Skip to main content

On-Chip Thermal Management and Hot-Spot Remediation

  • Chapter
  • First Online:

Abstract

The rapid emergence of nanoelectronics, with the consequent rise in transistor density and switching speed, has led to a steep increase in die heat flux and growing concern over the emergence of on-chip “hot spots.” The application of on-chip high heat flux cooling techniques provides a viable direction for the thermal management of such nanoelectronic components. Following a review of the relevant passive and active thermal management techniques, the physical phenomena underpinning the most promising on-chip thermal management approaches are described. Attention is devoted to thin-film and miniaturized thermoelectric coolers, orthotropic TIMs/heat spreaders, and phase-change microgap coolers for hot-spot remediation and thermal management of these nanoelectronic chips.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. ITRS, The International Technology Roadmap for Semiconductors, 2004, Semiconductor Industry Association, http://www.ITRSnemi.org.

  2. Shelling P., Li S., and Goodson K. E. Managing heat for electronics, Materials Today, 2005; 8: 30–35.

    Article  Google Scholar 

  3. Mahajan R., Chiu C., and Chrysler G. Cooling a microprocessor chip, Proceedings of IEEE, 2006; 94: 1476–1486.

    Article  Google Scholar 

  4. Pedram M., and Nazarian S. Thermal modeling, analysis, and management in VLSI circuits: principles and methods, Proceedings of the IEEE, 2006; 9: 1487–1501.

    Article  Google Scholar 

  5. Bar-Cohen A., Arik M., and Ohadi M. Direct liquid cooling of high flux micro and nano electronic components, Proceedings of the IEEE, 2006; 94: 1549–1570.

    Article  CAS  Google Scholar 

  6. Mudawar I. Assessment of high-heat-flux thermal management schemes, IEEE Transactions on Components and Packaging Technologies, Part A: Packaging Technologies, 2001; 24: 122–141.

    Article  CAS  Google Scholar 

  7. Garimella S. V. Advances in mesoscale thermal management technologies for microelectronics, Microelectronics Journal, 2006; 37: 1165–1185.

    Article  Google Scholar 

  8. Sinha S., and Goodson K. E. Thermal conduction in sub-100 nm transistors, Microelectronics Journal, 2006; 37: 1148–1157.

    Article  Google Scholar 

  9. NEMI, Electronics Manufacturing Initiative Technology Roadmap, 2006, http://www.nemi.org.

  10. Jannadham K., Watkins T. R., and Dinwiddie R. B. Novel heat spreader coatings for high power electronic devices, Journal Materials Sciences, 2002; 37: 1363–1376.

    Article  Google Scholar 

  11. Dahlgren S. High-pressure polycrystalline diamond as a cost effective heat spreader, Proceedings of Thermal and Thermomechanical Phenomena in Electronic Systems, (ITHERM 2000), 2000; 1: 23–26.

    Google Scholar 

  12. Goodson K. E., and Ju Y. S. Heat conduction in novel electronic films, Annual Review of Materials Science, 1999; 29: 261–293.

    Article  CAS  Google Scholar 

  13. Le Berre M., Pandraud G., Morfouli P., and Lallemand M. The performance of micro heat pipes measured by integrated sensors, Journal of Micromechanics and Microengineering, 2006; 16: 1047–1050.

    Article  Google Scholar 

  14. Peterson G. P., Duncan A. B., and Weichold M. H. Experimental investigation of micro heat pipes fabricated in silicon wafers, Journal of Heat Transfer, 1993; 115: 750–756.

    Google Scholar 

  15. Peterson G. P., Duncan A. B., and Weichold M. H. Experimental investigation of micro heat pipes fabricated in silicon wafers, ASME Journal of Heat Transfer, 1993; 115: 751–756.

    Article  CAS  Google Scholar 

  16. Mallik A. K., Peterson G. P., and Weichold M. H. Fabrication of vapor deposited micro heat pipes arrays as an integral part of semiconductor devices, IEEE Journal of Microelectromechanical System, 1995; 4: 119–131.

    Article  CAS  Google Scholar 

  17. Karimi G., and Culham J. R. Review and assessment of pulsating heat pipe mechanism for high heat flux electronic cooling, Proceedings of ITHERM, 2004; 2: 52–59.

    Google Scholar 

  18. Benson D. A., Adkins D. R., Peterson G. P., Mitchell R. T., Tuck M. R., and Palmer D. W., Turning silicon substrates into diamond: micro machining heat pipes, in Proc. Adv. Design Mater. Process, Apr. 1996, pp. 19–21.

    Google Scholar 

  19. Suman B. Modeling, experiment, and fabrication of micro-grooved heat pipes: an update, Applied Mechanics Reviews, 2007; 60: 107–119.

    Article  Google Scholar 

  20. Akachi H., Structure of a heat pipe, U.S. Patent #4,921,041, 1990.

    Google Scholar 

  21. Zuo Z. J., North M. T., and Wert K. L. High heat flux heat pipe mechanism for cooling of electronics, IEEE Transactions on Components and Packaging Technologies, 2001; 24: 220–225.

    Article  CAS  Google Scholar 

  22. Lin C., Ponnappan R., and Leland J. High performance miniature heat pipe, International Journal of Heat and Mass Transfer, 2002; 45: 3131–3142.

    Article  CAS  Google Scholar 

  23. Lee M., Wong M., and Zohar Y. Integrated micro-heat-pipe fabrication technology, Journal of Microelectromechanical Systems, 2003; 12: 138–146.

    Article  CAS  Google Scholar 

  24. Lee M., Wong M., and Zohar Y. Characterization of an integrated micro heat pipe, Journal of Micromechanics and Microengineering, 2003; 13: 58–64.

    Article  Google Scholar 

  25. Khrustalev D., and Faghri A. Thermal characteristics of conventional and flat miniature axially-grooved heat pipes, Journal of Heat Transfer, 1995; 117: 740–747.

    Article  Google Scholar 

  26. Ma H. B., Lofgreen K. P., and Peterson G. P. An experimental investigation of a high flux heat pipe heat sink, Journal of Electronic Packaging, 2006; 128: 18–22.

    Article  Google Scholar 

  27. Gillot G., Avenas Y., Cezac N., Poupon G., Schaeffer C., and Fournier E. Silicon heat pipes used as thermal spreaders, IEEE Transactions on Components and Packaging Technologies, 2003; 26: 332–339.

    Article  Google Scholar 

  28. Lin C., Ponnappan R., and Leland J. High performance miniature heat pipe, International Journal of Heat and Mass Transfer, 2002; 45: 3131–3142.

    Article  CAS  Google Scholar 

  29. Tuckerman D. B., and Pease R. F. W. High-performance heat sinking for VLSI, IEEE Electron Device Letters, 1981; EDL-2: 143–150.

    Google Scholar 

  30. Prasher R., Chang J., Sauciuc I., Narasimhan S., Chau D., Chrysler G., Myers A., Prstic A., and Hu C. Nano and micro technology-based next-generation package level cooling solutions, Intel Journal of Technology, 2005; 9: 285–296.

    Google Scholar 

  31. Bowers M., and Mudawar I. High-flux boiling in low-flow rate, low-pressure drop mini-channel and microchannel heat sinks, International Journal of Heat and Mass Transfer, 1994; 37: 321–332.

    Article  CAS  Google Scholar 

  32. Mudawar I., and Maddox D. E. Enhancement of critical heat flux from high power microelectronic heat sources in a flow channel, Journal of Electronic Packaging, 1990; 112: 241–248.

    Article  Google Scholar 

  33. Bar-Cohen A., Arik M., and Ohadi M. Direct liquid cooling of high flux micro and nano electronic components, Proceedings of the IEEE, 2006; 94: 1549–1570.

    Article  CAS  Google Scholar 

  34. Garimella S. V., Singhal V., and Liu D. On-chip thermal management with microchannel heat sinks and integrated micropumps, Proceedings of the IEEE, 2006; 94: 1534–1548.

    Article  Google Scholar 

  35. Prasher R. Thermal interface materials: historical perspective, status and future directions, Proceedings of the IEEE, 2006; 94: 1571–1586.

    Article  CAS  Google Scholar 

  36. Zhang L., Wang E. N., Koo J. M., Goodson K. E., Santiago J. G., and Kenny T. W. Microscale liquid jet impingement, Proceedings of AMSE IMECE, 2001; Vol.2: Paper No. MEME–23820.

    Google Scholar 

  37. Wolf D. H., Incropera F. P., and Viskanta R. Local jet impingement boiling heat transfer, International Journal of Heat and Mass Transfer, 1996; 39: 1395–1406.

    Article  CAS  Google Scholar 

  38. Kiper A. M. Impinging water jet cooling of VLSI circuits, International Communications in Heat and Mass Transfer, 1984; 11: 126–129.

    Article  Google Scholar 

  39. Harman T. C., Taylor P. J., Walsh M. P., and LaForge B. E. Quantum dot superlattice thermoelectric materials and devices, Science, 2002; 297: 2229–2232.

    Article  CAS  Google Scholar 

  40. Venkatasubramanian R., Siivola E., Colpitts T., and O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit, Nature (London), 2001; 413: 597–602.

    Article  CAS  Google Scholar 

  41. Fan X., Zeng G., LaBounty C., Bowers J., Croke E., Ahn C., Huxtable S., and Majumdar A. SiGeC/Si superlattice micro-coolers, Applied Physics Letters, 2001; 78: 1580–1600.

    Article  CAS  Google Scholar 

  42. Chen C., Yang B., and Liu W. L. Engineering nanostructures for energy conversion, Heat Transfer and Fluid Flow in Microscale and Nanoscale Structures, Faghri, M. and Sunden, B., Eds., Southampton, UK: WIT Press, 2004.

    Google Scholar 

  43. Yang B., Liu W. L., Wang K. L., and Chen G. Simultaneous measurements of Seebeck coefficient and thermal conductivity across superlattice, Applied Physics Letters, 2002; 80: 1758–1760.

    Article  CAS  Google Scholar 

  44. Shakouri A., and Zhang Y. On-chip solid-state cooling for integrated circuits using thin-film microrefrigerators, IEEE Transactions on Components and Packaging Technologies, 2005; 28: 65–69.

    Article  Google Scholar 

  45. Zhang Y., Zeng G. H., Piprek J., Bar-Cohen A., and Shakouri A. Superlattice microrefrigerators fusion bonded with optoelectronic devices, IEEE Transactions on Components and Packaging Technologies, 2005; 28: 658–666.

    Article  CAS  Google Scholar 

  46. Simons R. E., Ellsworth M. J., and Chu R. C. An assessment of module cooling enhancement with thermoelectric coolers, Journal of Heat Transfer, 2005; 127: 76–84.

    Article  Google Scholar 

  47. Yeh L., and Chu C. Thermal Management of Microelectronic Equipment, New York: ASME Press, 2002.

    Book  Google Scholar 

  48. Kraus A. D., and Bar-Cohen A. Thermal Analysis and Control of Electronic Equipment, New York, USA: Hemisphere Publishing Corporation, 1983.

    Google Scholar 

  49. Fan X., Ph. D. Thesis, University of California at Santa Barbara, March 2002.

    Google Scholar 

  50. Fleurial J. -P., Borshchevsky A., Ryan M. A., Phillips W., Kolawa E., Kacisch K., and Ewell R., Thermoelectric microcoolers for thermal management applications, Proceedings of 16th International Conference on Thermoelectrics, 1997; 641–645.

    Google Scholar 

  51. Venkatasubramanian R., Siivola E., Colpitts T., and O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit, Nature (London), 2001; 413: 597–602.

    Article  CAS  Google Scholar 

  52. Harman, T.C., Taylor, P. J., Walsh, M. P. and LaForge, B. E., Quantum Dot Superlattice Thermoelectric Materials and Devices, Science, Vol. 297, No. 2229, 2002.

    Google Scholar 

  53. Fan, X, Zeng, G., Croke, E., LaBounty, C., Shakouri, A., and Bowers, J. E., Integrated SiGeC/Si Micro Cooler, Applied Physics Letters, Vol. 78, No.11, 12 March 2001.

    Google Scholar 

  54. Semenyuk V., Thermoelectric micro modules for spot cooling of high density heat sources, Proceedings of the 20th International Conference on Thermoelectrics, 2001; 391–396.

    Google Scholar 

  55. Semenyuk V., Cascade Thermoelectric micro modules for spot cooling high power electronic components, Proceedings of the 21st International Conference on Thermoelectrics, 2002; 531–534.

    Google Scholar 

  56. Semenyuk V. Thermoelectric cooling of electro-optic components, Thermoelectrics Handbook: Macro to Nano, Rowe, D. M., Ed., Boca Raton, FL: CRC Press, 2006.

    Google Scholar 

  57. http://www.thermion–company.com.

  58. Ioffe A. F. Semiconductor Thermoelements and Thermoelectric Cooling, London, UK: Infosearch Ltd., 1957.

    Google Scholar 

  59. Ettenberg M. H., Jesser M. A., and Rosi E. D., A new n-type and improved p-type pseudo-ternary (Bi2Te3)(Sb2Te3)(Sb2Se3) alloy for Peltier cooling, Proceedings of the 15th International Conference on Thermoelectrics, 1996; 52–56.

    Google Scholar 

  60. Yamashita O., and Tomiyoshi S. Effect of annealing on thermoelectric properties of bismuth telluride compounds, Japan Journal of Applied Physics, 2003; 42: 492–500.

    Article  CAS  Google Scholar 

  61. Yamashita O., Tomiyoshi S., and Makita K. Bismuth telluride compounds with high thermoelectric figures of merit, Journal of Applied Physics, 2003; 93: 368–374.

    Article  CAS  Google Scholar 

  62. Yamashita O., and Tomiyoshi S. High performance n-type bismuth telluride with highly stable thermoelectric figure of merit, Journal of Applied Physics, 2004; 95: 6277–6283.

    Article  CAS  Google Scholar 

  63. Shakouri A., and Zhang Y. On-chip solid-state cooling for integrated circuits using thin-film microrefrigerators, IEEE Transactions on Components and Packaging Technologies, 2005; 28: 65–69.

    Article  Google Scholar 

  64. Pandey R. K., Sahu S. N., and Chandra S., Handbook of Semiconductor Deposition, Ed., New York: Marcel Dekker, 1996.

    Google Scholar 

  65. Snyder G. J., Lim J. R., Huang C., and Fleurial J. -P. Thermoelectric microdevice fabricated by a MEMS-like electrochemical process, Nature Materials, 2003; 2: 528–531.

    Article  CAS  Google Scholar 

  66. da Silva L. W., Kaviany M., and Uher C. Thermoelectric performance of films in the bismuth-tellurium and antimony-tellurium systems, Journal of Applied Physics, 2005; 97: 114903.

    Article  CAS  Google Scholar 

  67. Böttner H., Nurnus J., Gavrikov A., Kühner G., Jägle M., Künzel C., Eberhard D., Plescher G., Schubert A., and Schlereth K. New thermoelectric components using microsystem technologies, Journal of Microelectromechanical Systems, 2004; 13: 414–420.

    Article  CAS  Google Scholar 

  68. Bottner H., Micropelt miniaturized thermoelectric devices: small size, high cooling power densities, short response time, Proceedings of the 24th International Conference on Thermoelectrics, 2005;1–8.

    Google Scholar 

  69. Zhou H., Rowe D. M., and Williams S. Peltier effect in a co-evaporated Sb2Te3(P)–Bi2Te3(N) thin film thermocouple, Thin Solid Films, 2002; 408: 270–274.

    Article  Google Scholar 

  70. Semenyuk V., Miniature thermoelectric modules with increased cooling power, Proceedings of the 25th International Conference on Thermoelectrics, 2006; 322–326.

    Google Scholar 

  71. Semenyuk V., and Ph. D.. Dissertation, Odessa Technological Institute of Food and Refrigeratinbg Engineering, Odessa, USSR, 1967 (in Russian).

    Google Scholar 

  72. Hicks L. D., and Dresselhaus M. S. Thermoelectric figure of merit of a one-dimensional conductor, Physics Review B, 1993; 47: 16631–16634.

    Article  CAS  Google Scholar 

  73. Balandin A., and Wang K. L. Effect of phonon confinement on the thermoelectric figure of merit of quantum wells, Journal of Applied Physics, 1998; 84: 6149–6153.

    Article  CAS  Google Scholar 

  74. Balandin A., and Lazarenkova O. L. Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices, Applied Physics Letters, 2003; 82: 415–417.

    Article  CAS  Google Scholar 

  75. Yang B., and Chen G. Thermal Conductivity: Theory, Properties and Application, Tritt, T. M., Ed., New York: Kluwer Press, 2005.

    Google Scholar 

  76. Harman T. C., Taylor P. J., Walsh M. P., and LaForge B. E. Quantum dot superlattice thermoelectric materials and devices, Science, 2002; 297: 2229–2232.

    Article  CAS  Google Scholar 

  77. Venkatasubramanian R., Silvona E., Colpitts T., and O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 2001; 413: 597–602.

    Article  CAS  Google Scholar 

  78. Mahan G. D., and Woods L. M. Multilayer thermionic refrigeration, Physical Review Letter, 1998; 80: 4016–4019.

    Article  CAS  Google Scholar 

  79. Shakouri A., LaBounty C., Piprek J., Abraham P., and Bowers J. E. Thermionic emission cooling in single barrier heterostructures, Applied Physics Letters, 1999; 74: 88–89.

    Article  CAS  Google Scholar 

  80. Rowe D. M. Thermoelectrics Handbook Macro to Nano, Boca Raton, FL: CRC Press, 2005.

    Book  Google Scholar 

  81. Venkatasubramanian R., Colpitts T., Liu S., El-Masry N., and Lamvik M. Low-temperature organometallic epitaxy and its application to superlattice structures in thermoelectrics, Applied Physics Letters, 1999; 75: 1104-1106.

    Article  CAS  Google Scholar 

  82. Zhang Y., Zeng G., Bar-Cohen A., and Shakouri A. Is ZT the main performance factor for hot spot cooling using 3D microrefrigerators?, IMAPS on Thermal Management, 2005, Oct. 26th –28th, Palo Alto, CA.

    Google Scholar 

  83. Zeng G., Shakouri A., LaBounty C., Robinson G., Croke E., Abraham P., Fan X., Reese H., and Bowers J. E. SiGe micro-cooler, Electronics Letter, 1999; 35: 2146–2147.

    Article  CAS  Google Scholar 

  84. Zeng G., Fan X., LaBounty C., Croke E., Zhang Y., Christofferson J., Vashaee D., Shakouri A., and Bowers J. E. Cooling power density of SiGe/Si superlattice micro refrigerators, Proceedings of Thermoelectric Materials Research and Applications, 2003; 793: 43–49.

    Google Scholar 

  85. Fan X., Zeng G., LaBounty C., Vashaee D., Christofferson J., Shakouri A., and Bowers J. E., Integrated cooling for Si-based microelectronics: Proceedings of 20th International Conference on Thermoelectrics, 2001; 405–408.

    Google Scholar 

  86. Fan X. SiGeC/Si superlattice microcoolers, Applied Physics Letters, 2001; 78: 1580–1582.

    Article  CAS  Google Scholar 

  87. Fan X., Zeng G., LaBounty C., Croke E., Vashaee D., Shakouri A., Ahn C., and Bowers J. E. High cooling power density SiGe/Si micro coolers, Electronics Letter, 2001; 37: 126–127.

    Article  Google Scholar 

  88. Herwaarden A. W., and Sarro P. M. Thermal sensors based on the Seebeck effect, Sensors and Actuators, 1986; 10: 321–346.

    Article  Google Scholar 

  89. Geballe T. H., and Hull G. W. Seebeck effect in silicon, Physical Review, 1955; 98: 940–970.

    Article  CAS  Google Scholar 

  90. Rowe D. M. CRC Handbook of Thermoelectrics, Roca Raton, FL: CRC Press, 1995.

    Book  Google Scholar 

  91. Zhang Y., Shakouri A., and Zeng G. High-power-density spot cooling using bulk thermoelectrics, Applied Physics Letters, 2004; 85: 2977–2979.

    Article  CAS  Google Scholar 

  92. Nieveld G. D. Thermopiles fabricated using silicon planar technology, Sensors and Actuators, 1983; 3: 179–183.

    Article  CAS  Google Scholar 

  93. Chapman P. W., Tfte O. N., Zook J. D., and Long D. Electrical properties of heavily doped silicon, Journal of Applied Physics, 1963; 34: 3291–3295.

    Article  CAS  Google Scholar 

  94. Wang P., Bar-Cohen A., and Yang B. Analytical modeling of silicon thermoelectric microcooler, Journal of Applied Physics, 2006; 100: 14501.

    Article  CAS  Google Scholar 

  95. Wang P., and Bar-Cohen A. On-chip hot spot cooling using silicon-based thermoelectric microcooler, Journal of Applied Physics, 2007; 102: 034503.

    Article  CAS  Google Scholar 

  96. Solbrekken G. L., Zhang Y., Bar-Cohen A., and Shakouri A., Use of superlattice thermionic emission for “Hotspot” reduction in convectively-cooled chip, Proceedings of 9th ITHERM’s;04, 2004; 610–616.

    Google Scholar 

  97. Wang P., Bar-Cohen A., Yang B., Solbrekken G. L., Zhang Y., and Shakouri A., Thermoelectric microcooler for hotspot thermal management, Proceedings of InterPACK’s;05, 2005; Paper No: 2005-7324.

    Google Scholar 

  98. Lide D. R., CRC Handbook of Chemistry and Physics, 75th edition, Boca Raton, USA: CRC Press, 1994.

    Google Scholar 

  99. Kraus A. D., and Bar-Cohen A. Thermal Analysis and Control of Electronic Equipment, New York, USA: Hemisphere Publishing Corporation 1983.

    Google Scholar 

  100. Geballe T. H., and Hull G. W. Seebeck effect in silicon, Physical Review, 1955; 98: 940–970.

    Article  CAS  Google Scholar 

  101. Herwaarden A. W., and Sarro P. M. Thermal sensors based on the Seebeck effect, Sensors and Actuators, 1986; 10: 321–346.

    Article  Google Scholar 

  102. Horn F. H. Densitometric and electrical investigation of boron in silicon, Physical Review, 1955; 97: 1521–1525.

    Article  CAS  Google Scholar 

  103. Fritzsche H. A General expression for the thermoelectric power, Solid State Communication, 1971; 9: 1813–1815.

    Article  CAS  Google Scholar 

  104. Chang C. Y., Fang Y. K., and Sze S. M. Specific contact resistance of metal-semiconductor barriers, Solid State Electronics, 1971; 14: 541–550.

    Article  CAS  Google Scholar 

  105. Fan X., Silicon M., Ph. D. Thesis, University of California at Santa Barbara, 2002.

    Google Scholar 

  106. Yang B., Wang P., and Bar-Cohen A. Mini-contact enhanced thermoelectric cooling of hot spot in high power devices, IEEE Transactions on Components and Packaging Technologies, Part A, 2007; 30: 432–438.

    Article  Google Scholar 

  107. Narasimhan S., Lofgreen K., Chau D., and Chrysler G., Thin film thermoelectric cooler thermal validation and product thermal performance estimation, Proceedings of 10th Intersociety Conference on Thermal and Thermo-mechanical Phenomena in Electronics Systems, San Diego, CA, May 30–June 2, 2006.

    Google Scholar 

  108. Gwinn J. P., and Webb R. L. Performance and testing of thermal interface materials, Microelectronics Journal, 2003; 34: 215–222.

    Article  CAS  Google Scholar 

  109. Singhal V., Siegmund T., and Garimella S. V. Optimization of thermal interface materials for electronics cooling applications, IEEE Transactions on Components and Packaging Technologies, 2004; 27: 244–252.

    Article  Google Scholar 

  110. Labudovic M., and Li J. Modeling of TE cooling of pump lasers, IEEE Transactions on Components and Packaging Technologies, 2004; 27: 724–730.

    Article  Google Scholar 

  111. So W. W., and Lee C. C. Fluxless process of fabricating In-Au joints on copper substrates, IEEE Transactions on Components and Packaging Technologies, 2000; 23: 377–382.

    Article  CAS  Google Scholar 

  112. http://www.thermion–company.com.

  113. Semenyuk V. Thermoelectric cooling of electro-optic components, Thermoelectrics Handbook: Macro to Nano, Rowe, D. M. , Ed., Boca Raton, FL: CRC Press, 2006.

    Google Scholar 

  114. Wijngaards D. D. L., de Graaf G., and Wolffenbuttel R. F. Single-chip micro-thermostat applying both active heating and active cooling, Sensors and Actuators A, 2004; 110: 187–195.

    Article  CAS  Google Scholar 

  115. Corrèges P., Bugnard E., Millerin C., Masiero A., Andrivet J. P., Bloc A., and Dunant Y. A simple, low-cost and fast Peltier thermoregulation set-up for electrophysiology, Journal of Neuroscience Methods, 1998; 83: 177–184.

    Article  Google Scholar 

  116. McKinney C. J., and Nader M. W. A Peltier thermal cycling unit for radiopharmaceutical synthesis, Applied Radiation and Isotopes, 2001; 54: 97–100.

    Article  CAS  Google Scholar 

  117. Elsgaard L., and Jørgensen L. W. A sandwich-designed temperature gradient incubator for studies of microbial temperature responses, Journal of Microbiological Methods, 2002; 49: 19–29.

    Article  Google Scholar 

  118. Reid G., Amuzescu B., Zech E., and Flonta M. L. A system for applying rapid warming or cooling stimuli to cells during patch clamp recording or ion imaging, Journal of Neuroscience Methods, 2001; 111: 1–8.

    Article  CAS  Google Scholar 

  119. Hodgson J. Gene sequencing’s industrial revolution, IEEE Spectrum, 2000; 37: 36–42.

    Article  Google Scholar 

  120. Maltezos G., Johnston M., and Scherer A. Thermal management in microfluidics using micro-Peltier junctions, Applied Physics Letters, 2005; 87: 154105.

    Article  CAS  Google Scholar 

  121. Bachmann C., and Bar-Cohen A., Hotspot remediation with anisotropic thermal interface materials, Proceedings of ITHERM 2008, 2008; 238–247.

    Google Scholar 

  122. Muzychka Y. S., Culham J. R., and Yovanovich M. M. Thermal spreading resistance of eccentric heat sources on rectangular flux channels, Journal of Electronic Packaging, 2003; 125: 178–185.

    Article  Google Scholar 

  123. Smalc M., Thermal performance of natural graphite heat spreaders, Proceedings IPACK2005, San Francisco, California, USA, July 17–22, PaperNumber: IPACK2005-73073.

    Google Scholar 

  124. Bar-Cohen A., Arik M., and Ohadi M. Direct liquid cooling of high flux micro and nano electronic components, Proceedings of the IEEE, 2006; 94: 1549–1570.

    Article  CAS  Google Scholar 

  125. Montesano M., Annealed pyrolytic graphite, Advanced Materials and Processes, 2006; June:1–3.

    Google Scholar 

  126. Viswanath R., Wakharkar V., Watwe A., and Lebonheur V. Thermal performance challenges from silicon to systems, Intel Technology Journal, 2000; Quarter 3: 1–16.

    Google Scholar 

  127. Xong Y., Smalc M. et al., Thermal tests and analysis of thin graphite heat spreader for hot spot reduction in handheld devices, Proceedings of ITHERM 2008, 2008; 583–590.

    Google Scholar 

  128. Bergles A. E., and Bar-Cohen A. Immersion cooling of digital computers, Cooling of Electronic Systems, Kakac, S., Yuncu, H. and Hijikata, K., Eds., Boston, MA: Kluwer Academic Publishers, 1994, 539–621

    Google Scholar 

  129. Bergles A. E., and Bar-Cohen A. Direct liquid cooling of microelectronic components, Advances in Thermal Modeling of Electronic Components and Systems, A. Bar-Cohen and A. D. Kraus, Eds., New York: ASME, 1990; 2: 241–250.

    Google Scholar 

  130. Kim D., Rahim E., Bar-Cohen A., and Han B., Thermofluid characteristics of two-phase flow in micro-gap channels, Proceedings of ITHERM 2008, 2008; 979–992.

    Google Scholar 

  131. Kim D. W., Ph.D. Thesis, University of Maryland, 2007.

    Google Scholar 

  132. Bar-Cohen A., and Rahim E. Modeling and prediction of two-phase microgap channel heat transfer characteristics, Heat Transfer Engineering, 2009; 30: 601–625.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avram Bar-Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bar-Cohen, A., Wang, P. (2010). On-Chip Thermal Management and Hot-Spot Remediation. In: Wong, C., Moon, KS., Li, Y. (eds) Nano-Bio- Electronic, Photonic and MEMS Packaging. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0040-1_12

Download citation

Publish with us

Policies and ethics