Complementary and Alternative Medicine for Cancer Care in India: Basic and Clinical Perspective

  • Ashok D.B. Vaidya
  • Ashok J. Amonkar
  • Narendra S. Bhatt
  • Purvish M. Parikh


Cancer still continues to offer a formidable challenge to conventional medicine, despite significant advances in the fields of basic and clinical oncology. The strengths and weaknesses of the current diagnosis and management of cancer are often not understood well by many patients; therefore, their quest for complementary and alternative medicine (CAM) approaches for cancer care continues globally, as well as on the Indian subcontinent. Over the last few decades, several anticancer agents, which are being investigated or used, belong to the plant world. This raises hopes for novel approaches used by CAM systems [1].


Anticancer Activity Curcuma Longa Withania Somnifera Complementary Alternate Medicine Pongamia Pinnata 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The chapter is dedicated to the memory of our late colleague Dr. Meena Surendra Shringi, who bravely fought metastatic ovarian cancer for seven years, by the use of conventional and complementary care.

We thank Sri Dhirubhai Mehta, President, Kasturba Health Society for encouragement and facilities. We also thank the Indian Council of Medical Research and Department of Biotechnology (Government of India) and Virtus Technoinovation Pvt. Ltd. (VTPL) for partial support for cancer research. In addition, we thank Dr. Rama Vaidya and Ms. Sanchita Patkar for their help in the preparation of the manuscript.





          Application of direct heat by metal


          Maintaining the direction and speed of peristalsis


        Vehicle to follow the drug


Glandular swelling/enlargement, nonsuppurating


Therapy which avoids reoccurrence of the disease


Deep rooted, big gland/uncontrolled enlargement


Decoction is fermented to get the medicinal value


Haemorrhoid varicosities




The fourth Vedic text/literature regarding Ayurveda




Science of life


Enhancing strength & immunity


Strong purgative




Property of pacifying an humor


Swelling of gland in neck region


Solid mass obtained from boiling the decoction




Kernel of the fruit of Semicarpus anacardium


Small bowel disease, Melabsorption


Knotty, mass/swelling/gland


Type of lump which is sessile


Water humour










Scraping through application of salts of plants


Destroying skin diseases




Light to digest


Local application




Tissue within bones


Muscular tissue


Vital points/conglomerate points


Adipose tissue

Medoja arbud

Cancerous growth from adipose tissue

Mootra Sangrahaniya



Giving colour to urine

Pitta sarak



Fire humour

Poorva Karma

Prerequisites of main procedure






Fluid of absorbed and digested food




Antiageing and rejuvenating


Enhancing taste




A precipitate of a water-soaked plant


Procedures by which equilibrium of doshas is established


Purification procedures




Reproductive tissue














Pacifying all three humours



Vardhaman prayog

Escalating and de-escalating the dosage regimen


Wind/air humour


Resultant taste after complete conversion


Capacity to do work/work potential








Enhancing reproductive property/aphrodisiac


  1. 1.
    Parikh PM, Gopal MD. Introduction: paclitaxel – current concepts. Ind J Med Paed Oncol. 1994;15:7–8.Google Scholar
  2. 2.
    Satyavati GV, cited by Jayaraman KS. Break with tradition. Nature 2006;442:342–3.CrossRefGoogle Scholar
  3. 3.
    Vaidya ADB. Reverse pharmacological correlates of Ayurvedic drug action. Ind J Pharmacol. 2006;38:311–15.Google Scholar
  4. 4.
    Chopra A, Doiphode V. Ayurvedic medicine: core concept, therapeutic principles and current relevance. Med Clin North Am. 2002;86:75–89.Google Scholar
  5. 5.
    Hartwell JL. Plants against cancer. A survey. Loydia 1967;30:379–463.Google Scholar
  6. 6.
    Hartwell JL. Plants against cancer. A survey. Loydia 1968;31:71–170.Google Scholar
  7. 7.
    Hartwell JL. Plants against cancer. A survey. Loydia 1969;32:247–96.Google Scholar
  8. 8.
    Hartwell JL. Plants against cancer. A survey. Loydia 1970;33:288–392.Google Scholar
  9. 9.
    Hartwell JL. Plants against cancer. A survey. Loydia 1971;34:386–438.Google Scholar
  10. 10.
    Hartwell JL, Abbott BJ. Antineoplastic principles in plants: recent developments in the field. Adv Pharmacol Chemother. 1969;7:117–209.PubMedCrossRefGoogle Scholar
  11. 11.
    Farnsworth NR, Kaas CJ. An approach utilizing information from traditional medicine to identify tumour – inhibiting plants. J Ethnophamacol. 1981;3:85–99.CrossRefGoogle Scholar
  12. 12.
    Hartwell JL. Plants used against cancer. Lawrence, MA: Quarterman Publications; 1982.Google Scholar
  13. 13.
    Cragg GM, Newman DJ. Plants as a source of anti-cancer agents, in Ethnopharmacology. In: Elisabetsky E, Etkin NL, editors. Encyclopedia of life support systems (EOLSS), developed under the auspices of the UNESCO. Oxford, UK: Eolss Publishers; 2004/Rev. 2006 [].
  14. 14.
    Cragg GM, Kingston DGI, Newman DJ, editors. Anticancer agents from natural products. Boca Raton, FL: Taylor and Francis; 2005. pp. 47–70.Google Scholar
  15. 15.
    Pandey G, Sharma M. Medicinal plants: better remedy for neoplasms. Ind Drugs 2006;43:869–74.Google Scholar
  16. 16.
    Redkar RG, Jolly CI. Natural products as anticancer agents. Ind Drugs 2003;40:619–26.Google Scholar
  17. 17.
    Sahu M, Mishra LC. Benign growths, cysts and malignant tumours (Chapter 16). In: Mishra LC, editor. Scienticfic basis for ayurvedic therapies. Boca Raton, FL: CRC Press; 2004. pp. 273–305.Google Scholar
  18. 18.
    Vaidya AB. The medical aspects of bhrign samhita. M.D. Dissertation, University of Mumbai; 1963.Google Scholar
  19. 19.
    Dewey DL. The identification of a cell culture inhibitor in a tumour extract. Cancer Lett. 1978;4:77–84.Google Scholar
  20. 20.
    Shanmuga V. Siddha’s science of longevity and kalpa medicine. Chennai: Shakthinilayam; 1963. p. 168.Google Scholar
  21. 21.
    Parmar RK. Comparative study of Ayurveda in relation to neoplastic lessons and its management by indigenous drugs. M.D. Thesis (Ayurveda). Institute of Medical Sciences, Banaras Hindu University, Varanasi, India; 1983.Google Scholar
  22. 22.
    Singh L. Response of poorvakarma in different types of cancer treatment. M.D. Thesis, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India; 1983.Google Scholar
  23. 23.
    Saxena A, Dixit S, Aggrarwal S, Seenu V, Prashad R, Bhusham SM, Tranikanti V, Misra MC, Srivastava A. An ayurvedic herbal compound to reduce toxicity to cancer chemotherapy: a randomized controlled trial. Indian J Med Pediatr Oncol. 2008;29(2):11–8.Google Scholar
  24. 24.
    Rao M, Rao P, Kamath PN, et al. Reduction of cisplatin-induced nephrotoxicity by Cystone, a polyherbal Ayurvedic preparation, in C 57 BL/6 J mice bearing B16 F1 melanoma without reducing its anti-tumour activity. J Ethnopharmacol. 1999;68:77–81.PubMedCrossRefGoogle Scholar
  25. 25.
    Smith DE, Salerno JW. Selective growth inhibition of human malignant melanoma cell line by sesame oil in vitro. Prostagl. Leukot. Ess. Fatty Acids 1992;46:145–50.Google Scholar
  26. 26.
    Lee KH, Kim JH, Lim DS, et al. Antileukaemic and anti-mutagenic effects of di (2-ethylhexyl) phthalate isolated from aloe vera. J Pharma Pharmacol. 2001;45:253.Google Scholar
  27. 27.
    Agarwal KC, Parks RJ. Forskolin: a potential anti-metastatic agent. Int J Cancer 1983;32:801.PubMedCrossRefGoogle Scholar
  28. 28.
    Matsuda T, Kuroyanagi M, Sugiyama S, et al. Cell differentiation-inducing diterpenes from Andrographic paniculata nees. Chem Pharm Bull. 1994;42:1216.PubMedCrossRefGoogle Scholar
  29. 29.
    Dwivedi C, Abu–Ghazaleh A. Chemopreventive effects of sandalwood oil on skin papillomas in mice. Eur J Cancer Prev. 1997;6:399.PubMedCrossRefGoogle Scholar
  30. 30.
    Jagetia GC, Baliga MS, Venkatesh P. Ginger (Zingiber officinale Rosc) a dietary supplement, protects mice against radiation-induced lethality: mechanism of action. Cancer Biother Radiopharma. 2004;19:422–35.CrossRefGoogle Scholar
  31. 31.
    Vriddhajivak. Forward of Kashyap Samhita. Shashtri Girijashankar Mayashankar, translator. Ahemadebad: Sastu Sahitya Mudranalaya; 1970.Google Scholar
  32. 32.
    AYUSH (Ayurveda, Yoga, Unani, Siddha & Homoeopathy). Annual report 2006–07. India: Ministry of Health & Family Welfare, Government of India.Google Scholar
  33. 33.
    Madhav (Vaidya R. Parikh, translator). Madhav Nidan, Ahmedabad: Sanstu Sahitya Mudranalaya; 1962.Google Scholar
  34. 34.
    Sushrut (Shashtri Kalidas Govindaji, translator). Sushrut Samhita, Ahemedabad: Sastu Sahitya Mudranalaya; 1965.Google Scholar
  35. 35.
    Agnivesha (Charaka & Drdhabala, revised). Charak Samhita, Viman Sthan, Varanasi: Chowkhamba Vidya Bhavan; 1962.Google Scholar
  36. 36.
    Bhavan’s SPARC. Withania somnifera in selected medicinal plants of India. Mumbai: CHEMEXCIL; 1992. pp. 353–6.Google Scholar
  37. 37.
    Indian Herbal Pharmacopoeia. Mumbai: IDMA; 2002. pp. 467–78.Google Scholar
  38. 38.
    Gogte VM. Ayurvedic pharmacology and therapeutic uses of medicinal plants. Mumbai: Bhavan’s SPARC; 2000. p. 301.Google Scholar
  39. 39.
    Vaidya ADB, Devasagayam TPA. Current status of herbal drugs in India: an overview. J Clin Biochem Nutr. 2007;41(1):1–11.Google Scholar
  40. 40.
    Aiyar KN, Kolammal M. Pharmacognosy of ayurvedic drugs of Kerala. Trivandrum: University of Kerala; 1964;13:31–3.Google Scholar
  41. 41.
    Bhava Misra (Murthy K, translator). Bhavaprakash (≈ 1500 A.D.). Varanasi: Krishnadas Academy; 2001;1:258.Google Scholar
  42. 42.
    Winters M. Ancient medicine, modern use: Withania somnifera and its potential role in integrative oncology. Altern Med Rev. 2006;11:269–77.Google Scholar
  43. 43.
    Vaidya AB. The medical aspects of Bhrign-Samhita. M.D. Dissertation, Mumbai: University of Mumbai; 1963.Google Scholar
  44. 44.
    Vaidya S. Asandh-Withania somnifera Jungleni Jadibutti. Ahmedabad: Samaldas; 1923. pp. 22–3.Google Scholar
  45. 45.
    Chopra A, Doiphode VV. Ayurvedic medicine: core concept, therapeutic principles and current relevance. Med Clin North Am. 2002;86:75–89.Google Scholar
  46. 46.
    Vaidya ADB, Vaidya RA, Nagral SI. Ayurveda and a different level of evidence: from Lord Macaulay to Lord Walton (1835–2001 A.D.). J Assoc Physicians India. 2001;49:534–7.Google Scholar
  47. 47.
    Kanthsuriswarji (Bhatt CN, translator). Hitopadesh. Vadodara: Lakshmivilas Press; 1897. p. 101.Google Scholar
  48. 48.
    Gupta GL, Rana AC. Withania somnifera (Ashwagandha): a review. Pharmacog Rev. 2007;1:129–35.Google Scholar
  49. 49.
    Kaur K, Rani G, Widodo N, et al. Evaluation of the anti-proliferative and anti-oxidative activities of leaf extract from in vivo and in vitro raised ashwagandha. Food Chem Toxicol. 2004;42:2015–20.Google Scholar
  50. 50.
    Jayaprakasan B, Zhang Y, Seeram NP, et al. Growth inhibition of human Tumour. Cell lines by withanolides from Withania somnifera leaves. Life Sci. 2003;74:125–32.Google Scholar
  51. 51.
    Mathur R, Gupta SK, Singh N, et al. Evaluation of the effect of Withania somnifera root extracts on cell cycle and angiogenesis. J Ethnopharmacol. 2006;105:336–41.CrossRefGoogle Scholar
  52. 52.
    Mohan R, Hammers HJ, Bargagna-Mohan P, et al. Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis 2004;7:115–22.CrossRefGoogle Scholar
  53. 53.
    Singh DD, Dey CS, Bhutani KK. Down regulation of p34 cdc 2 expression with aqueous fraction from Withania somnifera for a possible mechanism of anti-tumour and other pharmacological effects. Phytomedicine 2001;8:492–4.Google Scholar
  54. 54.
    Aggarwal BB. Nuclear factor κB: the enemy within. Cancer Cell 2004;6:203–8.CrossRefGoogle Scholar
  55. 55.
    Ichikawa H, Takada Y, Shishodia S, et al. Withnolides potentiate apoptosis, inhibit invasion and abolish osteoclastogenesis through suppression NFkB activation and NFkB-regulated gene expression. Mol Cancer Thor. 2006;5:1434–45.Google Scholar
  56. 56.
    Senthil V, Ramadevi S, Venkata-Krishnan V, et al. Withanolide induces apoptosis in HL-60 leukemia cells via mitochondria mediated cytochronic C release and carpase activation. Chem Biol Interact. 2007;167:19–30.PubMedCrossRefGoogle Scholar
  57. 57.
    Devi PU, Sharda AC, Solomon FE. Anti-tumour and radiosensitizing effects of Withania somnifera ashwagandha on a tramplantable mouse tumour Sarcoma, 180. Ind J Exp Biol. 1993;31:607–11.Google Scholar
  58. 58.
    Devi PU, Akagi K, Ostapenko V, et al. Withaferin A: a new radiosensitizer from the indian medicinal plant withania somnifera. Int J Radiat Biol. 1996;69:193–7.CrossRefGoogle Scholar
  59. 59.
    Devi PU, Karmath R. Radiosensitizing effect of withania A combined with hyperthermia on mouse fibosarcoma and melanoma. J Radiat Res. 2003;44:1–6.CrossRefGoogle Scholar
  60. 60.
    Prakash J, Gupta SK, Kochapillai V, et al. Chemopreventive activity of Withania somnifera in experimentally induced fibrosarcoma tumours in Swiss albino mice. Phytother Res. 2001;15:240–4.CrossRefGoogle Scholar
  61. 61.
    Davis L, Kuttan G. Effect of Withania somnifera on DMBA-induced Carcinogenesis. J Ethnopharmacol. 2001;75:165–8.CrossRefGoogle Scholar
  62. 62.
    Mathur S, Kaur R, Sharma M, et al. The treatment of skin carcinoma induced by UVB radiation, using 1-oxo-5beta 6 beta- epoxy- with a-2-enolide, in a rat model. Phytomedicine 2004;11:452–60.CrossRefGoogle Scholar
  63. 63.
    Christina AJ, Joseph DG, Pakialakshmi M, et al. Anticarcinogenic activity of Withania somnifera Dunal against Dalton’s ascetic lymphoma. J Ethnopharmacol 2004;93:359–61.CrossRefGoogle Scholar
  64. 64.
    Leyon PV, Kuttan G. Effect of Withania somnifera on B 16-10 melanoma induced metastases in mice. Phytother Res. 2004;18:118–22.CrossRefGoogle Scholar
  65. 65.
    Gupta YK, Sharma SS, Raj K, et al. Reversal of paclitaxel-induced Neutropenia by Withania somnifera in mice. Indian J Physiol Pharmacol. 2001;45:253–7.Google Scholar
  66. 66.
    Diwanay S, Chitre C, Patwardhan B. Immunoprotection by botanical drugs in cancer chemotherapy. J Ethnopharmacol. 2004;90:49–55.PubMedCrossRefGoogle Scholar
  67. 67.
    Vaidya R. Vanaushadhi Shatak (Hindi). Varanasi: Sarva Seva Sangha; 1978. pp. 129–30.Google Scholar
  68. 68.
    Sharma PV. Recommended uses of Ayurvedic drugs. Anubhoot prayoga ratnakara. Vijaygadh: Sudhanidhi; 1964. pp. 67–8.Google Scholar
  69. 69.
    Sharma NP. Strength with ashwagandha. Anubhoot prayoga ratnakara. Vijaygadh: Sudhanidhi; 1964. pp. 284–5.Google Scholar
  70. 70.
    Shastri OP. Some gems of medicinal plants in practice. Anubhoot prayoga ratnakara. Vijaygadh: Sudhanidhi; 1964. pp. 280–1.Google Scholar
  71. 71.
    Shah BG. Ashwagandha, Ayurveda Vigyan. 1926;10:135–46.Google Scholar
  72. 72.
    Vyas MB. Shodhals location and period. Vaidya Kalpataru. 1918;23:234–7.Google Scholar
  73. 73.
    Dr. Brahmanand Nayak (editor-in-chief). AyurvedlineTM. 9th ed. Bangalore: Dr. Seetharam Prasad; 2007. Pp. 606–8.Google Scholar
  74. 74.
    SPARC. Selected medicinal plants of India. Mumbai: CHEMEXCIL; 1992. pp. 319–322.Google Scholar
  75. 75.
    Vaidya B. Guduchivarga. In: Nighantu Adarsha 2/48. 2nd ed. Varanasi: Chaukhamba Bharati Academy; 1998. p. 36.Google Scholar
  76. 76.
    Panchabhai TS, Kulkarni UP, Rege NN. Validation of therapeutic claims of Tinospora cordifolia: a review. Phytother Res. 2008;22:425–41.Google Scholar
  77. 77.
    Sharma DNK, Khosla RL. Chemistry and pharmacology of Tinospora cordifolia. Miers Ind Drugs 1993;30:549–54.Google Scholar
  78. 78.
    Indian Herbal Pharmacopoeia. 2nd ed. Mumbai: IDMA; VII, 2002. pp. 449–58.Google Scholar
  79. 79.
    Geogte VM. Medicinal plants (Part II). In: Ayurvedic pharmacology and therapeutic uses of medicinal plants. Mumbai: Bhavan’s SPARC; 2000. pp. 359–61.Google Scholar
  80. 80.
    Gupta SS, Verm SCL, Garg VP, et al. Anti-diabetic effect of T. cordifolia. Part 1. Effect on fasting blood sugar level, glucose tolerance and adrenaline-induced hyperglycemia. Indian J Med Res. 1967;55:733–45.Google Scholar
  81. 81.
    Mathew S, Kuttan G. Antioxidant activity of Tinospora cordifolia and its usefulness in amelioration of cyclophosphamide – induced toxicity. J Exp Clin Cancer Res. 1997;16:407–11.Google Scholar
  82. 82.
    Dahanukar SA, Thatte UM, Pai N, Karandikar SM, et al. Therapeutic modification by Tinospora cordifolia of abdominal sepsis induced by caccal ligation. Indian J Gastrocaterol. 1988;7:21–3.Google Scholar
  83. 83.
    Sainis KB, Ramakrishnan R, Supariwala PF, et al. Further studies on immunoniodulation by natural products from Tinospora cordifolia. In: Upadhyay SN, editor. Immunopharmacology: strategies for immunotherapy. Delhi: Narosa publishing House; 1999. pp. 96–104.Google Scholar
  84. 84.
    Sarma DNK, Koshla RL, Chansuria JPN, et al. Antistress activity of Tinospora cordifolia and Centella asiatica extract. Phyther Res. 1996;10:181–3.Google Scholar
  85. 85.
    Rege NN, Dahannkar SA, Karandikar SM. Hepatoproductive effects of Tinospora cordifolia against CCl4 – induced liver damage. Indian Drugs 1984;21:544–5.Google Scholar
  86. 86.
    Pendse VK, Mahavir MM, Khanna NK, et al. Anti-inflammatory and related activity of water extract of Tinospora cordifolia, ‘Neem Giloe’. Indian Drugs 1981;19:14–21.Google Scholar
  87. 87.
    Nayampalli SS, Ainapure SS, Samant BD, et al. A comparative study of diuretic effects of Tinospora cordifolia and hydrochlorothiazids in rats and a preliminary phase 1 study in human volunteers. J Postgrad Med. 1988;34:233–8.Google Scholar
  88. 88.
    Agrawala A, Malini S, Baviry KL, et al. Effect of Tinospora cordifolia on learning and memory in normal and memory – deficit rats. Indian J Pharmacol. 2002;34:339–49.Google Scholar
  89. 89.
    Thatte UM, Chabria SN, Karandikar SM, et al. Protective effects of Indian medicinal plants against cyclophosphamide neutropenia. J Post Grad Med. 1987;33:185–8.Google Scholar
  90. 90.
    Diwaney S, Chitre D, Patwardhan B. Immuno-protection by botanical drugs in cancer chemotherapy. J Ethnopharmacol. 2004;90:49–55.CrossRefGoogle Scholar
  91. 91.
    Pahadia S, Sharma J. Alteration of lethal effects of gamma rays in swiss albino mice by Tinospora cordifolia. Phytother Res. 2003;17:552–4.Google Scholar
  92. 92.
    Jogetia GC, Nayak V, Vidyasagar MS. Evaluation of antineoplastic activity of guduchi (Tinospora cordifolia) in cultured HeLa cells. Cancer 1998;127:71–82.Google Scholar
  93. 93.
    Jagetia GC, Rao SK. Evaluation of the antineoplastic activity of guduchi (Tinospora cordifolia) in Ehrlich ascites carcinoma bearing mice. Biol Pharm Bull. 2006;29:460–6.CrossRefGoogle Scholar
  94. 94.
    Leyon PV, Kuttan G. Effect of Tinospora cordifolia on the cytokine profile of angiogenesis-induced animals. Int Immunopharmacol. 2004;4:1569–75.CrossRefGoogle Scholar
  95. 95.
    Chintalwar G, Jain A, Sipahimalani A, et al. An immunologically active arabinogalactan from Tinospora cordifolia. Phytochemistry 1999;52:1089–93.CrossRefGoogle Scholar
  96. 96.
    Chauhan K. Successful treatment of throat cancer with Ayurvedic drugs. Sachitra Ayurveda 1995;47:840–2.Google Scholar
  97. 97.
    Vaidya A, Vaidya R, Vaidya V, et al. Spontaneous regression or induced regression of cancer: a novel research strategy for Ayurvidya. Ancient Sci Life 2003;22:75–83.Google Scholar
  98. 98.
    Oak M. Efficacy of Tinospora cordifolia in reducing cytotoxic chemotherapy-induced leukopenia. M.D. (pharmacology) Thesis, University of Mumbai, Mumbai; 2001.Google Scholar
  99. 99.
    Vaingankar JA. Evaluation of Indian medicinal plants for immunoregulatory properties. M.Sc. (Applied Biology) Thesis, University of Mumbai, Mumbai; 2001.Google Scholar
  100. 100.
    Sharma PC, Yelne MB, Dennis TJ. Data based on medicinal plants used in Ayurveda. New Delhi: CCRAS Publication. Vol. 5, pp. 9–28.Google Scholar
  101. 101.
    Gogte VM. Dravyagunvigyan. Bhavan’s SPARC: Mumbai; 2000; p. 444.Google Scholar
  102. 102.
    Vaidya BG. NighantuAdarsh, 2nd ed. Varanasi: Chowkhambha Bharti Academy; 1998. Vol. 1, p. 314.Google Scholar
  103. 103.
    Raut Ashwini Kumar A, Sawant NS, Badre AS, et al. Bhallatak (Semecarpus anacardium Linn.) – a review. Indian J Tradit Knowl. 2007;6(4):653–9.Google Scholar
  104. 104.
    Goudgaon NM, Lambture JB, Nayak VR. Semecarpus anacardium as an anticancer agent: epoxy derivatives of the monoene and dienebhilwanols. Indian Drugs 1984;22(11):556.Google Scholar
  105. 105.
    Gill RR, Lin LZ, Cordell GA, et al. Anacardoside from seeds of Semecarpus anacardium. Phytochemistry 1995;39(2):405–7.Google Scholar
  106. 106.
    Murthy SSN. Jeediflavanone-A, bioflavonoid from Semecarpus anacardium. Phytochemistry 1985;24(5):1065.CrossRefGoogle Scholar
  107. 107.
    Sharma S. Rastarangini by P. Kashinath Shastri Commentary by Shri. Haridatta Shastri. Varanasi: Motilal Banarasidas; 1975. p. 735.Google Scholar
  108. 108.
    Agnivesha, Charak Samhita, 2nd ed. by Pandey G. Commentary by Shastri K. Varanasi: R D Chaukhambha Sanskrit Sansthan; 1983. Vol. 2, p. 22.Google Scholar
  109. 109.
    Sushrut, Sushrut Samhita by Acharya YT. Commentary by Dalhana, 7th ed. Varanasi: Chaukambha Orientaliya; 2002; p. 434.Google Scholar
  110. 110.
    Translated by board of scholars, Vaghbhatta Astang hridaya, 1st ed. Delhi: Sri Satguru Publications; 1991; Vol. 3, p. 331.Google Scholar
  111. 111.
    Indap MA, Ambaye RY, Gokhale SV. Anti-tumour activity and pharmacological effects of the oil from Semecarpus anacardium Linn. Indian J Physiol Pharmacol. 1983;27(2):83.PubMedGoogle Scholar
  112. 112.
    Gothoskar SV, Randive KG. Anti-cancer screening of SAN-AB and an extract of marking nut of Semecarpus anacardium. Indian J Exp Biol. 1971;9(3):39.Google Scholar
  113. 113.
    Gothoskar SV, Chitnis MP, Advankar MK, et al. Anti-tumour activity of SAN-AB, and an extract of marking nut of Semecarpus anacardium. Indian J Exp Biol. 1971;9(3):372–375.PubMedGoogle Scholar
  114. 114.
    Chitnis MP, Bhatia KG, Phatak MK, et al. Anti-cancer activity of the extract of Semecarpus anacardium L. nuts in experimental tumour model. Indian J Exp Biol. 1980;18(1):6.PubMedGoogle Scholar
  115. 115.
    Phatak MK, Ambaye RY, Indap MA, et al. Cyto-toxicity of the acelytated oil of Semecarpus anacardium Linn. Indian J Physiol Pharmacol. 1983;27(2):166.PubMedGoogle Scholar
  116. 116.
    Indap MA, Ambaye RY, Gokhale SV. Potentiation of activity of anti-cancer drugs by acetylated oil of Semecarpus anacardium Linn in experimental tumour. Indian Drugs 1986;23(8):447.Google Scholar
  117. 117.
    Hembree JA, Chang CJ, McLaughlin JL, et al. The anticancer activity of Semecarpus anacardium. 9 K B active pentadecylaccatechols. Loydlia 1978;41(5):491.Google Scholar
  118. 118.
    Premalatha B, Muthulakhmi V, Sachdanandani P. Anti-cancer potency of the milk extract of Semecarpus anacardium Linn nuts against aflatoxin B1 mediated hepatocellular carcinoma bearing Wistar rats with reference to tumour marker enzymes. Phytotherapy Res. 1999;13(3):183–7.CrossRefGoogle Scholar
  119. 119.
    Mathivadhani P, Shanti P, Sadakandam P. Effect of Semecarpus anacardium Linn milk extract on glutathione and its associated enzymes in experimentally induced mammary carcinoma. J Med Food 2006;9(2):265.PubMedCrossRefGoogle Scholar
  120. 120.
    Chakraborty S, Roy M, Taraphdar AK, Bhattacharya RK. Cyto-toxic effect of root extract of Tiliacora recemosa and oil of Semecarpus anacardium Linn nuts in human tumour cells. Phytother Res. 2004;18(8):595.PubMedCrossRefGoogle Scholar
  121. 121.
    Soumyalakshmi S, Nur-E-Alam M, Akbharsha MA, et al. Investigation on S. Lehyam a sidhha medicine on breast cancer. Planta Medica 2005;220(6):910.Google Scholar
  122. 122.
    Kothari AB, Lahiri M, Ghaisas SD, et al. In vitro studies on anti-mutagenicity of water, alcohol and oil extracts of Semecarpus anacardium. Indian J Pharmacol. 1997;29(5):301.Google Scholar
  123. 123.
    Nair A, Bhide SV. Anti-microbial properties of different parts of Semecarpus anacardium. Indian Drugs 1996;33(7):323–8.Google Scholar
  124. 124.
    Ramprasath VR, Shanti P, Sachdanandam P. Anti-inflammatory effect of Semecarpus anacardium Linn nut extract in acute and chronic inflammatory conditions. Bio Pharm Bull. 2004;27(12):2028.CrossRefGoogle Scholar
  125. 125.
    Ramprasath VR, Shanti P, Sachdanandam P. Anti-inflammatory effect of Semecarpus anacardium Linn nut extract in acute and chronic inflammatory conditions. Bio Pharm Bull. 2006;29(4):693.CrossRefGoogle Scholar
  126. 126.
    Tripathi YB, Singh AV. Effect of Semecarpus anacardium nuts on lipid peroxidation. Indian J Exp Biol. 2001;39(8):798.PubMedGoogle Scholar
  127. 127.
    Selvam C, Jachak SM, Bhutani KK. A cyclo-oxygenase (cox) inhibitory flavonoids from the seeds of Semecarpus anacardium Linn. Phytotherapy Res. 2004;18(7):582.CrossRefGoogle Scholar
  128. 128.
    Selvam C, Jachak SM. A cyclo-oxygenase (cox) inhibitory biflavonoid from the seeds of Semecarpus anacardium. J Ethnopharmacol. 2004;95(2–3):209.PubMedCrossRefGoogle Scholar
  129. 129.
    Prasad GC. Studies on cancer in Ayurveda and its management. J Rob Auton Syst. 1987;3:147–67.Google Scholar
  130. 130.
    Vad BG. Semecarpus anacardium clinical studies and animal experimentation showing anti-cancer properties on nuts and seeds of this indigenous plant. Bombay: Bombay Pharmaceutical Works Pvt Ltd; 1975.Google Scholar
  131. 131.
    Patwardhan BK, Saraf MN, David SB. Toxicity of Semecarpus anacardium extract. Ancient Sci Life 1988;8(2):106.Google Scholar
  132. 132.
    Keshava Rao KV, Gothaskar SV, Chitnis MP, et al. Toxicological study of Semecarpus anacardium nut extract. J Physiol Pharmacol. 1979;23(2):115.Google Scholar
  133. 133.
    Vaishnav R, Shankanarayanan A, Chowdhary RR, et al. Toxicity studies on a proprietary preparation of Semecarpus anacardium. Indian J Med Res. 1983;77:106.Google Scholar
  134. 134.
    Vijayalakshmi T, Muthulakshmi V, Sachdanandam P. Toxicity studies on biochemical parameters carried out in rats with serankottari nei, Siddha drug milk extract of Semecarpus anacardium nut. J Ethanopharmacol. 2000;69(1):9.CrossRefGoogle Scholar
  135. 135.
    Vaidya Gogte VM. Ayurvedic pharmacology and therapeutic uses of medicinal plants. Dravyaguna Vigyan: Bharatiya Vidya Bhavan’s SPARC; 2000. Pp. 514–15.Google Scholar
  136. 136.
    Sharma PC, Yelne MB, Jennis TJ. Data base on medicinal plants used in Ayurveda. New Delhi: CCRAS Publications; 2000. Vol. 1, pp. 132–55.Google Scholar
  137. 137.
    Amon HP, Wahi MA. Pharmacology of Curcuma longa. Planta Medica 1991;57:1–7.CrossRefGoogle Scholar
  138. 138.
    Rao TS, Basu N, Siddiqui HH. Anti-inflammatory activity of curcumin analogues. Indian J Med Res. Apr 1982;75:574–8.CrossRefGoogle Scholar
  139. 139.
    Chattopadhyay I, Biswas K, Bandopadhyay U, et al. Turmeric and curcumin: biological actions and medical applications. Curr Sci. 2004;87(1):44–54.Google Scholar
  140. 140.
    Chemical Constituents of Haridra. mhtml:file//g:\Haridra\Chemicals%20 Constituents%20of%20Turmeric.mht. 2008.Google Scholar
  141. 141.
    Ireson C, Orr S, Jones DJ, et al. Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res. 2001;(61):1058–64.Google Scholar
  142. 142.
    Khopde SM, Priyadarsini KI, Guha SN, et al. Inhibition of radiation-induced lipid peroxidation by tetrahydrocurcumin: possible mechanisms by pulse radiolysis. Biosci Biotechnol Biochem. 2000;(64):503–9.Google Scholar
  143. 143.
    Pari L, Murugan P. Protective role of tetrahydrocurcumin against erythromycin estolate-induced hepatotoxicity. Pharmacol Res. 2004;49:481–6.CrossRefGoogle Scholar
  144. 144.
    Pari L, Amali RD. Protective role of tetrahydrocurcumin (THC) an active principle of turmeric on chloroquine induced hepatotoxicity in rats. J Pharm Sci. 2005;(8):115–23.Google Scholar
  145. 145.
    Kalathil N, Tava Aldo, Shafi PM, et al. Chemical compositions of essential oils of turmeric (Curcuma longa). Acta Pharm. 2002;52:137–41.Google Scholar
  146. 146.
    Behura S, Sahoo S, Srivastava VK. Major constituents of leaf essential oils of Curcumin longa and Curcuma salisb. Curr Sci. 2002;83(11):1312–13.Google Scholar
  147. 147.
    K.W. Quirlh Flaven Naturextrakte GmbH. Nutraceuticals. New Spring, 2002; 26–29.Google Scholar
  148. 148.
    Gonda R, Tomoda M, Shimizu N, et al. Characterization of polysaccharides having activity on the reticuloendothelial system from the rhizome of Curcuma longa. Chem Pharm Bull. 1990;38(2):482–6.CrossRefGoogle Scholar
  149. 149.
    Gonda R, Tomoda M, Takada K, et al. The core structure of ukonan A, a phagocytosis activating polysaccharide from the rhizome of Curcuma longa and immunological activities of degradation products. Chem Pharm Bull. 1992;40(4):990–3.CrossRefGoogle Scholar
  150. 150.
    Gonda R, Takada K, Shimizu N, et al. Characterization of neutral polysaccharide having activity on the reticuloendothelial system from the rhizome of Curcuma longa. Chem Pharm Bull. 1992;40(1):185–8.CrossRefGoogle Scholar
  151. 151.
    Gonda R, Tomoda M, Ohara N, et al. Arabinogalactan core structure and immunological activities of ukonan C, an acidic polysaccharide from the rhizome of Curcuma longa. Chem Pharm Bull. 1993;16(3):235–8.Google Scholar
  152. 152.
    Bhalchandran P, Rajgopal G. Cancer an Ayurvedic prospective. Pharmacol Res. 2005;51:19–30.CrossRefGoogle Scholar
  153. 153.
    Bhavmisra. Madhya and Uttarkhanda. Murthy KRS, Bhavprakash. Varanasi: Krishna’s Academy; 2001. Vol. 2.Google Scholar
  154. 154.
    Vaidya Ambikadatta Shastri. Bhaishyajya Ratnawali. 11th rev. ed, 997. Varanasi: Choukhamba Prakashan; 2007.Google Scholar
  155. 155.
    Singhal GD, Singh LM. The management of glandular swellings, cervical lymphadenopathy, tumours and goiters. In: Singhal GD, Singh LM, editors. Operative considerations in ancient Indian surgery based on Susruta Samhita, Chikitsa sthana. Varanasi: Singhal Publications; 1982. pp. 339–56.Google Scholar
  156. 156.
  157. 157.
    Ghatak, Basu N. Sodium curcuminate as an effective anti-inflammatory agent. Indian J Exp Biol. 1970;17:1363–6.Google Scholar
  158. 158.
    Shrihari Rao T, Basu N, Siddiqui HH. Anti-inflammatory activity of curcumin analogues. Indian J Med Res. 1982;75:574–8.Google Scholar
  159. 159.
    Shrivastava R, Srimal RC. Modification of certain inflammation induced biochemical changes by curcumin. Indian J Med Res. 1985;81:215–23.Google Scholar
  160. 160.
    Brouet I, Ohshima H. Curcumin an anti-tumour promoter and anti-inflammatory agent inhibits induction of nitric oxide synthase in activated microphages. Biochem Biophys Res Commun. 1995;206:533–40.CrossRefGoogle Scholar
  161. 161.
    Costa B, Bettoni I, Petrosino S, Comelli F, Giagnoni G, Di Marzo V. The dual fatty acid amide hydrolase/TRPV1 blocker, N-arachidonoyl-serotonin, relieves carrageenan-induced inflammation and hyperalgesia in mice. Pharmacol Res. 2010;61(6):537–46.Google Scholar
  162. 162.
    Yegnarayanan R, Saraf AP, Bhalwani JH. Comparison of anti-inflammatory activity of various extracts of Curcuma longa Linn. Indian J Med Res. 1976;64:601–8.Google Scholar
  163. 163.
    Ramchandran R, Bhide SV, Ghaisas SD, et al. Anti-inflammatory activity of turmeric oil in arthritis in model in rat. Proceedings of the International Conference on ‘Ayurveda 2000’, Chennai, pp. 199–200.Google Scholar
  164. 164.
    Mishra N, Gupta SS. Anti-inflammatory and anti-hyaluronidase activity of volatile oil of Curcuma longa. J Res Ayur Siddha 1997;1–2(18):56–62.Google Scholar
  165. 165.
    Iyergar MA, RamaRao MP, Gurumedhava R, et al. Anti-inflammatory activity of volatile oil of Curcuma longa leaves. Indian Drugs 1994;31(2):528–31.Google Scholar
  166. 166.
    Guddadarangavvanahally KJ, Jena BS, Negi PS, et al. Evaluation of anti-oxidant and anti-mutagenicity of turmeric oil: a byproduct of curcumin production Z. Naturnaforsch. 2002;57C:828–35.Google Scholar
  167. 167.
    Lee HS. Anti-platelet property of Curcuma longa Linn rhizome derived ar-turmerone. Bioresource Tech. 2000;97(12):1372–6.Google Scholar
  168. 168.
    Nagbhushan M, Amonkar AJ, Bhide SV. In vitro anti-mutagenicity of curcumin against environmental mutagens. Fd Chem Tox. 1987;25(5):545–7.Google Scholar
  169. 169.
    Nagbhushan M, Nair UJ, Amonkar AJ, et al. Curcumins as inhibitors of nitrosation in vitro. Mutat Res. 1988;202:163–9.CrossRefGoogle Scholar
  170. 170.
    Selvan R, Subramanium L, Gayatri R, et al. Anti-oxidant activity of turmeric (Curcuma longa). J Ethanopharmacol. 1995;47(2):59–67.CrossRefGoogle Scholar
  171. 171.
    Anto RJ, Kuttan G, Babu SVD, et al. A comparative study on the pharmacological properties of natural curcuminoids. Amla Res Bull. 1999;14:60–5.Google Scholar
  172. 172.
    Scartezzini P, Speroni E. Review on some medicinal plants of Indian traditional medicine with anti-oxidant activity. Biochem Pharmacol. 1999;52(4):519–25.Google Scholar
  173. 173.
    Reddy Ach Pulla, Lokesh BR. Studies on spice principles as anti-oxidant in the inhibition of lipid-peroxidation of rat liver microsomes. Mol Cell Biochem. 1992;111:117–24.Google Scholar
  174. 174.
    Sharma OP. Anti-oxidant activity of curcumin and related compounds. Biochem Pharmacol. 1976;25:1811–12.CrossRefGoogle Scholar
  175. 175.
    Ruby AJ, Kuttan G, Babu KD, et al. Anti-tumour and anti-oxidant activity of natural cucuminoids. Cancer Lett. 1995;99(1):79–83.CrossRefGoogle Scholar
  176. 176.
    Srinivas L, Shalini VK, Shylaja M. Turmerin and water soluble anti-oxidant peptide from turmeric (Curcuma longa). Arch Biochem Biophys. 2004;292(2):617–23.Google Scholar
  177. 177.
    Agarwal BB, Kumar A, Bharati AC. Anticancer potential of curcumin, preclinical and clinical studies. Anticancer Res. 2005;23:363–98.Google Scholar
  178. 178.
    Ramchandran C, et al. Curcumin inhibits telomerase activity through telomerase reverse transcriptase in MCF-7 breast cancer cell line. Cancer Lett. 2002;184:1–6.CrossRefGoogle Scholar
  179. 179.
    Goel A, Boland CR, Chauhan DP. Specific inhibition of cyclo-oxygenase 2 (COX-2) expression by dietary curcumin HT 29 Human colon cancer cell. Cancer Lett. 2001;172:111–18.CrossRefGoogle Scholar
  180. 180.
    Khan A, Ali AM, Pardhasaradhi BV, et al. Anti-tumour activity of curcumin is mediated through the induction of apoptosis in AK-5 tumour cells. FEBS Lett. 1999;445:165–8.Google Scholar
  181. 181.
    Somasundaram S, et al. Dietary curcumin inhibits chemotherapy induced apoptosis in models of human breast cancer. Clin Cancer Res. 2001;7:2895–900.Google Scholar
  182. 182.
    Mahadey GB, Perdland SL, Yun G, et al. Turmeric (Curcuma longa) and curcumin inhibits the growth of Helicobeter pylori of group 1 carcinogen. Anticancer Res. 2002;22:4179–81.Google Scholar
  183. 183.
    Sharma RA, Gescher AJ, Steward WP. Curcumin the story so far. Exp J Cancer 2005;41:1955–68.Google Scholar
  184. 184.
    Bhavani Shankar TN, Santha NV, Ramesh HP, et al. Toxicity studies of on turmeric (Curcuma longa) acute toxicity studies in rats, guinea pigs and monkeys. Indian J Exp Biol. 1980;18:73–5.Google Scholar
  185. 185.
    Sambaiah K, RatanKumar S, Kamanna VS, et al. Influence of turmeric and curcuma on growth, blood constituents and serum enzymes in rats. J Food Sci Technol. 1982;19:187–90.Google Scholar
  186. 186.
    Chainani-Wu N. Safety and anti-inflammatory activity of curcumin, a component of turmeric (Curcuma longa). J Altern Complement Med. 2003;9:161–8.CrossRefGoogle Scholar
  187. 187.
    Joshi JV, Ghaisas S, Vaidya A, et al. Early human safety study of turmeric oil (Curcuma longa oil) administered orally in healthy volunteers. J Assoc Physicians India 2003;51:1055–60.Google Scholar
  188. 188.
    Satoskar RR, Shah SJ, Shenoy SG. Evaluation of anti-inflammatory property of curcumin (diferuloyl methane) in patients with postoperative inflammation. Int J Clin Pharmacol Ther Toxicol. 1986;24(12):651–4.Google Scholar
  189. 189.
    Kuttan R, Sudheeran PC, Joseph CD. Turmeric and curcumin as topical agents in cancer therapy. Tumouri 1987;73(1):29–31.Google Scholar
  190. 190.
    Chang AL, et al. Phase I clinical trials of curcumin a chemopreventive agents in patients with high risk of pre-malignant lesions. Anticancer Res. 2001;21:2895–900.Google Scholar
  191. 191.
    Sharma RA, et al. Pharmacodynamic and pharmacokinetic study of oral curcuma extract in patients with colorectal cancer. Clin Cancer Res. 2001;7:1844–900.Google Scholar
  192. 192.
    Hastak K, Lubri N, Jakhi S, et al. Therapeutic effect of turmeric oil and turmeric oleoresin in oral sub mucous fibrosis (SMF) in patients. Cancer Lett. 1997;116:265–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ashok D.B. Vaidya
    • 1
    • 2
    • 3
  • Ashok J. Amonkar
    • 4
  • Narendra S. Bhatt
    • 5
    • 6
  • Purvish M. Parikh
    • 7
  1. 1.ICMR Advanced Centre of Reverse Pharmacology in Traditional MedicineMRC – Kasturba Health SocietyMumbaiIndia
  2. 2.Department of Microbiology and ImmunologyDrexel University College of MedicinePhiladelphiaUSA
  3. 3.Gujarat Cancer Research InstituteAhmedabadIndia
  4. 4.Former Head of Chemotherapy DivisionTata Memorial Centre, MRC – Kasturba Health Society, Cancer Research InstituteMumbaiIndia
  5. 5.CRIA Care Pvt LtdMumbaiIndia
  6. 6.Interactive Research School for Health AffairsBharati Vidyapeeth UniversityPuneIndia
  7. 7.MRC – Kasturba Health SocietyMumbaiIndia

Personalised recommendations