Skip to main content

Mining Natural Product-Derived Molecules Against Cancer Targets: The Case of the Androgen Receptor in Prostate Cancer

  • Chapter
  • First Online:
Alternative and Complementary Therapies for Cancer
  • 1304 Accesses

Abstract

Androgen receptor (AR) signaling is critical for prostate cancer progression. This has provided the rationale for the use of androgen ablation therapy, involving either surgical or chemical castration, to reduce androgen production and antiandrogen agents to antagonize androgen activity. Flutamide, nilutamide, and bicalutamide represent the main nonsteroidal antiandrogens currently used in practice. However, their efficacy is limited by progression of prostate cancer from hormone-responsive to hormone-refractory phenotype, where cancer cells become resistant to androgen ablation therapy. The most common treatment for hormone-refractory prostate cancer (HRPC) include docetaxel-based chemotherapy, which can lead to a modest improvement in the overall survival, underscoring the urgent need for novel therapeutics for advanced prostate cancer. As the vast majority of HRPC cells overexpress AR and remain dependent on AR signaling, there are considerable ongoing efforts to identify novel AR antagonists. Several novel antiandrogens, including MDV-3100, BMS–641988 and VN/124-1, and CYP17a inhibitors such as abiraterone acetates, are under clinical trials for the management of HRPC. In this chapter, we have reviewed the current state of the development of AR antagonists, with emphasis on those derived from herbal medicinal products, including from Chinese traditional medicine. The current progress in building chemical databases of natural products has provided opportunities for mining natural products against AR by using integrative in silico tools. Reinforcement of this trend will lead to discovery of novel natural product-derived antiandrogens with effectiveness against HRPC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AR:

Androgen receptor

CML:

Chronic myelogenous leukemia

CYP17:

17α-hydroxylase/C17,20-lyase

DBD:

DNA-binding domain

DHT:

Dihydro-testosterone

3D:

Three-dimensional

H12:

Helix-12

HRPC:

Hormone-refractory prostate cancer

LBD:

Ligand-binding domain

NTD:

N-terminal domain

PSA:

Prostate-specific antigen

QCAR:

Quantitative-composition-activity relationship

TCM:

Traditional Chinese medicine

References

  1. Cancer Stat Fact Sheets/prostate. Available at http://surveillance.cancer.gov/csb/. Accessed 1 Sept 2009.

  2. Prostate Section. http://seer.cancer.gov/csr/1975_2005/results_merged/sect_23_prostate.pdf. Accessed 5 Sept 2009.

  3. Baade PD, Youlden DR, Krnjacki LJ. International epidemiology of prostate cancer: geographical distribution and secular trends. Mol Nutr Food Res. 2009;53(2):171–84.

    Article  Google Scholar 

  4. Mettlin C. Impact of screening on prostate cancer rates and trends. Microsc Res Tech. 2000;51(5):415–18.

    Article  Google Scholar 

  5. Potosky AL, Feuer EJ, Levin DL. Impact of screening on incidence and mortality of prostate cancer in the United States. Epidemiol Rev. 2001;23(1):181–6.

    Article  Google Scholar 

  6. Uzzo RG, Haas NB, Crispen PL, Kolenko VM. Mechanisms of apoptosis resistance and treatment strategies to overcome them in hormone-refractory prostate cancer. Cancer 2008;112(8):1660–71.

    Article  Google Scholar 

  7. Damber JE, Aus G. Prostate cancer. Lancet 2008;371(9625):1710–21.

    Article  Google Scholar 

  8. Huggins C, Hodges CV. Studies on prostatic cancer – I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res. 1941;1(4):293–7.

    Google Scholar 

  9. Taplin ME, Ho SM. The endocrinology of prostate cancer. J Clin Endocrinol Metab. 2001;86(8):3467–77.

    Article  Google Scholar 

  10. Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat Rev Cancer 2001;1(1):34–45.

    Article  PubMed  CAS  Google Scholar 

  11. Tannock IF, de Wit R, Berry WR, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med. 2004;351(15):1502–12.

    Article  Google Scholar 

  12. Petrylak DP, Tangen CM, Hussain MH, et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med. 2004;351(15):1513–20.

    Article  Google Scholar 

  13. Agoulnik IU, Weigel NL. Androgen receptor action in hormone-dependent and recurrent prostate cancer. J Cell Biochem. 2006;99(2):362–72.

    Article  Google Scholar 

  14. Balk SP. Androgen receptor as a target in androgen-independent prostate cancer. Urology 2002;603 Suppl 1:132–8.

    Google Scholar 

  15. Zegarra-Moro OL, Schmidt LJ, Huang HJ, Tindall DJ. Disruption of androgen receptor function inhibits proliferation of androgen-refractory prostate cancer cells. Cancer Res. 2002;62(4):1008–13.

    Google Scholar 

  16. Eder IE, Culig Z, Ramoner R, et al. Inhibition of LNCaP prostate cancer cells by means of androgen receptor antisense oligonucleotides. Cancer Gene Ther. 2000;7(7):997–1007.

    Article  PubMed  CAS  Google Scholar 

  17. Eder IE, Hoffmann J, Rogatsch H, et al. Inhibition of LNCaP prostate tumor growth in vivo by an antisense oligonucleotide directed against the human androgen receptor. Cancer Gene Ther. 2002;9(2):117–25.

    Article  Google Scholar 

  18. Chen CD, Welsbie DS, Tran C, et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med. 2004;10(1):33–9.

    Article  Google Scholar 

  19. Yuan X, Balk SP. Mechanisms mediating androgen receptor reactivation after castration. Urol Oncol. 2009;27(1):36–41.

    Article  PubMed  CAS  Google Scholar 

  20. Chen Y, Sawyers CL, Scher HI. Targeting the androgen receptor pathway in prostate cancer. Curr Opin Pharmacol. 2008;8(4):440–8.

    Article  CAS  Google Scholar 

  21. Stanbrough M, Bubley GJ, Ross K, et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res. 2006;66(5):2815–25.

    Article  Google Scholar 

  22. Reid AHM, Attard G, Barrie E, de Bono JS. CYP17 inhibition as a hormonal strategy for prostate cancer. Nat Clin Pract Urol. 2008;5(11):610–20.

    Article  Google Scholar 

  23. Armstrong AJ, George DJ. New drug development in metastatic prostate cancer. Urol Oncol – Semin Original Invest. 2008;26(4):430–7.

    Google Scholar 

  24. Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ. Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res. 2008;68(13):5469–77.

    Article  Google Scholar 

  25. Hu R, Dunn TA, Wei SZ, et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res. 2009;69(1):16–22.

    Article  PubMed  CAS  Google Scholar 

  26. Guo Z, Yang X, Sun F, et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res. 2009;69(6):2305–13.

    Google Scholar 

  27. Taplin ME, Rajeshkumar B, Halabi S, et al. Androgen receptor mutations in androgen-in dependent prostate cancer: cancer and Leukemia Group B Study 9663. J Clin Oncol. 2003;21(14):2673–8.

    Article  Google Scholar 

  28. Taplin ME. Androgen receptor: role and novel therapeutic prospects in prostate cancer. Expert Rev Anticancer Ther. 2008;8(9):1495–508.

    Article  Google Scholar 

  29. Miyamoto H, Rahman MM, Chang CS. Molecular basis for the antiandrogen withdrawal syndrome. J Cell Biochem. 2004;91(1):3–12.

    Article  PubMed  CAS  Google Scholar 

  30. Chang CY, Walther PJ, McDonnell DP. Glucocorticoids manifest androgenic activity in a cell line derived from a metastatic prostate cancer. Cancer Res. 2001;61 24:8712–17.

    Google Scholar 

  31. Krishnan AV, Zhao XY, Swami S, et al. A glucocorticoid-responsive mutant androgen receptor exhibits unique ligand specificity: therapeutic implications for androgen-independent prostate cancer. Endocrinology 2002;143(5):1889–900.

    Article  Google Scholar 

  32. Steketee K, Timmerman L, Ziel-van der Made ACJ, Doesburg P, Brinkmann AO, Trapman J. Broadened ligand responsiveness of androgen receptor mutants obtained by random amino acid substitution of H874 and mutation hot spot T877 in prostate cancer. Int J Cancer 2002;100(3):309–17.

    Article  Google Scholar 

  33. Hara T, Miyazaki J, Araki H, et al. Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome. Cancer Res. 2003;63(1):149–53.

    Google Scholar 

  34. Zhao XY, Malloy PJ, Krishnan AV, et al. Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat Med. 2000;6(6):703–6.

    Google Scholar 

  35. Matias PM, Donner P, Coelho R, et al. Structural evidence for ligand specificity in the binding domain of the human androgen receptor – implications for pathogenic gene mutations. J Biol Chem. 2000;275(34):26164–71.

    Article  Google Scholar 

  36. Sack JS, Kish KF, Wang CH, et al. Crystallographic structures of the ligand-binding domains of the androgen receptor and its T877A mutant complexed with the natural agonist dihydrotestosterone. Proc Natl Acad Sci USA 2001;98(9):4904–9.

    Article  Google Scholar 

  37. Bohl CE, Gao WQ, Miller DD, Bell CE, Dalton JT. Structural basis for antagonism and resistance of bicalutamide in prostate cancer. Proc Natl Acad Sci USA 2005;102(17):6201–6.

    Article  Google Scholar 

  38. Bohl CE, Miller DD, Chen JY, Bell CE, Dalton JT. Structural basis for accommodation of nonsteroidal ligands in the androgen receptor. J Biol Chem. 2005;280(45):37747–54.

    Article  Google Scholar 

  39. Bruno RD, Gover TD, Burger AM, Brodie AM, Njar VCO. 17 alpha-Hydroxylase/17, 20 lyase inhibitor VN/124-1 inhibits growth of androgen-independent prostate cancer cells via induction of the endoplasmic reticulum stress response. Mol Cancer Ther. 2008;7(9):2828–36.

    Article  Google Scholar 

  40. Tran C, Ouk S, Clegg NJ, et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 2009;324(5928):787–90.

    Article  Google Scholar 

  41. Newman DJ. Natural products as leads to potential drugs: an old process or the new hope for drug discovery? J Med Chem. 2008;51(9):2589–99.

    Article  Google Scholar 

  42. Itokawa H, Morris-Natschke SL, Akiyama T, Lee KH. Plant-derived natural product research aimed at new drug discovery. J Nat Med. 2008;62(3):263–80.

    Article  Google Scholar 

  43. Dictionary of Natural Product. Available at http://dnp.chemnetbase.com/. Accessed 10 Aug 2009.

  44. Ekins S, Mestres J, Testa B. In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br J Pharmacol. 2007;152(1):9–20.

    Article  PubMed  CAS  Google Scholar 

  45. Rollinger JM, Stuppner H, Langer T. Virtual screening for the discovery of bioactive natural products. Prog Drug Res. 2008;65:213–49.

    Google Scholar 

  46. Yi W, Jin YC, Zhou CG, Qu HB, Cheng YY. Discovering active compounds from mixture of natural products by data mining approach. Med Biol Eng Comput. 2008;46(6):605–11.

    Google Scholar 

  47. Cheng YY, Wang Y, Wang XW. A causal relationship discovery-based approach to identifying active components of herbal medicine. Comput Biol Chem. 2006;30(2):148–54.

    Article  Google Scholar 

  48. Harvey AL. Natural products in drug discovery. Drug Discov Today 2008;13(19–20):894–901.

    Article  PubMed  CAS  Google Scholar 

  49. Langer T, Hoffmann RD. Virtual screening: an effective tool for lead structure discovery? Curr Pharm Des. 2001;7(7):509–27.

    Article  Google Scholar 

  50. Schneider G, Bohm HJ. Virtual screening and fast automated docking methods. Drug Discov Today 2002;7(1):64–70.

    Article  PubMed  CAS  Google Scholar 

  51. Evans BE, Rittle KE, Bock MG, et al. Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J Med Chem. 1988;31(12):2235–46.

    Article  Google Scholar 

  52. Costantino L, Barlocco D. Privileged structures as leads in medicinal chemistry. Curr Med Chem. 2006;13(1):65–85.

    Article  PubMed  CAS  Google Scholar 

  53. Koch MA, Schuffenhauer A, Scheck M, et al. Charting biologically relevant chemical space: a structural classification of natural products (SCONP). Proc Natl Acad Sci USA 2005;102(48):17272–7.

    Article  Google Scholar 

  54. Schreiber SL. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 2000;287(5460):1964–9.

    Article  Google Scholar 

  55. Wender PA, Verma VA, Paxton TJ, Pillow TH. Function-oriented synthesis, step economy, and drug design. Acc Chem Res. 2008;41(1):40–9.

    Article  Google Scholar 

  56. Kaiser M, Wetzel S, Kumar K, Waldmann H. Biology-inspired synthesis of compound libraries. Cell Mol Life Sci. 2008;65(7–8):1186–201.

    Google Scholar 

  57. Tu WC, Wang SY, Chien SC, et al. Diterpenes from Cryptomeria japonica inhibit androgen receptor transcriptional activity in prostate cancer cells. Planta Med. 2007;73(13):1407–9.

    Article  Google Scholar 

  58. Zierau O, Morrissey C, Watson RWG, et al. Antiandrogenic activity of the phytoestrogens naringenin, 6-(1,1-dimethylallyl)naringenin and 8-prenylnaringenin. Planta Med. 2003;69(9):856–8.

    Google Scholar 

  59. Liu SC, Yamauchi H. Hinokitiol, a metal chelator derived from natural plants, suppresses cell growth and disrupts androgen receptor signaling in prostate carcinoma cell lines. Biochem Biophys Res Commun. 2006;351(1):26–32.

    Article  PubMed  CAS  Google Scholar 

  60. Hsu JC, Zhang J, Dev A, Wing A, Bjeldanes LF, Firestone GL. Indole-3-carbinol inhibition of androgen receptor expression and downregulation of androgen responsiveness in human prostate cancer cells. Carcinogenesis 2005;26(11):1896–904.

    Article  Google Scholar 

  61. Yam JY, Kreuter M, Drewe J. Piper cubeba targets multiple aspects of the androgen-signalling pathway. A potential phytotherapy against prostate cancer growth? Planta Med. 2008;74(1):33–8.

    Google Scholar 

  62. Jiang C, Lee HJ, Li GX, et al. Potent antiandrogen and androgen receptor activities of an Angelica gigas-containing herbal formulation: identification of decursin as a novel and active compound with implications for prevention and treatment of prostate cancer. Cancer Res. 2006;66(1):453–63.

    Article  Google Scholar 

  63. Shishodia S, Sethi G, Aggarwal BB. Curcumin: getting back to the roots. 2005;1056:206–17.

    Google Scholar 

  64. Ohtsu H, Xiao ZY, Ishida J, et al. Antitumor agents. 217. Curcumin analogues as novel androgen receptor antagonists with potential as anti-prostate cancer agents. J Med Chem. 2002;45(23):5037–42.

    Article  Google Scholar 

  65. Salvati ME, Balog A, Shan W, et al. Identification and optimization of a novel series of [2.2.1]-oxabicyclo imide-based androgen receptor antagonists. Bioorg Med Chem Lett. 2008;18(6):1910–15.

    Article  Google Scholar 

  66. McGinley PL, Koh JT. Circumventing antiandrogen resistance by molecular design. J Am Chem Soc. 2007;129:3822–23.

    Article  Google Scholar 

  67. Soderholm AA, Viiliainen J, Lehtovuori PT, et al. Computationally identified novel diphenyl- and phenylpyridine androgen receptor antagonist structures. J Chem Infor. Modeling 2008;48(9):1882–90.

    Google Scholar 

  68. Bisson WH, Cheltsov AV, Bruey-Sedano N, et al. Discovery of antiandrogen activity of nonsteroidal scaffolds of marketed drugs. PNAS 2007;104(29):11927–32.

    Article  Google Scholar 

  69. Zhou J, Geng G, Batist G, Wu JH. Syntheses and potential anti-prostate cancer activities of ionone-based chalcones. Bioorg Med Chem Lett. 2009;19:1183–6.

    Google Scholar 

  70. Zhou JM, Geng GY, Shi QW, Sauriol F, Wu JH. Design and synthesis of androgen receptor antagonists with bulky side chains for overcoming antiandrogen resistance. J Med Chem. 2009;52(17):5546–50.

    Google Scholar 

  71. Steinmetz KA, Potter JD. Vegetables, fruit, and cancer prevention: a review. J Am Diet Assoc. 1996;96(10):1027–39.

    Article  Google Scholar 

  72. Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 2006;71(10):1397–21.

    Article  Google Scholar 

  73. Janakiram NB, Cooma I, Mohammed A, Steele VE, Rao CV. β-Ionone inhibits colonic aberrant crypt foci formation in rats, suppresses cell growth, and induces retinoid X receptor-{alpha} in human colon cancer cells. Mol Cancer Ther. 2008;7(1):181–90.

    Article  Google Scholar 

  74. Duncan RE, Lau D, El-Sohemy A, Archer MC. Geraniol and beta-ionone inhibit proliferation, cell cycle progression, and cyclin-dependent kinase 2 activity in MCF-7 breast cancer cells independent of effects on HMG-CoA reductase activity. Biochem Pharmacol. 2004;68(9):1739–47.

    Article  Google Scholar 

  75. Jones S, Mo H. Poster abstracts. J Nutr. 2005;135(12):3046S.

    Google Scholar 

  76. Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A. Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct. 2000;29(1):291–325.

    Article  PubMed  CAS  Google Scholar 

  77. Vriend G. What if – a molecular modeling and drug design program. J Mol Graph 1990;8(1):52–6.

    Article  Google Scholar 

  78. Nissink JWM, Murray C, Hartshorn M, Verdonk ML, Cole JC, Taylor R. A new test set for validating predictions of protein-ligand interaction. Proteins 2002;49(4):457–71.

    Article  Google Scholar 

  79. Ghosh AK, Chapsal BD, Weber IT, Mitsuya H. Design of HIV protease inhibitors targeting protein backbone: an effective strategy for combating drug resistance. Acc Chem Res. 2008;41(1):78–86.

    Article  PubMed  CAS  Google Scholar 

  80. Gorre ME, Sawyers CL. Molecular mechanisms of resistance to STI571 in chronic myeloid leukemia. Curr Opin Hematol. 2002;9(4):303–7.

    Article  Google Scholar 

  81. Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 2004;305(5682):399–401.

    Article  PubMed  CAS  Google Scholar 

  82. Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat. Rev. Cancer 2007;7(5):345–56.

    Article  Google Scholar 

  83. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004;304(5676):1497–500.

    Article  Google Scholar 

  84. Pao W, Miller VA, Politi KA, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005;2(3):1–11.

    Article  Google Scholar 

  85. Liu B, Bernard B, Wu JH. Impact of EGFR point mutations on the sensitivity to gefitinib: insights from comparative structural analyses and molecular dynamics simulations. Proteins 2006;65(2):331–46.

    Article  Google Scholar 

  86. Godin-Heymann N, LlIkus L, Brannigan BW, et al. The T790M “gatekeeper” mutation in EGFR mediates resistance to low concentrations of an irreversible EGFR inhibitor. Mol Cancer Ther. 2008;7(4):874–9.

    Article  Google Scholar 

  87. Wissner A, Mansour TS. The development of HKI-272 and related compounds for the treatment of cancer. Arch Pharm (Weinheim) 2008;341(8):465–77.

    Article  Google Scholar 

  88. Schroder FH. Progress in understanding androgen-independent prostate cancer (AIPC): a review of potential endocrine-mediated mechanisms. Eur Urol. 2008;53(6):1129–37.

    Article  Google Scholar 

  89. Qiao S, Tang C, Jin H, Peng J, Davis D, Han N. KISTCM: knowledge discovery system for traditional Chinese medicine. Appl Intell. 2010;32(3):346–63.

    Google Scholar 

  90. Dunkel M, Fullbeck M, Neumann S, Preissner R. SuperNatural: a searchable database of available natural compounds. Nucl Acids Res. 2006;34:D678–83.

    Article  Google Scholar 

  91. Fullbeck M, Michalsky E, Dunkel M, Preissner R. Natural products: sources and databases. Nat Prod Rep. 2006;23(3):347–56.

    Google Scholar 

  92. Fang XL, Shao L, Zhang H, Wang SM. CHMIS-C: a comprehensive herbal medicine information system for cancer. J Med Chem. 2005;48(5):1481–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Hui Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wu, J.H. (2010). Mining Natural Product-Derived Molecules Against Cancer Targets: The Case of the Androgen Receptor in Prostate Cancer. In: Alaoui-Jamali, M. (eds) Alternative and Complementary Therapies for Cancer. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0020-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0020-3_26

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0019-7

  • Online ISBN: 978-1-4419-0020-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics