Influence of Phenology and Land Management on Biosphere-Atmosphere Isotopic CO2 Exchange

  • Kaycie A. Billmark
  • Timothy J. Griffis


Stable isotope and micrometeorological techniques have long been used to study carbon cycle dynamics at a variety of spatial and temporal scales. Combination of these techniques provide a powerful tool for gaining greater process information at the ecosystem and regional scales and can provide a meaningful way to scale processes from leaf to region. In this chapter we review the recent literature and examine the key processes influencing biosphere–atmosphere 13CO2 exchange. These processes are examined from the perspective of agricultural land management and rapid seasonal changes in phenology. Novel measurement techniques are introduced that can be used to better quantify the 13CO2 exchange between the biosphere and atmosphere to determine how ecosystem processes, land use modifications, and phenology impact the isotopic composition of the atmosphere (i.e. the atmospheric isotopic forcing associated with land surface processes). High temporal resolution isotope mixing ratio and flux measurements, based on tunable diode laser absorption spectroscopy, are presented. The results demonstrate that the isotopic composition of respiration at the ecosystem scale is strongly linked to plant assimilated carbon, which is dependent on plant metabolic physiology and growth phase. We review how this strong isotopic coupling between ecosystem respiration and photosynthesis can impact isotope-based flux partitioning of net ecosystem CO2 exchange, the variation in the canopy isotopic discrimination parameter, and the resulting isotopic forcing on the atmosphere.


Isotopic Signature Ecosystem Respiration Eddy Covariance Roughness Sublayer Tunable Diode Laser Absorption Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of symbols


net ecosystem CO2 exchange (μmol m−2 s−1)


ecosystem photosynthetic assimilation (μmol m−2 s−1)


ecosystem respiration (μmol m−2 s−1)


canopy isotopic discrimination (‰)


canopy isotopic disequilibrium (‰)


Calvin cycle plant metabolism


Hatch-Slack cycle plant metabolism


carbon isotopic composition (‰)


canopy air CO2 mixing ratio (ppm)


leaf boundary layer CO2 mixing ratio (ppm)


stomatal CO2 mixing ratio (ppm)


chloroplast CO2 mixing ratio (ppm)

\(\delta _N^{13}\)

carbon isotope ratio of the net flux (‰)


assimilated carbon isotopic composition (‰)


non-foliar respired carbon isotopic composition (‰)


carbon isotopic composition of the net CO2 exchange (‰)


atmospheric carbon isotopic composition (‰)


total conductance (μmol m−2 s−1)


aerodynamic conductance (μmol m−2 s−1)


canopy stomatal conductance (μmol m−2 s−1)


mesophyll wall conductance (μmol m−2 s−1)


boundary layer diffusional fractionation (‰)


stomatal diffusional fractionation (‰)


mesophyll dissolution fractionation (‰)


aqueous phase mesophyll transport fractionation (‰)


enzymatic fixation isotopic fractionation (‰)


net ecosystem CO2 isoflux (μmol m−2 s−1‰)


eddy diffusivity of CO2 (m2 s−1)

\(\overline p _a\)

molar density of dry air (mol m−3)


molecular weight of dry air (g mol–1 )


heavy to light isotopic ratio of NBS-19


vertical wind velocity (m s1)


storage rate of change of CO2 between ground and measurement height (mmol m−2 s−1)


cospectral density of vertical wind velocity and CO2 mixing ratio (m ppm s−1)

\({\rm R}_{\rm N}^{13}\)

heavy to light ratio of isotopic fluxes


heterotrophic component of total ecosystem respiration


autotrophic component of total ecosystem respiration


heterotrophic component of total ecosystem respiration flux (mmol m−2 s−1)


autotrophic component of total ecosystem respiration flux (mmol m−2 s−1)



We express our sincere thanks to John Baker who has had a significant impact on the development of this work. We also thank numerous technicians and students who have provided field assistance including Matt Erickson, Bill Breiter, Jim Brozowski, Travis Bavin, Jennifer Corcoran, Jeremy Smith, Kyounghee Kim and Lisa Welp. We thank Dr. T. A. Black for helping us with the integration of the automated chamber system with the TDL system. Financial support for this project was provided by the National Science Foundation, ATM-0546476 and the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-03ER63684.


  1. Aranibar, J.N., Berry, J.A., Riley, W.J., Pataki, D.E., Law, B.E. and Ehleringer, J.R. (2006) Combining meteorology, eddy fluxes, isotope measurements, and modeling to understand environmental controls of carbon isotope discrimination at the canopy scale. Global Change Biol. 12, 710–730.CrossRefGoogle Scholar
  2. Badeck, F.-W., Tcherkez, G., Nogués, S., Piel, C. and Ghashghaie, J. (2005) Post-photosynthetic fractionation of stable carbon isotopes between plant organs – a widespread phenomenon. Rapid Commun. Mass Sp. 19, 1381–1391.CrossRefGoogle Scholar
  3. Baldocchi, D.D. (2008) Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust. J. Bot. 56, 1–26.CrossRefGoogle Scholar
  4. Baldocchi, D.D. and Bowling, D.R. (2003) Modeling discrimination of 13CO2 above and within a temperate broad-leaved forest canopy on hourly to seasonal time scales. Plant Cell Environ. 26, 231–244.CrossRefGoogle Scholar
  5. Bathellier, C., Badeck, F.-W., Couzi, P., Harscoët, S., Mauve, C. and Ghashghaie, J. (2008) Divergence in δ13C of dark respired CO2 and bulk organic matter occurs during the transition between heterotrophy and autotrophy in Phaseolus vulgaris plants. New Phytol. 177, 406–418.Google Scholar
  6. Bernacchi, C.J., Portis, A.R., Nakano, H., von Caemmerer, S. and Long, S.P. (2002) Temperature response of mesophyll conductance. implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol. 130, 1992–1998.CrossRefGoogle Scholar
  7. Blanken, P.D. and Black, T.A. (2004) The canopy conductance of a boreal aspen forest, Prince Albert National Park, Canada. Hydrol. Proc. 18, 1561–1578.CrossRefGoogle Scholar
  8. Bowling, D.R., Baldocchi, D.D. and Monson, R.K. (1999) Dynamics of isotopic exchange of carbon dioxide in a Tennessee deciduous forest. Global Biogeochem. Cycles 13, 903–922.CrossRefGoogle Scholar
  9. Bowling, D.R., Burns, S.P., Conway, T.J., Monson, R.K. and White, J.W.C. (2005) Extensive observations of CO2 carbon isotope content in and above a high-elevation subalpine forest. Global Biogeochem. Cycles 19 15, 83.Google Scholar
  10. Bowling, D.R., McDowell, N.G., Bond, B.J., Law, B. and Ehleringer, J.R. (2002) 13C content of ecosystem respiration is linked to precipitation and vapor pressure deficit. Oecologia 131, 113–124.CrossRefGoogle Scholar
  11. Bowling, D.R., Sargent, S., Tanner, B. and Ehleringer, J.R. (2003) Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem-atmosphere CO2 exchange. Agric. For. Meteorol. 118, 1–19.CrossRefGoogle Scholar
  12. Bowling, D.R., Tans, P.P. and Monson, R.K. (2001) Partitioning net ecosystem carbon exchange with isotopic fluxes of CO2. Global Change Biol. 7, 127–145.CrossRefGoogle Scholar
  13. Cerling, T.E., Harris, J.M., MacFadden, B.J., Leakey, M.G., Quade, J., Eisenmann, V. and Ehleringer, J.R. (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–158.CrossRefGoogle Scholar
  14. Ciais, P., Tans, P.P., White, J.W.C., Trolier, M., Francey, R.J., Berry, J.A., Randall, D.R., Sellers, P.J., Collatz, J.G. and Schimel, D.S. (1995) Partitioning of ocean and land uptake of CO2 as inferred by δ13C measurements from the NOAA Climate Monitoring and Diagnostics Laboratory Global Air Sampling network. J. Geophys. Res. 100, 5051–5070.CrossRefGoogle Scholar
  15. Duranceau, M., Ghashghaie, J., Badeck, F., Deleens, E. and Cornic, G. (1999) δ13C of CO2 respired in the dark in relation to δ13C of leaf carbohydrates in Phaseolus vulgaris L. under progressive drought. Plant Cell Environ. 22, 515–523.CrossRefGoogle Scholar
  16. Duranceau, M., Ghashghaie, J. and Brugnoli, E. (2001) Carbon isotope discrimination during photosynthesis and dark respiration in intact leaves of Nicotiana sylvestris: comparison between wild type and mitochondrial mutant plants. Aust. J. Plant Physiol. 28, 65–71.Google Scholar
  17. Ekblad, A., Bostrom, B., Holm, A. and Comstedt, D. (2005) Forest soil respiration rate and δ13C is regulated by recent above ground weather conditions. Oecologia 143, 136–142.CrossRefGoogle Scholar
  18. Ekblad, A. and Högberg, P. (2001) Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia 127, 305–308.CrossRefGoogle Scholar
  19. Farquhar, G.D. (1983) On the nature of carbon isotope discrimination in C4 species. Aust. J. Plant Physiol. 10, 205–226.CrossRefGoogle Scholar
  20. Farquhar, G.D., Ehleringer, J.R. and Hubick, K.T. (1989) Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Mol. Biol. 40, 503–537.CrossRefGoogle Scholar
  21. Flanagan, L.B., Brooks, J.R., Varney, G.T., Berry, S.C. and Ehleringer, J.R. (1996) Carbon isotope discrimination during photosynthesis and the isotope ratio of respired CO2 in boreal forest ecosystems. Global Biogeochem. Cycles 10, 629–640.CrossRefGoogle Scholar
  22. Flanagan, L.B. and Ehleringer, J.R. (1998) Ecosystem-atmosphere CO2 exchange: interpreting signals of change using stable isotope ratios. Trends Ecol. Evol. 13, 10–14.CrossRefGoogle Scholar
  23. Flexas, J., Ribas-Carbó, M., Diaz-Espejo, A., Galmés, J. and Medrano, H. (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ. 31, 602–621.CrossRefGoogle Scholar
  24. Francey, R.J., Allison, C.E., Etheridge, D.M., Trudinger, C.M., Enting, I.G., Leuenberger, M., Langenfelds, R.L., Michel, E. and Steele, L.P. (1999) A 1000-year high precision record of δ13C in atmospheric CO2. Tellus B 51, 170–193.CrossRefGoogle Scholar
  25. Fung, I., Field, C.B., Berry, J.A., Thompson, M.V., Randerson, J.T., Malmstrom, C.M., Vitousek, P.M., Collatz, G.J., Sellers, P.J., Randall, D.A., Denning, A.S., Badeck, F. and John, J. (1997) Carbon 13 exchanges between the atmosphere and biosphere. Global Biogeochem. Cycles 11, 507–533.CrossRefGoogle Scholar
  26. Gessler, A., Keitel, C., Kodama, N., Weston, C., Winters, A.J., Keith, H., Grice, K., Leuning, R. and Farquhar, G.D. (2007) δ13C of organic matter transported from leaves to the roots in Eucalyptus delegatensis: short-term variations and relation to respired CO2. Funct. Plant Biol. 34, 692–706.CrossRefGoogle Scholar
  27. Gessler, A., Schrempp, S., Matzarakis, A., Mayer, H., Rennenberg, H. and Adams, M.A. (2001) Radiation modifies the effect of water availability on the carbon isotope composition of beach (Fagus sylvatica). New Phytol. 150, 653–664.CrossRefGoogle Scholar
  28. Ghashghaie, J., Badeck, F.-W., Lanigan, G., Nogués, S., Tcherkez, G., Deleens, E., Cornic, G. and Griffiths, H. (2003) Carbon isotope fractionation during dark respiration and photorespiration in C3 plants. Phytochem. Rev. 2, 145–161.CrossRefGoogle Scholar
  29. Ghashghaie, J., Duranceau, M., Badeck, F.W., Cornic, G., Addeline, M.T. and Deleens, E. (2001) δ13C of CO2 respired in the dark in relation to δ13C of leaf metabolites: comparison between Nicotiana sylvestris and Helianthus annuus under drought. Plant Cell Environ. 24, 505–515.CrossRefGoogle Scholar
  30. Griffis, T.J., Baker, J.M., Sargent, S.D., Tanner, B.D. and Zhang, J. (2004) Measuring field-scale isotopic CO2 fluxes with tunable diode laser absorption spectroscopy and micrometeorological techniques. Agric. For. Meteorol. 124, 15–29, 38.CrossRefGoogle Scholar
  31. Griffis, T.J., Baker, J.M. and Zhang, J. (2005a) Seasonal dynamics and partitioning of isotopic CO2 exchange in C3/C4 managed ecosystem. Agric. For. Meteorol. 132, 1–19.CrossRefGoogle Scholar
  32. Griffis, T.J., Lee, X., Baker, J.M., Sargent, S.D. and King, J.Y. (2005b) Feasibility of quantifying ecosystem-atmosphere C18O16O exchange using laser spectroscopy and the flux-gradient method. Agric. For. Meteorol. 135, 44–60.CrossRefGoogle Scholar
  33. Griffis, T.J., Sargent, S.D., Baker, J.M., Lee, X., Tanner, B.D., Greene, J., Swiatek, E. and Billmark, K. (2008) Direct measurement of biosphere–atmosphere isotopic CO2 exchange using the eddy covariance technique. J. Geophys. Res. 113, D08304.CrossRefGoogle Scholar
  34. Griffis, T.J., Zhang, J., Baker, J.M., Kljun, N. and Billmark, K. (2007) Determining carbon isotope signatures from micrometeorological measurements: Implications for studying biosphere-atmosphere exchange processes. Bound.-Lay. Meteorol. 123, 295–316.CrossRefGoogle Scholar
  35. Hobbie, E.A. and Werner, R.A. (2004) Intramolecular, compound-specific, and bulk carbon isotope patterns in C3 and C4 plants: a review and synthesis. New Phytol. 161, 371–385.CrossRefGoogle Scholar
  36. Högberg, P., Nordgren, A., Buchmann, N., Taylor, A.F.S., Ekblad, A., Högberg, M.N., Nyberg, G., Ottosson-Lofvenius, M. and Read, D.J. (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411, 789–792.CrossRefGoogle Scholar
  37. Kaimal, J. and Finnigan, J. (1994) Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, Oxford, pp. 289.Google Scholar
  38. Keitel, C., Matzarakis, A., Rennenberg, H. and Gessler, A. (2006) Carbon isotopic composition and oxygen isotopic enrichment in phloem and total leaf organic matter of European beech (Fagus sylvatica L.) along a climate gradient. Plant Cell Environ. 29, 1492–1507.CrossRefGoogle Scholar
  39. Klumpp, K., Schäufele, R., Lötscher, M., Lattanzi, F.A., Feneis, W. and Schnyder, H. (2005) C-isotope composition of CO2 respired by shoots and roots: fractionation during dark respiration? Plant Cell and Environ. 28, 241–250.CrossRefGoogle Scholar
  40. Knohl, A., Werner, R.A., Brand, W.A. and Buchmann, N. (2005) Shortterm variations in δ13C of ecosystem respiration reveals link between assimilation and respiration in a deciduous forest. Oecologia 142, 70–82.CrossRefGoogle Scholar
  41. Leavitt, S.W. and Long, A. (1986) Stable carbon isotope variability in tree foliage and wood. Ecology 67, 1002–1010.CrossRefGoogle Scholar
  42. Lee, X.H., Kim, K. and Smith, R. (2007) Temporal variations of the 18O/16O signal of the whole-canopy transpiration in a temperate forest. Global Biogeochem. Cycles 21, GB3013.CrossRefGoogle Scholar
  43. Leff, B., Ramankutty, N. and Foley, J.A. (2004) Geographic distribution of major crops across the world. Global Biogeochem. Cycles 18, GB1009.CrossRefGoogle Scholar
  44. Lloyd, J., Kruijt, B., Hollinger, D.Y., Grace, J., Francey, R.J., Wong, S.C., Kelliher, F.M., Miranda, A.C., Farquhar, G.D., Gash, J.H.C., Vygodskaya, N.N., Wright, I.R., Miranda, H.S. and Schulze, E.D. (1996) Vegetation effects on the isotopic composition of atmospheric CO2 at local and regional scales: Theoretical aspects and a comparison between rain forest in amazonia and a boreal forest in Siberia. Aust. J. Plant Physiol. 23, 371–399.CrossRefGoogle Scholar
  45. Miller, J.B., Tans, P.P., White, J.W.C., Conway, T.J. and Vaughn, B.W. (2003) The atmospheric signal of terrestrial carbon isotopic discrimination and its implication for partitioning carbon fluxes. Tellus 55B, 197–206.Google Scholar
  46. Monin, A.S. and Obukhov, A.M. (1954) Basic laws of turbulent mixing near the ground. Trudy Geofiz. Ins. Akad. Nauk SSSR 24, 163–187. (In Russian)Google Scholar
  47. Mortazavi, B., Chanton, J.P., Prater, J.L., Oishi, A.C., Oren, R. and Katul, G.G. (2005) Temporal variability in 13C of respired CO2 in a pine and a hardwood forest subject to similar climatic conditions. Oecologia 142, 57–69.CrossRefGoogle Scholar
  48. Ogée, J., Peylin, P., Ciais, P., Bariac, T., Brunet, Y., Berbigier, P., Roche, C., Richard, P., Bardoux, G. and Bonnefond, J.M. (2003) Partitioning net ecosystem carbon exchange into net assimilation and respiration using (13CO2) measurements: A cost-effective sampling strategy. Global Biogeochem. Cycles 17, GB1070.CrossRefGoogle Scholar
  49. Ometto, J.P.H., Flanagan, L.B., Martinelli, L.A., Moreira, M.Z., Higuchi, N. and Ehleringer, J.R. (2002) Carbon isotope discrimination in forest and pasture ecosystems of the Amazon basin, Brazil. Global Biogeochem. Cycles 16, GB1109.CrossRefGoogle Scholar
  50. Pataki, D.E., Ehleringer, J.R., Flanagan, L.B., Yakir, D., Bowling, D.R., Still, C.J., Buchmann, N., Kaplan, J.O. and Berry, J.A. (2003) The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochem. Cycles 17, 1022.CrossRefGoogle Scholar
  51. Pfeffer, M. and Peisker, M. (1998) CO2 gas exchange and phosphoenolpyruvate carboxylase activity in leaves of Zea mays L. Photosynth. Res. 58, 281–291.CrossRefGoogle Scholar
  52. Randerson, J.T., Chapin, F.S., Harden, J.W., Neff, J.C. and Harmon, M.E. (2002) Net ecosystem production: A comprehensive measure of net carbon accumulation by ecosystems. Ecol. Appl. 12, 937–947.CrossRefGoogle Scholar
  53. Raupach, M.R. (1989) Applying lagrangian fluid-mechanics to infer scalar source distributions from concentration profiles in plant canopies. Agric. For. Meteorol. 47, 85–108.CrossRefGoogle Scholar
  54. Rochette, P., Pattey, E., Desjardins, R.L., Dwyer, L.M., Stewart, D.W. and Dube, P.A. (1991) Estimation of maize Zea Mays L. canopy conductance by scaling up leaf stomatal conductance. Agric. For. Meteorol. 54, 241–261.CrossRefGoogle Scholar
  55. Scartazza, A., Mata, C., Matteucci, G., Yakir, D., Moscatello, S. and Brugnoli, E. (2004) Comparisons of δ13C of photosynthetic products and ecosystem respiratory CO2 and their responses to seasonal climate variability. Oecologia 140, 340–351.CrossRefGoogle Scholar
  56. Scholze, M., Ciais, P. and Heimann, M. (2008) Modeling terrestrial 13C cycling: Climate, land use and fire. Global Biogeochem. Cycles 22, GB1009.CrossRefGoogle Scholar
  57. Scholze, M., Kaplan, J.O., Knorr, W. and Heimann, M. (2003) Climate and interannual variability of the atmosphere-biosphere 13CO2 flux. Geophys. Res. Lett. 30, 1097.CrossRefGoogle Scholar
  58. Simpson, T.J. (1998) Application of isotopic methods to secondary metabolic pathways. Biosynthesis 195, 1–48.CrossRefGoogle Scholar
  59. Suits, N.S., Denning, A.S., Berry, J.A., Still, C.J., Kaduk, J., Miller, J.B. and Baker, I.T. (2005) Simulation of carbon isotope discrimination of the terrestrial biosphere. Global Biogeochem. Cycles 19, GB1017.CrossRefGoogle Scholar
  60. Tcherkez, G., Farquhar, G.D., Badeck, F. and Ghashghaie, J. (2004) Theoretical considerations about carbon isotope distribution in glucose of C3 plants. Funct. Plant Biol. 31, 857–877.CrossRefGoogle Scholar
  61. Tcherkez, G., Nogués, S., Bleton, J., Cornic, G., Badeck, F.W. and Ghashghaie, J. (2003) Metabolic origin of carbon isotope composition of leaf dark-respired CO2 in French bean. Plant Physiol. 131, 237–244.CrossRefGoogle Scholar
  62. Werner, R.A., Unger, S., Pereira, J.S., Maia, R., David, T.S., Kurz-Besson, C., David, J.S. and Maguas, C. (2006) Importance of short-term dynamics in carbon isotope ratios of ecosystem respiration (δ13C) in a Mediterranean oak woodland and linkage to environmental factors. New Phytol. 172, 330–346.CrossRefGoogle Scholar
  63. Xu, C.Y., Lin, G.H., Griffin, K.L. and Sambrotto, R.N. (2004) Leaf respiratory CO2 is 13C-enriched relative to leaf organic components in five species of C3 plants. New Phytol. 163, 499–505.CrossRefGoogle Scholar
  64. Yakir, D. (2004) The stable isotopic composition of atmospheric CO2, In: The Atmosphere: Treatise on Geochemistry. Vol.4. Elsevier, Amsterdam, pp. 175–212.Google Scholar
  65. Yakir, D. and Wang, X.F. (1996) Fluxes of CO2 and water between terrestrial vegetation and the atmosphere estimated from isotope measurements. Nature 380(6574), 515–517.CrossRefGoogle Scholar
  66. Zhang, J., Griffis, T.J. and Baker, J.M. (2006) Using continuous stable isotope measurements to partition net ecosystem CO2 exchange. Plant Cell Environ. 29, 483–496.CrossRefGoogle Scholar
  67. Zobitz, J.M., Burns, S.P., Ogée, J., Reichstein, M. and Bowling, R. (2007) Partitioning net ecosystem exchange of CO2: A comparison of a Bayesian/isotope approach to environmental regression methods. J. Geophys. Res. 112, G03013.11.1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kaycie A. Billmark
    • 1
  • Timothy J. Griffis
    • 1
  1. 1.Department of Soil, Water and ClimateUniversity of Minnesota, Minneapolis and Saint paulMNUSA

Personalised recommendations