagnolli E, Electrical assessment of copper damascene interconnects down to sub-50 nm feature sizes. Microelectron Eng 2002;64: 409–416.Google Scholar
  3. 3.
    Kreupl F, Graham AP, Duesberg GS, Steinhogl W, Liebau M, Unger E, Honlein W, Carbon nanotubes in interconnect applications. Microelectron Eng 2002;64: 399–408.Google Scholar
  4. 4.
    Li J, Ye Q, Cassell A, Ng HT, Stevens R, Han J, Meyyappan M, Bottom-up approach for carbon nanotube interconnects. Appl Phys Lett 2003;82: 2491–2493.Google Scholar
  5. 5.
    Nihei M, Horibe M, Kawabata A, Awano Y, Simultaneous formation of multiwall carbon nanotubes and their end-bonded ohmic contacts to Ti electrodes for future ULSI interconnects. Jpn J Appl Phys Part 1 Regul Pap Short Notes Rev Pap 2004;43: 1856–1859.Google Scholar
  6. 6.
    Naeemi A, Sarvari R, Meindl JD, Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI). IEEE Electron Device Lett 2005;26: 84–86.Google Scholar
  7. 7.
    Naeemi A, Meindl JD, Impact of electron-phonon scattering on the performance of carbon nanotube interconnects for GSI. IEEE Electron Device Lett 2005;26: 476–478.Google Scholar
  8. 8.
    Awano Y, Carbon nanotube technologies for LSI via interconnects. IEICE Trans Electron 2006;E89C: 1499–1503.Google Scholar
  9. 9.
    Park M, Cola BA, Siegmund T, Xu J, Maschmann MR, Fisher TS, Kim H, Effects of a carbon nanotube layer on electrical contact resistance between copper substrates. Nanotechnology 2006;17: 2294–2303.Google Scholar
  10. 10.
    Nieuwoudt A, Massoud Y, Understanding the impact of inductance in carbon nanotube bundles for VLSI interconnect using scalable modeling techniques. IEEE Trans Nanotechnol 2006;5: 758–765.Google Scholar
  11. 11.
    Xu T, Wang Z, Miao J, Chen X, Tan CM, Aligned carbon nanotubes for through-wafer interconnects. Appl Phys Lett 2007;91: 042108.Google Scholar
  12. 12.
    Kaushik BK, Goel S, Rauthan G, Future VLSI interconnects: optical fiber or carbon nanotube – a review. Microelectron Int 2007;24: 53–63.Google Scholar
  13. 13.
    Graham AP, Duesberg GS, Seidel R, Liebau M, Unger E, Kreupl F, Honlein W, Towards the integration of carbon nanotubes in microelectronics. Diam Relat Mater 2004;13: 1296–1300.Google Scholar
  14. 14.
    Huang SM, Cai XY, Liu J, Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J Am Chem Soc 2003;125: 5636–5637.Google Scholar
  15. 15.
    Zhang YG, Chang AL, Cao J, Wang Q, Kim W, Li YM, Morris N, Yenilmez E, Kong J, Dai HJ, Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl Phys Lett 2001;79: 3155–3157.Google Scholar
  16. 16.
    Chai Y, Xiao ZY, Chan PCH, Electron-shading effect on the horizontal aligned growth of carbon nanotubes. Appl Phys Lett 2009;94: 043116.Google Scholar
  17. 17.
    Lan C, Zakharov DN, Reifenberger RG, Determining the optimal contact length for a metal/multiwalled carbon nanotube interconnect. Appl Phys Lett 2008;92: 213112.Google Scholar
  18. 18.
    Nihei M, Horibe M, Kawabata A, Awano Y, Simultaneous formation of multiwall carbon nanotubes and their end-bonded ohmic contacts to Ti electrodes for future ULSI interconnects. Jpn J Appl Phys 2004;43: 1856–1859.Google Scholar
  19. 19.
    Schmidt R, Challenges in electronic cooling – opportunities for enhanced thermal management techniques – Microprocessor liquid cooled minichannel heat sink. Heat Transf Eng 2004;25: 3–12.Google Scholar
  20. 20.
    Mahajan R, Chiu CP, Chrysler G, Cooling a microprocessor chip. Proc IEEE 2006;94: 1476–1486.Google Scholar
  21. 21.
    Prasher R, Thermal interface materials: historical perspective, status, and future directions. Proc IEEE 2006;94: 1571–1586.Google Scholar
  22. 22.
    Chu RC, The challenges of electronic cooling: past, current and future. J Electron Packag 2004;126: 491–500.Google Scholar
  23. 23.
    Azar K, Power Consumption and Generation in the Electronics Industry – a Perspective, 20th IEEE SEMI-Therm Symposium. San Jose, CA, 2004:201–212.Google Scholar
  24. 24.
    Prasher RS, Nano and micro technology based next generation package-level cooling solutions. Intel Technol J 2005;9: 285–292.Google Scholar
  25. 25.
    Schelling PK, Shi L, Goodson KE, Managing heat for electronics. Mater Today 2005;8: 30–35.Google Scholar
  26. 26.
    Iijima S, Helical microtubules of graphitic carbon. Nature 1991;354: 56–58.Google Scholar
  27. 27.
    Ajayan PM, Iijima S, Smallest carbon nanotube. Nature 1992;358: 23.Google Scholar
  28. 28.
    Ebbesen TW, Ajayan PM, Large-scale synthesis of carbon nanotubes. Nature 1992;358: 220–222.Google Scholar
  29. 29.
    Ajayan PM, Ebbesen TW, Nanometre-size tubes of carbon. Rep Prog Phys 1997;60: 1025–1062.Google Scholar
  30. 30.
    Ajayan PM, Nanotubes from carbon. Chem Rev 1999;99: 1787–1799.Google Scholar
  31. 31.
    Hamada N, Sawada S, Oshiyama A, New one-dimensional conductors – graphitic microtubules. Phys Rev Lett 1992;68: 1579–1581.Google Scholar
  32. 32.
    Dresselhaus MS, Dresselhaus G, Saito R, Carbon-fibers based on C-60 and their symmetry. Phys Rev B 1992;45: 6234–6242.Google Scholar
  33. 33.
    Dresselhaus MS, Dresselhaus G, Avouris P, Carbon Nanotubes – Synthesis, Structure, Properties and Applications. Springer-Verlag, New York, 2001.Google Scholar
  34. 34.
    Mackay AL, Terrones H, Diamond from graphite. Nature 1991;352: 762.Google Scholar
  35. 35.
    Zhang XF, Zhang XB, Vantendeloo G, Amelinckx S, Debeeck MO, Vanlanduyt J, Carbon nano-tubes – their formation process and observation by electron-microscopy. J Cryst Growth 1993;130: 368–382.Google Scholar
  36. 36.
    Tsang SC, Chen YK, Harris PJF, Green MLH, A simple chemical method of opening and filling carbon nanotubes. Nature 1994;372: 159–162.Google Scholar
  37. 37.
    Mintmire JW, Dunlap BI, White CT, Are fullerene tubules metallic. Phys Rev Lett 1992;68: 631–634.Google Scholar
  38. 38.
    Odom TW, Huang JL, Kim P, Lieber CM, Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998;391: 62–64.Google Scholar
  39. 39.
    Wildoer JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C, Electronic structure of atomically resolved carbon nanotubes. Nature 1998;391: 59–62.Google Scholar
  40. 40.
    Peierl RF, Quantum Theory of Solids. Clarendon, Oxford, 1995.Google Scholar
  41. 41.
    Yao Z, Kane CL, Dekker C, High-field electrical transport in single-wall carbon nanotubes. Phys Rev Lett 2000;84: 2941–2944.Google Scholar
  42. 42.
    Wei BQ, Vajtai R, Ajayan PM, Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett 2001;79: 1172–1174.Google Scholar
  43. 43.
    Collins PC, Arnold MS, Avouris P, Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 2001;292: 706–709.Google Scholar
  44. 44.
    Bachtold A, Strunk C, Salvetat JP, Bonard JM, Forro L, Nussbaumer T, Schonenberger C, Aharonov-Bohm oscillations in carbon nanotubes. Nature 1999;397: 673–675.Google Scholar
  45. 45.
    McEuen PL, Bockrath M, Cobden DH, Yoon YG, Louie SG, Disorder, pseudospins, and backscattering in carbon nanotubes. Phys Rev Lett 1999;83: 5098–5101.Google Scholar
  46. 46.
    Li HJ, Lu WG, Li JJ, Bai XD, Gu CZ, Multichannel ballistic transport in multiwall carbon nanotubes. Phys Rev Lett 2005; 95.Google Scholar
  47. 47.
    Haruehanroengra S, Wang W, Analyzing conductance of mixed carbon-nanotube bundles for interconnect applications. IEEE Electron Device Lett 2007;28: 756–759.Google Scholar
  48. 48.
    Naeemi A, Meindl JD, Compact physical models for multiwall carbon-nanotube interconnects. IEEE Electron Device Lett 2006;27: 338–340.Google Scholar
  49. 49.
    Tans SJ, Verschueren ARM, Dekker C, Room-temperature transistor based on a single carbon nanotube. Nature 1998;393: 49–52.Google Scholar
  50. 50.
    Bachtold A, Hadley P, Nakanishi T, Dekker C, Logic circuits with carbon nanotube transistors. Science 2001;294: 1317–1320.Google Scholar
  51. 51.
    Heinze S, Tersoff J, Martel R, Derycke V, Appenzeller J, Avouris P, Carbon nanotubes as Schottky barrier transistors. Phys Rev Lett 2002;89: 4.Google Scholar
  52. 52.
    Soh HT, Quate CF, Morpurgo AF, Marcus CM, Kong J, Dai HJ, Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes. Appl Phys Lett 1999;75: 627–629.Google Scholar
  53. 53.
    Strano MS, Dyke CA, Usrey ML, Barone PW, Allen MJ, Shan HW, Kittrell C, Hauge RH, Tour JM, Smalley RE, Electronic structure control of single-walled carbon nanotube functionalization. Science 2003;301: 1519–1522.Google Scholar
  54. 54.
    Campidelli S, Meneghetti M, Prato M, Separation of metallic and semiconducting single-walled carbon nanotubes via covalent functionalization. Small 2007;3: 1672–1676.Google Scholar
  55. 55.
    Krupke R, Hennrich F, von Lohneysen H, Kappes MM, Separation of metallic from semiconducting single-walled carbon nanotubes. Science 2003;301: 344–347.Google Scholar
  56. 56.
    Li HP, Zhou B, Lin Y, Gu LR, Wang W, Fernando KAS, Kumar S, Allard LF, Sun YP, Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes. J Am Chem Soc 2004;126: 1014–1015.Google Scholar
  57. 57.
    Maeda Y, Kimura S, Kanda M, Hirashima Y, Hasegawa T, Wakahara T, Lian YF, Nakahodo T, Tsuchiya T, Akasaka T, Lu J, Zhang XW, Gao ZX, Yu YP, Nagase S, Kazaoui S, Minami N, Shimizu T, Tokumoto H, Saito R, Large-scale separation of metallic and semiconducting single-walled carbon nanotubes. J Am Chem Soc 2005;127: 10287–10290.Google Scholar
  58. 58.
    Toyoda S, Yamaguchi Y, Hiwatashi M, Tomonari Y, Murakami H, Nakashima N, Separation of semiconducting single-walled carbon nanotubes by using a long-alkyl-chain benzenediazonium compound. Chem-Asian J 2007;2: 145–149.Google Scholar
  59. 59.
    Wang W, Fernando KAS, Lin Y, Meziani MJ, Veca LM, Cao L, Zhang P, Kimani MM, Sun YP, Metallic single-walled carbon nanotubes for conductive nanocomposites. J Am Chem Soc 2008;130: 1415–1419.Google Scholar
  60. 60.
    Mattsson M, Gromov A, Dittmer S, Eriksson E, Nerushev OA, Campbell EEB, Dielectrophoresis-induced separation of metallic and semiconducting single-wall carbon nanotubes in a continuous flow microfluidic system. J Nanosci Nanotechnol 2007;7(10): 3431–3435.Google Scholar
  61. 61.
    Tanaka T, Jin HH, Miyata Y, Kataura H, High-yield separation of metallic and semiconducting single-wall carbon nanotubes by agarose gel electrophoresis. Appl Phys Express 2008; 1.Google Scholar
  62. 62.
    Ghosh S, Rao CNR, Separation of metallic and semiconducting single-walled carbon nanotubes through fluorous chemistry. Nano Res 2009;2: 183–191.Google Scholar
  63. 63.
    Green AA, Duch MC, Hersam MC, Isolation of single-walled carbon nanotube enantiomers by density differentiation. Nano Res 2009;2: 69–77.Google Scholar
  64. 64.
    Dyke CA, Stewart MP, Tour JM, Separation of single-walled carbon nanotubes on silica gel. Materials morphology and Raman excitation wavelength affect data interpretation. J Am Chem Soc 2005;127: 4497–4509.Google Scholar
  65. 65.
    LeMieux MC, Roberts M, Barman S, Jin YW, Kim JM, Bao ZN, Self-sorted, aligned nanotube networks for thin-film transistors. Science 2008;321: 101–104.Google Scholar
  66. 66.
    Menard-Moyon C, Izard N, Doris E, Mioskowski C, Separation of semiconducting from metallic carbon nanotubes by selective functionalization with azomethine ylides. J Am Chem Soc 2006;128: 6552–6553.Google Scholar
  67. 67.
    Huang HJ, Maruyama R, Noda K, Kajiura H, Kadono K, Preferential destruction of metallic single-walled carbon nanotubes by laser irradiation. J Phys Chem B 2006;110: 7316–7320.Google Scholar
  68. 68.
    Miyata Y, Maniwa Y, Kataura H, Selective oxidation of semiconducting single-wall carbon nanotubes by hydrogen peroxide. J Phys Chem B 2006;110: 25–29.Google Scholar
  69. 69.
    Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC, Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 2006;1: 60–65.Google Scholar
  70. 70.
    Tanaka T, Jin HH, Miyata Y, Fujii S, Suga H, Naitoh Y, Minari T, Miyadera T, Tsukagoshi K, Kataura H, Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes. Nano Lett 2009;9(4): 1497–1500.Google Scholar
  71. 71.
    Berber S, Kwon YK, Tomanek D, Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 2000;84: 4613–4616.Google Scholar
  72. 72.
    Yu CH, Shi L, Yao Z, Li DY, Majumdar A, Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett 2005;5: 1842–1846.Google Scholar
  73. 73.
    Mingo N, Broido DA, Carbon nanotube ballistic thermal conductance and its limits. Phys Rev Lett 2005; 95.Google Scholar
  74. 74.
    Yamamoto T, Watanabe K, Nonequilibrium Green’s function approach to phonon transport in defective carbon nanotubes. Phys Rev Lett 2006; 96.Google Scholar
  75. 75.
    Hone J, Llaguno MC, Biercuk MJ, Johnson AT, Batlogg B, Benes Z, Fischer JE, Thermal properties of carbon nanotubes and nanotube-based materials. Appl Phys A Mater Sci Process 2002;74: 339–343.Google Scholar
  76. 76.
    Pop E, Mann D, Wang Q, Goodson K, Dai HJ, Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 2006;6: 96–100.Google Scholar
  77. 77.
    Hone J, Whitney M, Piskoti C, Zettl A, Thermal conductivity of single-walled carbon nanotubes. Phys Rev B 1999;59: R2514–R2516.Google Scholar
  78. 78.
    Benedict LX, Louie SG, Cohen ML, Heat capacity of carbon nanotubes. Solid State Commun 1996;100: 177–180.Google Scholar
  79. 79.
    Wang ZL, Tang DW, Li XB, Zheng XH, Zhang WG, Zheng LX, Zhu YTT, Jin AZ, Yang HF, Gu CZ, Length-dependent thermal conductivity of an individual single-wall carbon nanotube. Appl Phys Lett 2007; 91.Google Scholar
  80. 80.
    Mizel A, Benedict LX, Cohen ML, Louie SG, Zettl A, Budraa NK, Beyermann WP, Analysis of the low-temperature specific heat of multiwalled carbon nanotubes and carbon nanotube ropes. Phys Rev B 1999;60: 3264–3270.Google Scholar
  81. 81.
    Kim P, Shi L, Majumdar A, McEuen PL, Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 2001; 8721.Google Scholar
  82. 82.
    Choi TY, Poulikakos D, Tharian J, Sennhauser U, Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-omega method. Appl Phys Lett 2005; 87.Google Scholar
  83. 83.
    Choi TY, Poulikakos D, Tharian J, Sennhauser U, Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-omega method. Nano Lett 2006;6: 1589–1593.Google Scholar
  84. 84.
    Hone J, Batlogg B, Benes Z, Johnson AT, Fischer JE, Quantized phonon spectrum of single-wall carbon nanotubes. Science 2000;289: 1730–1733.Google Scholar
  85. 85.
    Yang DJ, Zhang Q, Chen G, Yoon SF, Ahn J, Wang SG, Zhou Q, Wang Q, Li JQ, Thermal conductivity of multiwalled carbon nanotubes. Phys Rev B 2002; 66.Google Scholar
  86. 86.
    Yi W, Lu L, Zhang DL, Pan ZW, Xie SS, Linear specific heat of carbon nanotubes. Phys Rev B 1999;59: R9015–R9018.Google Scholar
  87. 87.
    Bethune DS, Kiang CH, Devries MS, Gorman G, Savoy R, Vazquez J, Beyers R, Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls. Nature 1993;363: 605–607.Google Scholar
  88. 88.
    Thess A, Lee R, Nikolaev P, Dai HJ, Petit P, Robert J, Xu CH, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE, Crystalline ropes of metallic carbon nanotubes. Science 1996;273: 483–487.Google Scholar
  89. 89.
    Liu J, Rinzler AG, Dai HJ, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE, Fullerene pipes. Science 1998;280: 1253–1256.Google Scholar
  90. 90.
    Amelinckx S, Zhang XB, Bernaerts D, Zhang XF, Ivanov V, Nagy JB, A formation mechanism for catalytically grown helix-shaped graphite nanotubes. Science 1994;265: 635–639.Google Scholar
  91. 91.
    Amelinckx S, Bernaerts D, Zhang XB, Vantendeloo G, Vanlanduyt J, A structure model and growth-mechanism for multishell carbon nanotubes. Science 1995;267: 1334–1338.Google Scholar
  92. 92.
    Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S, Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes. Science 2004;306: 1362–1364.Google Scholar
  93. 93.
    Kong J, Soh HT, Cassell AM, Quate CF, Dai HJ, Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 1998;395: 878–881.Google Scholar
  94. 94.
    Qu L, Dai L, Gecko-foot-mimetic aligned single-walled carbon nanotube dry adhesives with unique electrical and thermal properties. Adv Mater 2007;19: 3844–3849.Google Scholar
  95. 95.
    Nikolaev P, Bronikowski MJ, Bradley RK, Rohmund F, Colbert DT, Smith KA, Smalley RE, Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem Phys Lett 1999;313: 91–97.Google Scholar
  96. 96.
    Andrews R, Jacques D, Rao AM, Derbyshire F, Qian D, Fan X, Dickey EC, Chen J, Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chem Phys Lett 1999;303: 467–474.Google Scholar
  97. 97.
    Xu YQ, Flor E, Kim MJ, Hamadani B, Schmidt H, Smalley RE, Hauge RH, Vertical array growth of small diameter single-walled carbon nanotubes. J Am Chem Soc 2006;128: 6560–6561.Google Scholar
  98. 98.
    Shyu YM, Hong FCN, Low-temperature growth and field emission of aligned carbon nanotubes by chemical vapor deposition. Mater Chem Phys 2001;72: 223–227.Google Scholar
  99. 99.
    Shyu YM, Hong FCN, The effects of pre-treatment and catalyst composition on growth of carbon nanofibers at low temperature. Diam Relat Mater 2001;10: 1241–1245.Google Scholar
  100. 100.
    Laplaze D, Alvarez L, Guillard T, Badie JM, Flamant G, Carbon nanotubes: dynamics of synthesis processes. Carbon 2002;40: 1621–1634.Google Scholar
  101. 101.
    Choi YC, Bae DJ, Lee YH, Lee BS, Park GS, Choi WB, Lee NS, Kim JM, Growth of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition at low temperature. J Vac Sci Technol A Vac Surf Films 2000;18: 1864–1868.Google Scholar
  102. 102.
    Hofmann S, Ducati C, Robertson J, Kleinsorge B, Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Appl Phys Lett 2003;83: 135–137.Google Scholar
  103. 103.
    Devaux X, Vergnat M, On the low-temperature synthesis of SWCNTs by thermal CVD. Physica E 2008;40: 2268–2271.Google Scholar
  104. 104.
    Bower C, Zhu W, Jin SH, Zhou O, Plasma-induced alignment of carbon nanotubes. Appl Phys Lett 2000;77: 830–832.Google Scholar
  105. 105.
    Wang W, Yang KQ, Gaillard J, Bandaru PR, Rao AM, Rational synthesis of helically coiled carbon nanowires and nanotubes through the use of tin and indium catalysts. Adv Mater 2008;20: 179–182.Google Scholar
  106. 106.
    Naeemi A, Meindl JD, Monolayer metallic nanotube interconnects: Promising candidates for short local interconnects. IEEE Electron Device Lett 2005;26: 544–546.Google Scholar
  107. 107.
    Nihei M, Kawabata A, Kondo D, Horibe M, Sato S, Awano Y, Electrical properties of carbon nanotube bundles for future via interconnects. Jpn J Appl Phys Part 1 Regul Pap Short Notes Rev Pap 2005;44: 1626–1628.Google Scholar
  108. 108.
    Hoenlein W, Kreupl F, Duesberg GS, Graham AP, Liebau M, Seidel R, Unger E, Carbon nanotubes for microelectronics: status and future prospects. Mater Sci Eng C Biomimetic Supramol Syst 2003;23: 663–669.Google Scholar
  109. 109.
    Awano Y, Sato S, Kondo D, Ohfuti M, Kawabata A, Nihei M, Yokoyama N, Carbon nanotube via interconnect technologies: size-classified catalyst nanoparticles and low-resistance ohmic contact formation. Phys Status Solidi A Appl Mat 2006;203: 3611–3616.Google Scholar
  110. 110.
    Graham AP, Duesberg GS, Hoenlein W, Kreupl F, Liebau M, Martin R, Rajasekharan B, Pamler W, Seidel R, Steinhoegl W, Unger E, How do carbon nanotubes fit into the semiconductor roadmap?. Appl Phys A Mater Sci Process 2005;80: 1141–1151.Google Scholar
  111. 111.
    Rodríguez-Manzo JA, Banhart F, Terrones M, Terrones H, Grobert N, Ajayan PM, Sumpter BG, Meunier V, Wang M, Bando Y, Golberg D, Heterojunctions between metals and carbon nanotubes as ultimate nanocontacts. Proc Natl Acad Sci U S A 2009; 106.Google Scholar
  112. 112.
    Sato S, Kawabata A, Nihei M, Awano Y, Growth of diameter-controlled carbon nanotubes using monodisperse nickel nanoparticles obtained with a differential mobility analyzer. Chem Phys Lett 2003;382: 361–366.Google Scholar
  113. 113.
    Gwinn JP, Webb RL, Performance and testing of thermal interface materials. Microelectron J 2003;34(3): 215–222.Google Scholar
  114. 114.
    Prasher RS, Surface chemistry and characteristics based model for the thermal contact resistance of fluidic interstitial thermal interface materials. J Heat Transf Trans ASME 2001;123: 969–975.Google Scholar
  115. 115.
    Prasher RS, Shipley J, Prstic S, Koning P, Wang JL, Thermal resistance of particle laden polymeric thermal interface materials. J Heat Transf Trans ASME 2003;125: 1170–1177.Google Scholar
  116. 116.
    Xu J, Fisher TS, Enhancement of thermal interface materials with carbon nanotube arrays. Int J Heat Mass Transf 2006;49: 1658–1666.Google Scholar
  117. 117.
    Yu AP, Ramesh P, Itkis ME, Bekyarova E, Haddon RC, Graphite nanoplatelet-epoxy composite thermal interface materials. J Phys Chem C 2007;111: 7565–7569.Google Scholar
  118. 118.
    Aoyagi Y, Leong CK, Chung DDL, Polyol-based phase-change thermal interface materials. J Electron Mater 2006;35: 416–424.Google Scholar
  119. 119.
    Chung DDL, Thermal interface materials. J Mater Eng Perform 2001;10: 56–59.Google Scholar
  120. 120.
    Howe TA, Leong CK, Chung DDL, Comparative evaluation of thermal interface materials for improving the thermal contact between an operating computer microprocessor and its heat sink. J Electron Mater 2006;35: 1628–1635.Google Scholar
  121. 121.
    Liu ZR, Chung DDL, Calorimetric evaluation of phase change materials for use as thermal interface materials. Thermochimica Acta 2001;366: 135–147.Google Scholar
  122. 122.
    Maguire L, Behnia M, Morrison G, Systematic evaluation of thermal interface materials - a case study in high power amplifier design. Microelectron Reliab 2005;45: 711–725.Google Scholar
  123. 123.
    Prasher RS, Rheology based modeling and design of particle laden polymeric thermal interface materials. IEEE Trans Compon Packag Technol 2005;28(2): 230–237.Google Scholar
  124. 124.
    Singhal V, Siegmund T, Garimella SV, Optimization of thermal interface materials for electronics cooling applications. IEEE Trans Compon Packag Technol 2004;27: 244–252.Google Scholar
  125. 125.
    Tong T, Zhao Y, Delzeit L, Kashani A, Meyyappan M, Majumdar A, Dense, vertically aligned multiwalled carbon nanotube arrays as thermal interface materials. IEEE Trans Compon Packag Technol 2007;30: 92–100.Google Scholar
  126. 126.
    Abadi P, Leong CK, Chung DDL, Factors that govern the performance of thermal interface materials. J Electron Mater 2009;38(1): 175–192.Google Scholar
  127. 127.
    Aoyagi Y, Chung DDL, Antioxidant-based phase-change thermal interface materials with high thermal stability. J Electron Mater 2008;37(4): 448–461.Google Scholar
  128. 128.
    De Mey G, Pilarski J, Wojcik M, Lasota M, Banaszczyk J, Vermeersch B, Napieralski A, Influence of interface materials on the thermal impedance of electronic packages. Int Commun Heat Mass Transf 2009;36: 210–212.Google Scholar
  129. 129.
    Kanuparthi S, Subbarayan G, Siegmund T, Sammakia B, An efficient network model for determining the effective thermal conductivity of particulate thermal interface materials. IEEE Trans Compon Packag Technol 2008;31: 611–621.Google Scholar
  130. 130.
    Lin C, Chung DDL, Graphite nanoplatelet pastes vs. carbon black pastes as thermal interface materials. Carbon 2009;47: 295–305.Google Scholar
  131. 131.
    Liu X, Zhang Y, Cassell AM, Cruden BA, Implications of catalyst control for carbon nanotube based thermal interface materials. J Appl Phys 2008; 104.Google Scholar
  132. 132.
    Thostenson ET, Ren ZF, Chou TW, Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 2001;61: 1899–1912.Google Scholar
  133. 133.
    Borca-Tasciuc T, Mazumder M, Son Y, Pal SK, Schadler LS, Ajayan PM, Anisotropic thermal diffusivity characterization of aligned carbon nanotube-polymer composites. J Nanosci Nanotechnol 2007;7: 1581–1588.Google Scholar
  134. 134.
    Choi ES, Brooks JS, Eaton DL, Al-Haik MS, Hussaini MY, Garmestani H, Li D, Dahmen K, Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. J Appl Phys 2003;94: 6034–6039.Google Scholar
  135. 135.
    Velasco-Santos C, Martinez-Hernandez AL, Fisher FT, Ruoff R, Castano VM, Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chem Mater 2003;15: 4470–4475.Google Scholar
  136. 136.
    Liu CH, Huang H, Wu Y, Fan SS, Thermal conductivity improvement of silicone elastomer with carbon nanotube loading. Appl Phys Lett 2004;84: 4248–4250.Google Scholar
  137. 137.
    Huang H, Liu CH, Wu Y, Fan SS, Aligned carbon nanotube composite films for thermal management. Adv Mater 2005;17: 1652–1656.Google Scholar
  138. 138.
    Bryning MB, Milkie DE, Islam MF, Kikkawa JM, Yodh AG, Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites. Appl Phys Lett 2005; 87.Google Scholar
  139. 139.
    Gojny FH, Wichmann MHG, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, Schulte K, Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 2006;47: 2036–2045.Google Scholar
  140. 140.
    Bonnet P, Sireude D, Garnier B, Chauvet O, Thermal properties and percolation in carbon nanotube-polymer composites. Appl Phys Lett 2007; 91.Google Scholar
  141. 141.
    Shenogina N, Shenogin S, Xue L, Keblinski P, On the lack of thermal percolation in carbon nanotube composites. Appl Phys Lett 2005; 87.Google Scholar
  142. 142.
    Nan CW, Liu G, Lin YH, Li M, Interface effect on thermal conductivity of carbon nanotube composites. Appl Phys Lett 2004;85: 3549–3551.Google Scholar
  143. 143.
    Shenogin S, Xue LP, Ozisik R, Keblinski P, Cahill DG, Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. J Appl Phys 2004;95: 8136–8144.Google Scholar
  144. 144.
    Shenogin S, Bodapati A, Xue L, Ozisik R, Keblinski P, Effect of chemical functionalization on thermal transport of carbon nanotube composites. Appl Phys Lett 2004;85: 2229–2231.Google Scholar
  145. 145.
    Clancy TC, Gates TS, Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites. Polymer 2006;47: 5990–5996.Google Scholar
  146. 146.
    Liu CH, Fan SS, Effects of chemical modifications on the thermal conductivity of carbon nanotube composites. Appl Phys Lett 2005; 86.Google Scholar
  147. 147.
    Nan CW, Shi Z, Lin Y, A simple model for thermal conductivity of carbon nanotube-based composites. Chem Phys Lett 2003;375: 666–669.Google Scholar
  148. 148.
    Ju S, Li ZY, Theory of thermal conductance in carbon nanotube composites. Phys Lett A 2006;353: 194–197.Google Scholar
  149. 149.
    Nan CW, Birringer R, Clarke DR, Gleiter H, Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 1997;81: 6692–6699.Google Scholar
  150. 150.
    Huxtable ST, Cahill DG, Shenogin S, Xue LP, Ozisik R, Barone P, Usrey M, Strano MS, Siddons G, Shim M, Keblinski P, Interfacial heat flow in carbon nanotube suspensions. Nat Mater 2003;2: 731–734.Google Scholar
  151. 151.
    Lin W, Moon KS, Wong CP, A combined process of in-situ functionalization and microwave treatment to achieve ultra-small thermal expansion of aligned carbon nanotube/polymer nanocomposites for thermal management. Adv Mater 2009;21: 2421–2424.Google Scholar
  152. 152.
    Young DD, Nichols J, Kelly RM, Deiters A, Microwave activation of enzymatic catalysis. J Am Chem Soc 2008;130: 10048–10049.Google Scholar
  153. 153.
    Noh HS, Moon KS, Cannon A, Hesketh PJ, Wong CP, Wafer bonding using microwave heating of parylene intermediate layers. J Micromech Microeng 2004;14: 625–631.Google Scholar
  154. 154.
    Jiang HJ, Moon KS, Zhang ZQ, Pothukuchi S, Wong CP, Variable frequency microwave synthesis of silver nanoparticles. J Nanopart Res 2006;8: 117–124.Google Scholar
  155. 155.
    Moon KS, Li Y, Xu JW, Wong CP, Lead-free interconnect technique by using variable frequency microwave. J Electron Mater 2005;34: 1081–1088.Google Scholar
  156. 156.
    Sunden E, Moon JK, Wong CP, King WP, Graham S, Microwave assisted patterning of vertically aligned carbon nanotubes onto polymer substrates. J Vac Sci Technol B 2006;24: 1947–1950.Google Scholar
  157. 157.
    Cola BA, Xu J, Cheng CR, Xu XF, Fisher TS, Hu HP, Photoacoustic characterization of carbon nanotube array thermal interfaces. J Appl Phys 2007; 101.Google Scholar
  158. 158.
    Huang H, Liu CH, Wu Y, Fan SS, Aligned carbon nanotube composite films for thermal management. Adv Mater 2005;17: 1652–1653.Google Scholar
  159. 159.
    Panzer MA, Zhang G, Mann D, Hu X, Pop E, Dai H, Goodson KE, Thermal properties of metal-coated vertically aligned single-wall nanotube arrays. J Heat Transf Trans ASME 2008; 130.Google Scholar
  160. 160.
    Cola BA, Xu XF, Fisher TS, Increased real contact in thermal interfaces: A carbon nanotube/foil material. Appl Phys Lett 2007; 90.Google Scholar
  161. 161.
    Kordas K, Toth G, Moilanen P, Kumpumaki M, Vahakangas J, Uusimaki A, Vajtai R, Ajayan PM, Chip cooling with integrated carbon nanotube microfin architectures. Appl Phys Lett 2007; 90.Google Scholar
  162. 162.
    Zhu LB, Hess DW, Wong CP, Assembling Carbon Nanotube Films as Thermal Interface Materials Electronic Components and Technology Conference: IEEE, 2007:2006–2010Google Scholar
  163. 163.
    Hu XJ, Padilla AA, Xu J, Fisher TS, Goodson KE, 3-omega measurements of vertically oriented carbon nanotubes on silicon. J Heat Transf Trans ASME 2006;128: 1109–1113.Google Scholar
  164. 164.
    Wang XW, Zhong ZR, Xu J, Noncontact thermal characterization of multiwall carbon nanotubes. J Appl Phys 2005; 97.Google Scholar
  165. 165.
    Ngo Q, Cruden BA, Cassell AM, Sims G, Meyyappan M, Li J, Yang CY, Thermal interface properties of Cu-filled vertically aligned carbon nanofiber arrays. Nano Lett 2004;4: 2403–2407.Google Scholar
  166. 166.
    Xu Y, Zhang Y, Suhir E, Wang XW, Thermal properties of carbon nanotube array used for integrated circuit cooling. J Appl Phys 2006; 100.Google Scholar
  167. 167.
    Tong T, Zhao Y, Delzeit L, Majumdar A, Kashani A, Third ASME Integrated Nanosystems Conference. New York, 2004.Google Scholar
  168. 168.
    Amama PB, Cola BA, Sands TD, Xu XF, Fisher TS, Dendrimer-assisted controlled growth of carbon nanotubes for enhanced thermal interface conductance. Nanotechnology 2007; 18.Google Scholar
  169. 169.
    Moon KS, Lin W, Jiang HJ, Ko H, Zhu LB, Wong CP, Surface treatment of MWCNT array and its polymer composites for TIM application. Electronic Components and Technology Conference, 2008:234–237.Google Scholar
  170. 170.
    Amama PB, Ogebule O, Maschmann MR, Sands TD, Fisher TS, Dendrimer-assisted low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Chem Commun 2006; 2899–2901.Google Scholar
  171. 171.
    Bae EJ, Min YS, Kang D, Ko JH, Park W, Low-temperature growth of single-walled carbon nanotubes by plasma enhanced chemical vapor deposition. Chem Mater 2005;17: 5141–5145.Google Scholar
  172. 172.
    Chen KC, Chen CF, Chiang JS, Hwang CL, Chang YY, Lee CC, Low temperature growth of carbon nanotubes on printing electrodes by MPCVD. Thin Solid Films 2006;498(1–2): 198–201.Google Scholar
  173. 173.
    Chen KC, Chen CF, Lee JH, Wu TL, Hwang CL, Tai NH, Hsiao MC, Low-temperature CVD growth of carbon nanotubes for field emission application. Diam Relat Mater 2007;16: 566–569.Google Scholar
  174. 174.
    Chiang WH, Sankaran RM, Synergistic Effects in Bimetallic Nanoparticles for low temperature carbon nanotube growth. Adv Mater 2008;20: 4857–4861.Google Scholar
  175. 175.
    Dai LM, Low-temperature, controlled synthesis of carbon nanotubes. Small 2005;1: 274–276.Google Scholar
  176. 176.
    Devaux X, Vergnat M, On the low-temperature synthesis of SWCNTs by thermal CVD. Physica E 2008;40(7): 2268–2271.Google Scholar
  177. 177.
    Dubosc M, Minea T, Besland MP, Cardinaud C, Granier A, Gohier A, Point S, Torres J, Low temperature plasma carbon nanotubes growth on patterned catalyst. Microelectron Eng 2006;83: 2427–2431.Google Scholar
  178. 178.
    Iwasaki T, Zhong GF, Kawarada H, Low-temperature growth of vertically aligned single-walled carbon nanotubes by radical CVD. New Diam Front Carbon Technol 2006;16: 177–184.Google Scholar
  179. 179.
    Jayatissa AH, Guo K, Synthesis of carbon nanotubes at low temperature by filament assisted atmospheric CVD and their field emission characteristics. Vacuum 2009;83: 853–856.Google Scholar
  180. 180.
    Kim SM, Zhang Y, Wang X, Teo KBK, Gangloff L, Milne WI, Wu J, Eastman M, Jiao J, Low-temperature growth of single-wall carbon nanotubes. Nanotechnology 2007; 18.Google Scholar
  181. 181.
    Kondo D, Sato S, Awano Y, Low-temperature synthesis of single-walled carbon nanotubes with a narrow diameter distribution using size-classified catalyst nanoparticles. Chem Phys Lett 2006;422: 481–487.Google Scholar
  182. 182.
    Kyung SJ, Lee YH, Kim CW, Lee JH, Yeom GY, Field emission properties of carbon nanotubes synthesized by capillary type atmospheric pressure plasma enhanced chemical vapor deposition at low temperature. Carbon 2006;44: 1530–1534.Google Scholar
  183. 183.
    Li CH, Liu HC, Tseng SC, Lin YP, Chen SP, Li JY, Wu KH, Juang JY, Enhancement of the field emission properties of low-temperature-growth multi-wall carbon nanotubes by KrF excimer laser irradiation post-treatment. Diam Relat Mater 2006;15(11–12): 2010–2014.Google Scholar
  184. 184.
    Liao KH, Ting JM, Characteristics of aligned carbon nanotubes synthesized using a high-rate low-temperature process. Diam Relat Mater 2006;15: 1210–1216.Google Scholar
  185. 185.
    Min YS, Bae EJ, Oh BS, Kang D, Park W, Low-temperature growth of single-walled carbon nanotubes by water plasma chemical vapor deposition. J Am Chem Soc 2005;127: 12498–12499.Google Scholar
  186. 186.
    Rummeli MH, Gruneis A, Loffler M, Jost O, Schonfelder R, Kramberger C, Grimm D, Gemming T, Barreiro A, Borowiak-Palen E, Kalbac M, Ayala P, Hubers HW, Buchner B, Pichler T, Novel catalysts for low temperature synthesis of single wall carbon nanotubes. Physica Status Solidi B 2006; 243(13):3101–3105.Google Scholar
  187. 187.
    Tam E, Ostrikov K, Plasma-controlled adatom delivery and (re)distribution: Enabling uninterrupted, low-temperature growth of ultralong vertically aligned single walled carbon nanotubes. Appl Phys Lett 2008; 93.Google Scholar
  188. 188.
    Uchino T, Bourdakos KN, de Groot CH, Ashburn P, Kiziroglou ME, Dilliway GD, Smith DC, Metal catalyst-free low-temperature carbon nanotube growth on SiGe islands. Appl Phys Lett 2005; 86.Google Scholar
  189. 189.
    Yu GJ, Gong JL, Zhu DZ, He SX, Zhu ZY, Synthesis of carbon nanotubes over rare earth zeolites at low temperature. Carbon 2005;43: 3015–3017.Google Scholar
  190. 190.
    Chen M, Chen CM, Shi SC, Chen CF, Low-temperature synthesis multiwalled carbon nanotubes by microwave plasma chemical vapor deposition using CH4-CO2 gas mixture. Jpn J Appl Phys Part 1 Regul Pap Short Notes Rev Pap 2003;42: 614–619.Google Scholar
  191. 191.
    Choi YC, Bae DJ, Lee YH, Lee BS, Han IT, Choi WB, Lee NS, Kim JM, Low temperature synthesis of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition. Synth Met 2000;108: 159–163.Google Scholar
  192. 192.
    Choi YC, Bae DJ, Lee YH, Lee BS, Park GS, Choi WB, Lee NS, Kim JM, Growth of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition at low temperature. J Vac Sci Technol A Vac Surf Films 2000;18(4): 1864–1868.Google Scholar
  193. 193.
    Honda S, Katayama M, Lee KY, Ikuno T, Ohkura S, Oura K, Furuta H, Hirao T, Low temperature synthesis of aligned carbon nanotubes by inductively coupled plasma chemical vapor deposition using pure methane. Jpn J Appl Phys Part 2 Lett 2003;42: L441–L443.Google Scholar
  194. 194.
    Jeong HJ, Jeong SY, Shin YM, Han JH, Lim SC, Eum SJ, Yang CW, Kim NG, Park CY, Lee YH, Dual-catalyst growth of vertically aligned carbon nanotubes at low temperature in thermal chemical vapor deposition. Chem Phys Lett 2002;361: 189–195.Google Scholar
  195. 195.
    Kang HS, Yoon HJ, Kim CO, Hong JP, Han IT, Cha SN, Song BK, Jung JE, Lee NS, Kim JM, Low temperature growth of multi-wall carbon nanotubes assisted by mesh potential using a modified plasma enhanced chemical vapor deposition system. Chem Phys Lett 2001;349: 196–200.Google Scholar
  196. 196.
    Lee CJ, Park J, Kim JM, Huh Y, Lee JY, No KS, Low-temperature growth of carbon nanotubes by thermal chemical vapor deposition using Pd, Cr, and Pt as co-catalyst. Chem Phys Lett 2000;327: 277–283.Google Scholar
  197. 197.
    Lee CJ, Son KH, Park J, Yoo JE, Huh Y, Lee JY, Low temperature growth of vertically aligned carbon nanotubes by thermal chemical vapor deposition. Chem Phys Lett 2001;338: 113–117.Google Scholar
  198. 198.
    Li MW, Hu Z, Wang XZ, Wu Q, Chen Y, Tian YL, Low-temperature synthesis of carbon nanotubes using corona discharge plasma at atmospheric pressure. Diam Relat Mater 2004;13: 111–115.Google Scholar
  199. 199.
    Li YL, Yu YD, Liang Y, A novel method for synthesis of carbon nanotubes: low temperature solid pyrolysis. J Mater Res 1997;12: 1678–1680.Google Scholar
  200. 200.
    Liao HW, Hafner JH, Low-temperature single-wall carbon nanotube synthesis by thermal chemical vapor deposition. J Phys Chem B 2004;108: 6941–6943.Google Scholar
  201. 201.
    Lin YH, Cui XL, Yen C, Wai CM, Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells. J Phys Chem B 2005;109: 14410–14415.Google Scholar
  202. 202.
    Maruyama S, Kojima R, Miyauchi Y, Chiashi S, Kohno M, Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem Phys Lett 2002;360: 229–234.Google Scholar
  203. 203.
    Shao MW, Wang DB, Yu GH, Hu B, Yu WC, Qian YT, The synthesis of carbon nanotubes at low temperature via carbon suboxide disproportionation. Carbon 2004;42: 183–185.Google Scholar
  204. 204.
    Shiratori Y, Hiraoka H, Yamamoto M, Vertically aligned carbon nanotubes produced by radio-frequency plasma-enhanced chemical vapor deposition at low temperature and their growth mechanism. Mater Chem Phys 2004;87: 31–38.Google Scholar
  205. 205.
    Shyu YM, Hong FCN, Low-temperature growth and field emission of aligned carbon nanotubes by chemical vapor deposition. Mater Chem Phys 2001;72: 223–227.Google Scholar
  206. 206.
    Simon F, Kuzmany H, Rauf H, Pichler T, Bernardi J, Peterlik H, Korecz L, Fulop F, Janossy A, Low temperature fullerene encapsulation in single wall carbon nanotubes: synthesis of N@C-60@SWCNT. Chem Phys Lett 2004;383: 362–367.Google Scholar
  207. 207.
    Ting JM, Liao KH, Low-temperature, nonlinear rapid growth of aligned carbon nanotubes. Chem Phys Lett 2004;396: 469–472.Google Scholar
  208. 208.
    Vohs JK, Brege JJ, Raymond JE, Brown AE, Williams GL, Fahlman BD, Low-temperature growth of carbon nanotubes from the catalytic decomposition of carbon tetrachloride. J Am Chem Soc 2004;126: 9936–9937.Google Scholar
  209. 209.
    Wang WL, Bai XD, Xu Z, Liu S, Wang EG, Low temperature growth of single-walled carbon nanotubes: small diameters with narrow distribution. Chem Phys Lett 2006;419: 81–85.Google Scholar
  210. 210.
    Wang WZ, Kunwar S, Huang JY, Wang DZ, Ren ZF, Low temperature solvothermal synthesis of multiwall carbon nanotubes. Nanotechnology 2005;16: 21–23.Google Scholar
  211. 211.
    Wang XH, Hu Z, Wu Q, Chen Y, Low-temperature catalytic growth of carbon nanotubes under microwave plasma assistance. Catal Today 2002;72(3–4): 205–211.Google Scholar
  212. 212.
    Zhong DY, Liu S, Zhang GY, Wang EG, Large-scale well aligned carbon nitride nanotube films: low temperature growth and electron field emission. J Appl Phys 2001;89: 5939–5943.Google Scholar
  213. 213.
    Wang BA, Liu XY, Liu HM, Wu DX, Wang HP, Jiang JM, Wang XB, Hu PA, Liu YQ, Zhu DB, Controllable preparation of patterns of aligned carbon nanotubes on metals and metal-coated silicon substrates. J Mater Chem 2003;13: 1124–1126.Google Scholar
  214. 214.
    Xu FS, Liu XF, Tse SD, Synthesis of carbon nanotubes on metal alloy substrates with voltage bias in methane inverse diffusion flames. Carbon 2006;44: 570–577.Google Scholar
  215. 215.
    Hofmeister W, Kang WP, Wong YM, Davidson JL, Carbon nanotube growth from Cu-Co alloys for field emission applications. J Vac Sci Technol B 2004;22: 1286–1289.Google Scholar
  216. 216.
    Karwa M, Iqbal Z, Mitra S, Selective self-assembly of single walled carbon nanotubes in long steel tubing for chemical separations. J Mater Chem 2006;16: 2890–2895.Google Scholar
  217. 217.
    Talapatra S, Kar S, Pal SK, Vajtai R, Ci L, Victor P, Shaijumon MM, Kaur S, Nalamasu O, Ajayan PM, Direct growth of aligned carbon nanotubes on bulk metals. Nat Nanotechnol 2006;1: 112–116.Google Scholar
  218. 218.
    Gao LJ, Peng AP, Wang ZY, Zhang H, Shi ZJ, Gu ZN, Cao GP, Ding BZ, Growth of aligned carbon nanotube arrays on metallic substrate and its application to supercapacitors. Solid State Commun 2008;146: 380–383.Google Scholar
  219. 219.
    Singh MK, Singh PP, Titus E, Misra DS, LeNormand F, High density of multiwalled carbon nanotubes observed on nickel electroplated copper substrates by microwave plasma chemical vapor deposition. Chem Phys Lett 2002;354: 331–336.Google Scholar
  220. 220.
    Wang H, Feng JY, Hu XJ, Ng KM, Synthesis of aligned carbon nanotubes on double-sided metallic substrate by chemical vapor deposition. J Phys Chem C 2007;111: 12617–12624.Google Scholar
  221. 221.
    Yin XW, Wang QL, Lou CG, Zhang XB, Lei W, Growth of multi-walled CNTs emitters on an oxygen-free copper substrate by chemical-vapor deposition. Appl Surf Sci 2008;254: 6633–6636.Google Scholar
  222. 222.
    Lin W, Wong CP, Synthesis of Vertically Aligned Multi-Walled Carbon Nanotubes on Copper Substrates for Applications as Thermal Interface Materials, MRS 2009 Spring Meeting.Google Scholar
  223. 223.
    Zhu LB, Sun YY, Hess DW, Wong CP, Well-aligned open-ended carbon nanotube architectures: an approach for device assembly. Nano Lett 2006;6: 243–247.Google Scholar
  224. 224.
    Zhu LB, Xiu YH, Hess DW, Wong CP, Aligned carbon nanotube stacks by water-assisted selective etching. Nano Lett 2005;5: 2641–2645.Google Scholar
  225. 225.
    Powell CF, Oxley JH, Johan M, Blocher J, Vapor deposition. John Wiley & Sons, Inc., New York; 1966.Google Scholar
  226. 226.
    de los Arcos T, Vonau F, Garnier MG, Thommen V, Boyen HG, Oelhafen P, Duggelin M, Mathis D, Guggenheim R, Influence of iron-silicon interaction on the growth of carbon nanotubes produced by chemical vapor deposition. Appl Phys Lett 2002;80: 2383–2385.Google Scholar
  227. 227.
    Xiu YH, Zhang S, Yelundur V, Rohatgi A, Hess DW, Wong CP, Superhydrophobic and low light reflectivity silicon surfaces fabricated by hierarchical etching. Langmuir 2008;24: 10421–10426.Google Scholar
  228. 228.
    Pisana S, Cantoro M, Parvez A, Hofmann S, Ferrari AC, Robertson J, The role of precursor gases on the surface restructuring of catalyst films during carbon nanotube growth. Physica E 2007;37: 1–5.Google Scholar
  229. 229.
    Rodriguez NM, A review of catalytically grown carbon nanofibers. J Mater Res 1993;8: 3233–3250.Google Scholar
  230. 230.
    Deck CP, Vecchio K, Prediction of carbon nanotube growth success by the analysis of carbon-catalyst binary phase diagrams. Carbon 2006;44: 267–275.Google Scholar
  231. 231.
    Deng WQ, Xu X, Goddard WA, A two-stage mechanism of bimetallic catalyzed growth of single-walled carbon nanotubes. Nano Lett 2004;4: 2331–2335.Google Scholar
  232. 232.
    Krishnankutty N, Park C, Rodriguez NM, Baker RTK, The effect of copper on the structural characteristics of carbon filaments produced from iron catalyzed decomposition of ethylene. Catal Today 1997;37: 295–307.Google Scholar
  233. 233.
    Almazouzi A, Macht MP, Naundorf V, Neumann G, Diffusion of iron and nickel in single-crystalline copper. Phys Rev B 1996;54: 857–863.Google Scholar
  234. 234.
    Kononchuk O, Korablev KG, Yarykin N, Rozgonyi GA, Diffusion of iron in the silicon dioxide layer of silicon-on-insulator structures. Appl Phys Lett 1998;73: 1206–1208.Google Scholar
  235. 235.
    Puurunen RL, Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J Appl Phys 2005; 97.Google Scholar
  236. 236.
    Rahtu A, Alaranta T, Ritala M, In situ quartz crystal microbalance and quadrupole mass spectrometry studies of atomic layer deposition of aluminum oxide from trimethylaluminum and water. Langmuir 2001;17: 6506–6509.Google Scholar
  237. 237.
    Groner MD, Elam JW, Fabreguette FH, George SM, Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates. Thin Solid Films 2002;413: 186–197.Google Scholar
  238. 238.
    Zhu LB, Hess DW, Wong CP, Monitoring carbon nanotube growth by formation of nanotube stacks and investigation of the diffusion-controlled kinetics. J Phys Chem B 2006;110: 5445–5449.Google Scholar
  239. 239.
    Murakami Y, Maruyama S, Detachment of vertically aligned single-walled carbon nanotube films from substrates and their re-attachment to arbitrary surfaces. Chem Phys Lett 2006;422: 575–580.Google Scholar
  240. 240.
    Kim MJ, Nicholas N, Kittrell C, Haroz E, Shan HW, Wainerdi TJ, Lee S, Schmidt HK, Smalley RE, Hauge RH, Efficient transfer of a VA-SWNT film by a flip-over technique. J Am Chem Soc 2006;128: 9312–9313.Google Scholar
  241. 241.
    Jiang HJ, Zhu LB, Moon KS, Wong CP, Low temperature carbon nanotube film transfer via conductive polymer composites. Nanotechnology 2007;18: 4.Google Scholar
  242. 242.
    Gan Z, Liu S, Song X, Chen M, Lv Q, Yan H, Cao H, Large-scale Bonding of Aligned Carbon Nanotube Arrays onto Metal Electrodes. 2009.Google Scholar
  243. 243.
    Lin W, Xiu YG, Jiang HJ, Zhang RW, Hildreth O, Moon KS, Wong CP, Self-assembled monolayer-assisted chemical transfer of in situ functionalized carbon nanotubes. J Am Chem Soc 2008;130: 9636–9637.Google Scholar
  244. 244.
    Son Y, Pal SK, Borca-Tasciuc T, Ajayan PM, Siegel RW, Thermal resistance of the native interface between vertically aligned multiwalled carbon nanotube arrays and their SiO2/Si substrate. J Appl Phys 2008; 103.Google Scholar
  245. 245.
    Yu CH, Saha S, Zhou JH, Shi L, Cassell AM, Cruden BA, Ngo Q, Li J, Thermal contact resistance and thermal conductivity of a carbon nanofiber. J Heat Transf Trans ASME 2006;128: 234–239.Google Scholar
  246. 246.
    Diao J, Srivastava D, Menon M, Molecular dynamics simulations of carbon nanotube/silicon interfacial thermal conductance. J Chem Phys 2008; 128.Google Scholar
  247. 247.
    Lin W, Zhang RW, Moon KS, Wong CP, Molecular phonon couplers at carbon nanotube/substrate interface to enhance interfacial thermal transport. Carbon 2009; doi: 10.1016/j.carbon.2009.08.033.Google Scholar
  248. 248.
    Berger C, Song ZM, Li TB, Li XB, Ogbazghi AY, Feng R, Dai ZT, Marchenkov AN, Conrad EH, First PN, de Heer WA, Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 2004;108: 19912–19916.Google Scholar
  249. 249.
    Freitag M, Graphene - Nanoelectronics goes flat out. Nat Nanotechnol 2008;3: 455–457.Google Scholar
  250. 250.
    Lee BK, Park SY, Kim HC, Cho K, Vogel EM, Kim MJ, Wallace RM, Kim JY, Conformal Al2O3 dielectric layer deposited by atomic layer deposition for graphene-based nanoelectronics. Appl Phys Lett 2008; 92.Google Scholar
  251. 251.
    Westervelt RM, Applied physics - Graphene nanoelectronics. Science 2008;320: 324–325.Google Scholar
  252. 252.
    Xuan Y, Wu YQ, Shen T, Qi M, Capano MA, Cooper JA, Ye PD, Atomic-layer-deposited nanostructures for graphene-based nanoelectronics. Appl Phys Lett 2008; 92.Google Scholar
  253. 253.
    Chen ZH, Lin YM, Rooks MJ, Avouris P, Graphene nano-ribbon electronics. Physica E 2007;40(2): 228–232.Google Scholar
  254. 254.
    Eisberg N, Electronics – graphene set to replace, silicon. Chem Ind 2008; 11–11.Google Scholar
  255. 255.
    Hass J, Feng R, Li T, Li X, Zong Z, de Heer WA, First PN, Conrad EH, Jeffrey CA, Berger C, Highly ordered graphene for two dimensional electronics. Appl Phys Lett 2006; 89.Google Scholar
  256. 256.
    Wu XS, Sprinkle M, Li XB, Ming F, Berger C, de Heer WA, Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics. Phys Rev Lett 2008; 101.Google Scholar
  257. 257.
    Berger C, Song ZM, Li XB, Wu XS, Brown N, Naud C, Mayou D, Li TB, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA, Electronic confinement and coherence in patterned epitaxial graphene. Science 2006;312: 1191–1196.Google Scholar
  258. 258.
    Geim AK, Novoselov KS, The rise of graphene. Nat Mater 2007;6: 183–191.Google Scholar
  259. 259.
    Katsnelson MI, Novoselov KS, Geim AK, Chiral tunnelling and the Klein paradox in graphene. Nat Phys 2006;2: 620–625.Google Scholar
  260. 260.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA, Two-dimensional gas of massless dirac fermions in graphene. Nature 2005;438: 197–200.Google Scholar
  261. 261.
    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E, Controlling the electronic structure of bilayer graphene. Science 2006;313: 951–954.Google Scholar
  262. 262.
    Son YW, Cohen ML, Louie SG, Half-metallic graphene nanoribbons. Nature 2006;444: 347–349.Google Scholar
  263. 263.
    Han MY, Ozyilmaz B, Zhang YB, Kim P, Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 2007; 98.Google Scholar
  264. 264.
    Son YW, Cohen ML, Louie SG, Energy gaps in graphene nanoribbons. Phys Rev Lett 2006; 97.Google Scholar
  265. 265.
    Castro EV, Novoselov KS, Morozov SV, Peres NMR, Dos Santos J, Nilsson J, Guinea F, Geim AK, Neto AHC, Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys Rev Lett 2007; 99.Google Scholar
  266. 266.
    Giovannetti G, Khomyakov PA, Brocks G, Kelly PJ, van den Brink J, Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations. Phys Rev B 2007; 76.Google Scholar
  267. 267.
    McCann E, Asymmetry gap in the electronic band structure of bilayer graphene. Phys Rev B 2006; 74.Google Scholar
  268. 268.
    Zanella I, Guerini S, Fagan SB, Mendes J, Souza AG, Chemical doping-induced gap opening and spin polarization in graphene. Phys Rev B 2008; 77.Google Scholar
  269. 269.
    Gunlycke D, Lawler HM, White CT, Room-temperature ballistic transport in narrow graphene strips. Phys Rev B 2007; 75.Google Scholar
  270. 270.
    Huard B, Sulpizio JA, Stander N, Todd K, Yang B, Goldhaber-Gordon D, Transport measurements across a tunable potential barrier in graphene. Phys Rev Lett 2007; 98.Google Scholar
  271. 271.
    Katsnelson MI, Geim AK, Electron scattering on microscopic corrugations in grapheme. Philos Trans R Soc A 2008;366: 195–204.Google Scholar
  272. 272.
    Wang XR, Ouyang YJ, Li XL, Wang HL, Guo J, Dai HJ, Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett 2008; 100.Google Scholar
  273. 273.
    Fiori G, Iannaccone G, Simulation of graphene nanoribbon field-effect transistors. IEEE Electron Device Lett 2007;28: 760–762.Google Scholar
  274. 274.
    Liang GC, Neophytou N, Lundstrom MS, Nikonov DE, Ballistic graphene nanoribbon metal-oxide-semiconductor field-effect transistors: a full real-space quantum transport simulation. J Appl Phys 2007; 102.Google Scholar
  275. 275.
    Liang GC, Neophytou N, Nikonov DE, Lundstrom MS, Performance projections for ballistic graphene nanoribbon field-effect transistors. IEEE Trans Electron Devices 2007;54: 677–682.Google Scholar
  276. 276.
    Liang X, Fu Z, Chou SY, Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett 2007;7: 3840–3844.Google Scholar
  277. 277.
    Obradovic B, Kotlyar R, Heinz F, Matagne P, Rakshit T, Giles MD, Stettler MA, Nikonov DE, Analysis of graphene nanoribbons as a channel material for field-effect transistors. Appl Phys Lett 2006; 88.Google Scholar
  278. 278.
    Yan QM, Huang B, Yu J, Zheng FW, Zang J, Wu J, Gu BL, Liu F, Duan WH, Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano Lett 2007;7: 1469–1473.Google Scholar
  279. 279.
    Hwang EH, Adam S, Das Sarma S, Carrier transport in two-dimensional graphene layers. Phys Rev Lett 2007; 98.Google Scholar
  280. 280.
    Lemme MC, Echtermeyer TJ, Baus M, Kurz H, A graphene field-effect device. IEEE Electron Device Lett 2007;28: 282–284.Google Scholar
  281. 281.
    Zhang YB, Tan YW, Stormer HL, Kim P, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005;438: 201–204.Google Scholar
  282. 282.
    Gusynin VP, Sharapov SG, Unconventional integer quantum Hall effect in graphene. Phys Rev Lett 2005; 95.Google Scholar
  283. 283.
    Novoselov KS, McCann E, Morozov SV, Fal’ko VI, Katsnelson MI, Zeitler U, Jiang D, Schedin F, Geim AK, Unconventional quantum Hall effect and Berry’s phase of 2 pi in bilayer graphene. Nat Phys 2006;2: 177–180.Google Scholar
  284. 284.
    Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, Bao W, Miao F, Lau CN, Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett 2008; 92.Google Scholar
  285. 285.
    Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan D, Miao F, Lau CN, Superior thermal conductivity of single-layer graphene. Nano Lett 2008;8: 902–907.Google Scholar
  286. 286.
    Naeemi A, Meindl JD, Conductance modeling for graphene nanoribbon (GNR) interconnects. IEEE Electron Device Lett 2007;28: 428–431.Google Scholar
  287. 287.
    Shao Q, Liu G, Teweldebrhan D, Balandin AA, High-temperature quenching of electrical resistance in graphene interconnects. Appl Phys Lett 2008; 92.Google Scholar
  288. 288.
    Lan T, Pinnavaia TJ, Clay-reinforced epoxy nanocomposites. Chem Mater 1994;6: 2216–2219.Google Scholar
  289. 289.
    Moniruzzaman M, Winey KI, Polymer nanocomposites containing carbon nanotubes. Macromolecules 2006;39: 5194–5205.Google Scholar
  290. 290.
    Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS, Graphene-based composite materials. Nature 2006;442: 282–286.Google Scholar
  291. 291.
    Debelak B, Lafdi K, Use of exfoliated graphite filler to enhance polymer physical properties. Carbon 2007;45: 1727–1734.Google Scholar
  292. 292.
    Fukushima H, Drzal LT, Rook BP, Rich MJ, Thermal conductivity of exfoliated graphite nanocomposites. J Therm Anal Calorim 2006;85: 235–238.Google Scholar
  293. 293.
    Ganguli S, Roy AK, Anderson DP, Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon 2008;46: 806–817.Google Scholar
  294. 294.
    Hung MT, Choi O, Ju YS, Hahn HT, Heat conduction in graphite-nanoplatelet-reinforced polymer nanocomposites. Appl Phys Lett 2006; 89.Google Scholar
  295. 295.
    Veca LM, Meziani MJ, Wang W, Wang X, Lu F, Zhang P, Lin Y, Fee R, Connell JW, Sun YP, Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Adv Mater 2009;21: 1–5.Google Scholar
  296. 296.
    Lin W, Zhang RW, Wong CP, High effective thermal conductivity of graphite nanosheet composites. Journal of Electronic Materials 2009; in press.Google Scholar
  297. 297.
    Prasher R, Thermal boundary resistance and thermal conductivity of multiwalled carbon nanotubes. Phys Rev B 2008; 77.Google Scholar
  298. 298.
    Sihn S, Ganguli S, Roy AK, Qu LT, Dai LM, Enhancement of through-thickness thermal conductivity in adhesively bonded joints using aligned carbon nanotubes. Compos Sci Technol 2008;68: 658–665.Google Scholar
  299. 299.
    Lin W, Moon KS, Wong CP, A combined process of in-situ functionalization and microwave treatment to achieve ultra-small thermal expansion of aligned carbon nanotube/polymer nanocomposites: toward applications as thermal interface materials. Adv Mater 2009; 21.Google Scholar
  300. 300.
    Schriemp JT, Laser flash technique for determining thermal diffusivity of liquid-metals at elevated-temperatures. Rev Sci Instrum 1972;43: 781–786.Google Scholar
  301. 301.
    Tada Y, Harada M, Tanigaki M, Eguchi W, Laser flash method for measuring thermal-conductivity of liquids – application to low thermal-conductivity liquids. Rev Sci Instrum 1978;49: 1305–1314.Google Scholar
  302. 302.
    Shaikh S, Li L, Lafdi K, Huie J, Thermal conductivity of an aligned carbon nanotube array. Carbon 2007;45: 2608–2613.Google Scholar
  303. 303.
    Zhang K, Chai Y, Yuen MMF, Xiao DGW, Chan PCH, Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling. Nanotechnology 2008; 19.Google Scholar
  304. 304.
    Wang SR, Liang ZY, Gonnet P, Liao YH, Wang B, Zhang C, Effect of nanotube functionalization on the coefficient of thermal expansion of nanocomposites. Adv Funct Mater 2007;17: 87–92.Google Scholar
  305. 305.
    Chen CI, Ni CY, Chang CM, Liu DS, Pan HY, Yuan TD, Thermal characterization of thermal interface materials. Exp Tech 2008;32: 48–52.Google Scholar
  306. 306.
    Chen CI, Ni CY, Pan HY, Chang CM, Liu DS, Practical evaluation for long-term stability of thermal interface material. Exp Tech 2009;33: 28–32.Google Scholar
  307. 307.
    Ohsone Y, Wu G, Dryden J, Zok F, Majumdar A, Optical measurement of thermal contact conductance between wafer-like thin solid samples. J Heat Transf Trans ASME 1999;121: 954–963.Google Scholar
  308. 308.
    Chu DC, Touzelbaev M, Goodson KE, Babin S, Pease RF, Thermal conductivity measurements of thin-film resist. J Vac Sci Technol B Microelectron Nanometer Struct 2001;19(6): 2874–2877.Google Scholar
  309. 309.
    Kading OW, Skurk H, Goodson KE, Thermal conduction in metallized silicon-dioxide layers on silicon. Appl Phys Lett 1994;65: 1629–1631.Google Scholar
  310. 310.
    Smith AN, Hostetler JL, Norris PM, Thermal boundary resistance measurements using a transient thermoreflectance technique. Microscale Thermophys Eng 2000;4: 51–60.Google Scholar
  311. 311.
    Miklos A, Lorincz A, Transient thermoreflectance of thin metal-films in the picosecond regime. J Appl Phys 1988;63: 2391–2395.Google Scholar
  312. 312.
    Paddock CA, Eesley GL, Transient thermoreflectance from thin metal-films. J Appl Phys 1986;60: 285–290.Google Scholar
  313. 313.
    Schoenlein RW, Lin WZ, Fujimoto JG, Eesley GL, Femtosecond studies of nonequilibrium electronic processes in metals. Phys Rev Lett 1987;58: 1680–1683.Google Scholar
  314. 314.
    Elsayedali HE, Norris TB, Pessot MA, Mourou GA, Time-resolved observation of electron-phonon relaxation in copper. Phys Rev Lett 1987;58: 1212–1215.Google Scholar
  315. 315.
    Hu HP, Wang XW, Xu XF, Generalized theory of the photoacoustic effect in a multilayer material. J Appl Phys 1999;86: 3953–3958.Google Scholar
  316. 316.
    Wang XW, Hu HP, Xu XF, Photo-acoustic measurement of thermal conductivity of thin films and bulk materials. J Heat Transf Trans ASME 2001;123: 138–144.Google Scholar
  317. 317.
    Wardle BL, Saito DS, Garcia EJ, Hart AJ, de Villoria RG, Verploegen EA, Fabrication and characterization of ultrahigh-volume-fraction aligned carbon nanotube-polymer composites. Adv Mater 2008;20: 2707–2714.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Materials Science and Engineering, Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations