Advertisement

Towards an Accurate Semi-Empirical Molecular Orbital Treatment of Covalent and Non-Covalent Biological Interactions

  • Jonathan P. Mcnamara
  • Ian H. Hillier
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 7)

Abstract

Recent developments are described which have allowed computationally rapid semi-empirical molecular orbital methods to make significant advances in modelling biological interactions. Efficient strategies for obtaining the best parameters for use in models such as PM3 and AM1 are discussed. Examples of the use of such parameterised methods to understand phosphoryl transfer reactions, the conformational energetics of carbohydrates and hydrogen tunnelling in enzyme catalysed reactions are described. Recent advances in the development of suitable parameters for transition metals, particularly iron, are described, with associated applications to iron containing proteins such as rubredoxin. The recent development and use of a parameterised PM3 model which includes an empirical correction for dispersive interactions (PM3-D) which is designed to study protein structure-function relationships, is described

Keywords

Semi-empirical MO PM3 QM/MM. parameters phosphoryl transfer carbohydrate enzyme catalysis hydrogen tunnelling iron-sulfur proteins non-covalent interactions biomolecules PM3-D 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jurečka P, Šponer J, černy J, Hobza P (2006) Phys Chem Chem Phys 8:1985CrossRefGoogle Scholar
  2. 2.
    Pu J, Gao J, Truhlar DG (2006) Chem Rev 106:3140CrossRefGoogle Scholar
  3. 3.
    Holm RH, Kennepohl P, Solomon EI (1996) Chem Rev 96:2239CrossRefGoogle Scholar
  4. 4.
    Bolhuis PG, Dellago C, Geissler PL, Chandler D (2000) J Phys Condens Matter 12:A147CrossRefGoogle Scholar
  5. 5.
    Dimelow R, Bryce RA, Masters AJ, Hillier IH, Burton NA (2006) J Chem Phys 124:114113CrossRefGoogle Scholar
  6. 6.
    Tresadern G, Wang H, Faulder PF, Burton NA, Hillier IH (2003) Mol Phys 101:2775CrossRefGoogle Scholar
  7. 7.
    Alhambra C, Luz Sanchez M, Corchado J, Gao J, Truhlar DG (2001) Chem Phys Lett 347:512CrossRefGoogle Scholar
  8. 8.
    Field MJ, Basch M, Karplus M (1990) J Comput Chem 11:700CrossRefGoogle Scholar
  9. 9.
    Gao J, Xia X (1992) Science 258:631CrossRefGoogle Scholar
  10. 10.
    Maseras F, Morokuma K (1995) J Comput Chem 16:1170CrossRefGoogle Scholar
  11. 11.
    Vreven T, Morokuma K, Farkas O, Schlegel HB, Frisch MJ (2003) J Comput Chem 24:760CrossRefGoogle Scholar
  12. 12.
    Senn MH, Thiel W (2007) Curr Opin Chem Biol 11:182CrossRefGoogle Scholar
  13. 13.
    Werner HJ, Manby FR, Knowles PJ (2003) J Chem Phys 118:8149CrossRefGoogle Scholar
  14. 14.
    Morgado C, McNamara JP, Hillier IH, Sundararajan M (2005) Mol Phys 103:905CrossRefGoogle Scholar
  15. 15.
    Clark T (2000) J Mol Struct (Theochem) 530:1CrossRefGoogle Scholar
  16. 16.
    Pople JA, Segal GA (1965) J Chem Phys 43:S136CrossRefGoogle Scholar
  17. 17.
    Pople JA, Beveridge DL, Dobosh PA (1967) J Chem Phys 47:2026CrossRefGoogle Scholar
  18. 18.
    Dewar MJS, Thiel W (1977) Theor Chim Acta 46:89CrossRefGoogle Scholar
  19. 19.
    Dewar MJS, Thiel W (1977) J Am Chem Soc 99:4899CrossRefGoogle Scholar
  20. 20.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1993) J Am Chem Soc 115:5348CrossRefGoogle Scholar
  21. 21.
    Stewart JJP (1989) J Comput Chem 10:209CrossRefGoogle Scholar
  22. 22.
    Stewart JJP (2004) J Mol Model 10:155CrossRefGoogle Scholar
  23. 23.
    Thiel W, Voityuk AA (1992) Theor Chim Acta 81:391CrossRefGoogle Scholar
  24. 24.
    Thiel W, Voityuk AA (1996) Theor Chim Acta 93:315Google Scholar
  25. 25.
    Voityuk AA, Rösch N (2000) J Phys Chem A 104:4089CrossRefGoogle Scholar
  26. 26.
    McNamara JP, Sundararajan M, Hillier IH, Ge J, Campbell A, Morgado C (2006) J Comput Chem 27:1307CrossRefGoogle Scholar
  27. 27.
    Rossi I, Truhlar DG (1995) Chem Phys Lett 233:231CrossRefGoogle Scholar
  28. 28.
    Brothers EN, Merz Jr KM (2002) J Phys Chem B 106:2779CrossRefGoogle Scholar
  29. 29.
    Hutter MC, Reimers JR, Hush NS (1998) J Phys Chem B 102:8080CrossRefGoogle Scholar
  30. 30.
    Cundari TR, Deng J, Fu W (2000) Int J Quantum Chem 77:421CrossRefGoogle Scholar
  31. 31.
    Sundararajan M, McNamara JP, Hillier IH, Wang H, Burton NA (2005) Chem Phys Lett 404:9CrossRefGoogle Scholar
  32. 32.
    McNamara JP, Sundararajan M, Hillier IH (2005) J Mol Graph Model 24:128CrossRefGoogle Scholar
  33. 33.
    McNamara JP, Berrigan SD, Hillier IH (2007) J Chem Theory Comput 3:1014CrossRefGoogle Scholar
  34. 34.
    Giese TJ, Sherer EC, Cramer CJ, York DM (2005) J Chem Theory Comput 1:1275CrossRefGoogle Scholar
  35. 35.
    Nam K, Cui Q, Gao J, York DM (2007) J Chem Theory Comput 3:486CrossRefGoogle Scholar
  36. 36.
    Menegon Arantes G, Loos M (2006) Phys Chem Chem Phys 8:347CrossRefGoogle Scholar
  37. 37.
    Csonka GI, Áán JG (1997) J Mol Struct (Theochem) 393:31CrossRefGoogle Scholar
  38. 38.
    Repasky MP, Chandrasekhar J, Jorgensen WL (2002) J Comput Chem 23:1601CrossRefGoogle Scholar
  39. 39.
    Winget P, Horn AHC, Selçuki C, Martin B, Clark T (2003) J Mol Model 9:408CrossRefGoogle Scholar
  40. 40.
    Winget P, Clark T (2005) J Mol Model 11:439CrossRefGoogle Scholar
  41. 41.
    Equation 9 differs from the one given in reference [25]; in the original publication, the factor of “2” was inadvertently omitted.Google Scholar
  42. 42.
    Dewar MJS, Jie C, Zoebisch EG (1988) Organometallics 7:513CrossRefGoogle Scholar
  43. 43.
    McNamara JP, Hillier IH (2007) Phys Chem Chem Phys 9:2362CrossRefGoogle Scholar
  44. 44.
    Tejero I, González-Lafont Á, Lluch JM (2007) J Comput Chem 28:997CrossRefGoogle Scholar
  45. 45.
    Jackson MD, Denu JM (2001) Chem Rev 101:2313CrossRefGoogle Scholar
  46. 46.
    Westheimer FH (1987) Science 235:1173CrossRefGoogle Scholar
  47. 47.
    Xu D, Guo H, Liu Y, York DM (2005) J Phys Chem B 109:13827CrossRefGoogle Scholar
  48. 48.
    Chen X, Zhan CG (2004) J Phys Chem A 108:6407CrossRefGoogle Scholar
  49. 49.
    Menegon Arantes G, Chaimovich H (2005) J Phys Chem A 109:5625CrossRefGoogle Scholar
  50. 50.
    Menegon G, Loos M, Chaimovich H (2002) J Phys Chem A 106:9078CrossRefGoogle Scholar
  51. 51.
    Liu Y, Gregersen BA, Hengge A, York DM (2006) Biochemistry 45:10043CrossRefGoogle Scholar
  52. 52.
    Liu Y, Gregersen BA, Lopez X, York DM (2005) J Phys Chem B 109:19987CrossRefGoogle Scholar
  53. 53.
    López CS, Faza ON, de Lera AR, York DM (2005) Chem Eur J 11:2081CrossRefGoogle Scholar
  54. 54.
    Liu Y, Lopez X, York DM (2005) Chem Commun 31:3909CrossRefGoogle Scholar
  55. 55.
    Lopez X, Dejaegere A, Leclerc F, York DM, Karplus M (2006) J Phys Chem B 110:11525CrossRefGoogle Scholar
  56. 56.
    Hart JC, Burton NA, Hillier IH, Harrison MJ, Jewsbury P (1997) Chem Commun 15:1431CrossRefGoogle Scholar
  57. 57.
    Hart JC, Hillier IH, Burton NA, Sheppard DW (1998) J Am Chem Soc 120:13535CrossRefGoogle Scholar
  58. 58.
    Hart JC, Sheppard DW, Hillier IH, Burton NA (1999) Chem Commun 1:79CrossRefGoogle Scholar
  59. 59.
    Valiev M, Kawai R, Adams JA, Weare JH (2003) J Am Chem Soc 125:9926CrossRefGoogle Scholar
  60. 60.
    Truhlar DG, Garrett BC, Klippenstein SJ (1996) J Phys Chem 100:12771CrossRefGoogle Scholar
  61. 61.
    Zhang ZY, Wu L, Chen L (1995) Biochemistry 34:16088CrossRefGoogle Scholar
  62. 62.
    Thiel W, Voityuk AA (1996) J Phys Chem 100:616CrossRefGoogle Scholar
  63. 63.
    Weis WI (1997) Curr Opin Struct Biol 7:624CrossRefGoogle Scholar
  64. 64.
    Norskov-Lauritsen L, Allinger NL (1984) J Comput Chem 5:326CrossRefGoogle Scholar
  65. 65.
    Kony D, Damm W, Stoll S, van Gunsteren WF (2002) J Comput Chem 23:1416CrossRefGoogle Scholar
  66. 66.
    McNamara JP, Muslim AM, Abdel-Aal H, Wang H, Mohr M, Hillier IH, Bryce RA (2004) Chem Phys Lett 394:429CrossRefGoogle Scholar
  67. 67.
    Stern HA, Kaminski GA, Banks JL, Zhou R, Berne BJ, Friesner RA (1999) J Phys Chem B 103:4730CrossRefGoogle Scholar
  68. 68.
    Woods RJ, Szarek WA, Smith VH (1991) Chem Commun 5:334Google Scholar
  69. 69.
    Barrows SE, Dulles FJ, Cramer CJ, French AD, Truhlar DG (1995) Carbohydr Res 276:219CrossRefGoogle Scholar
  70. 70.
    Apprell M, Strati G, Willett JL, Momany FA (2004) Carbohydr Res 339:537CrossRefGoogle Scholar
  71. 71.
    Reiling S, Schlenkrich M, Brickmann J (1996) J Comput Chem 17:450CrossRefGoogle Scholar
  72. 72.
    Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WC, Kollman PA (2006) AMBER 9, University of California, San FranciscoGoogle Scholar
  73. 73.
    Damm W, Frontera A, Tirado-Rives J, Jorgensen WL (1997) J Comput Chem 18:1955CrossRefGoogle Scholar
  74. 74.
    Muslim AM, Bryce RA (2004) Chem Phys Lett 388:473CrossRefGoogle Scholar
  75. 75.
    Bell RP (1980) The tunnel effect in chemistry. Chapman and Hall, LondonGoogle Scholar
  76. 76.
    Billeter SR, Webb SP, Agarwal PK, Iordanov T, Hammes-Schiffer S (2001) J Am Chem Soc 123:11262CrossRefGoogle Scholar
  77. 77.
    Kohen A, Klinman JP (1998) Acc Chem Res 31:397CrossRefGoogle Scholar
  78. 78.
    Basran J, Sutcliffe MJ, Scrutton NS (1999) Biochemistry 38:3218CrossRefGoogle Scholar
  79. 79.
    Basran J, Patel S, Sutcliffe MJ, Scrutton NS (2001) J Biol Chem 276:6234CrossRefGoogle Scholar
  80. 80.
    Northrop DB, Cho YK (2000) Biochemistry 39:2406CrossRefGoogle Scholar
  81. 81.
    Tresadern G, McNamara JP, Mohr M, Wang H, Burton NA, Hillier IH (2002) Chem Phys Lett 358:489CrossRefGoogle Scholar
  82. 82.
    Truhlar DG, Garrett BC (1980) Acc Chem Res 13:440CrossRefGoogle Scholar
  83. 83.
    Truhlar DG, Isaacson AD, Garrett BC (1985) Generalised transition state theory. In: Baer M (ed) Theory of Chemical Reaction Dynamics, Vol 4. CRC, Boca Raton, p 65Google Scholar
  84. 84.
    Liu YP, Lynch GC, Truong TN, Lu DH, Truhlar DG, Garrett BC (1993) J Am Chem Soc 115:2408CrossRefGoogle Scholar
  85. 85.
    Allison TC, Truhlar DG (1998) Testing the accuracy of practical semiclassical methods: variational transition state theory with optimized multidimensional tunnelling. In: Thompson DL (ed) Modern Methods for Multidimensional Dynamics Computations in Chemistry. World Scientific, Singapore, p 618Google Scholar
  86. 86.
    Fernandez-Ramos A, Ellingson BA, Garrett BC, Truhlar DG (2007) Variational transition state theory with multidimensional tunneling. In: Lipkowitz KB, Cundari TR, Boyd DB (eds) Reviews in Computational Chemistry, Vol 23. Wiley-VCH, New York, p 125CrossRefGoogle Scholar
  87. 87.
    Skodje RT, Truhlar DG, Garrett BC (1981) J Phys Chem 85:3019CrossRefGoogle Scholar
  88. 88.
    Harrison MJ, Burton NA, Hillier IH (1997) J Am Chem Soc 119:12285CrossRefGoogle Scholar
  89. 89.
    Warshell A, Levitt M (1976) J Mol Biol 103:227CrossRefGoogle Scholar
  90. 90.
    Singh UC, Kollman PA (1986) J Comp Chem 7:718CrossRefGoogle Scholar
  91. 91.
    Tresadern G, Faulder PF, Gleeson P, Tai Z, MacKenzie G, Burton NA, Hillier IH (2003) Theor Chem Acc 109:108Google Scholar
  92. 92.
    Shearer GL, Kim K, Lee KM, Wang CK, Plapp BV (1993) Biochemistry 32:11186CrossRefGoogle Scholar
  93. 93.
    Bahnson BJ, Klinman JP (1995) Methods Enzymol 249:373CrossRefGoogle Scholar
  94. 94.
    Jonsson T, Glickman MH, Sun S, Klinman JP (1996) J Am Chem Soc 118:10319CrossRefGoogle Scholar
  95. 95.
    Glickman MH, Klinman JP (1996) Biochemistry 35:12882CrossRefGoogle Scholar
  96. 96.
    Minor W, Steczko J, Stec B, Otwinowski Z, Bolin JT, Walter R, Axelrod B (1996) Biochemistry 35:10687CrossRefGoogle Scholar
  97. 97.
    Finnen DC, Pinkerton AA, Dunham WR, Sands RH, Funk MO (1991) Inorg Chem 30:3960CrossRefGoogle Scholar
  98. 98.
    HYPERCHEM (TM), Hypercube Inc., Gainesville, Florida, USAGoogle Scholar
  99. 99.
    Stewart JJP (2001) MOPAC 2002, Fujitsu Limited, Tokyo, JapanGoogle Scholar
  100. 100.
    Lovenberg W (1977) Iron-sulfur proteins. Academic, New YorkGoogle Scholar
  101. 101.
    Niu S, Wang XB, Nicolas JA, Wang LS, Ichiye T (2003) J Phys Chem A 107:2898CrossRefGoogle Scholar
  102. 102.
    Wang XB, Wang LS (2000) J Chem Phys 112:6959CrossRefGoogle Scholar
  103. 103.
    Yang X, Wang XB, Fu YJ, Wang LS (2003) J Phys Chem 107:1703Google Scholar
  104. 104.
    Mohr M, McNamara JP, Wang H, Rajeev SA, Ge J, Morgado CA, Hillier IH (2003) Faraday Discuss 124:413CrossRefGoogle Scholar
  105. 105.
    Lane RW, Ibers JA, Frankel RB, Papefthymiou GC, Holm RH (1977) J Am Chem Soc 91:84CrossRefGoogle Scholar
  106. 106.
    Kennopohl P, Solomon EI (2003) Inorg Chem 42:689CrossRefGoogle Scholar
  107. 107.
    Case DA, Pearlman DA, Caldwell JW, Cheatham III TE, Wang J, Ross WS, Simmerling CL, Darden TA, Merz KM, Stanton RV, Cheng AL, Vincent JJ, Crowley M, Tsui V, Gohlke H, Radmer RJ, Duan Y, Pitera J, Massova I, Seibel GL, Singh UC, Winer PK, Kollman PA (2002) AMBER 7, University of California, San FranciscoGoogle Scholar
  108. 108.
    Xiao Z, Lavery MJ, Ayhan M, Scrofani SDB, Wilce MCJ, Guss JM, Tregloan PA, George GN, Wedd AG (1998) J Am Chem Soc 120:4135CrossRefGoogle Scholar
  109. 109.
    Dauter Z, Wilson KS, Sieker LC, Moulis JM, Meyer J (1996) Proc Natl Acad Sci USA 93:8836CrossRefGoogle Scholar
  110. 110.
    Sigfridsson E, Olsson MHH, Ryde U (2001) Inorg Chem 40:2509CrossRefGoogle Scholar
  111. 111.
    Tard C, Liu X, Ibrahim SK, Bruschi M, De Gioia L, Davies SC, Yang X, Wang LS, Sawers G, Pickett CJ (2005) Nature 433:610CrossRefGoogle Scholar
  112. 112.
    Torres RA, Lovell T, Noodleman L, Case DA (2003) J Am Chem Soc 125:1923CrossRefGoogle Scholar
  113. 113.
    Meunier B, de Visser SP, Shaik S (2004) Chem Rev 104:3947CrossRefGoogle Scholar
  114. 114.
    Groves JT, Hang YZ (1995) Models and mechanics of cytochrome p-450 action. In: Ortiz de Montellano PR (ed) Cytochrome p-450: structure, mechanism and biochemistry, 2nd edn Plenum, New York, p 3Google Scholar
  115. 115.
    Shaik S, de Visser SP, Oligiaro F, Schwarz H, Schröder D (2002) Curr Opin Chem Biol 6:556CrossRefGoogle Scholar
  116. 116.
    de Visser SP, Ogliaro F, Sharma PK, Shaik S (2002) J Am Chem Soc 124:11809CrossRefGoogle Scholar
  117. 117.
    Manchester JI, Dinnocenzo JP, Higgins LA, Jones JP (1997) J Am Chem Soc 119:5069CrossRefGoogle Scholar
  118. 118.
    Grimme S (2004) J Comput Chem 25:1463CrossRefGoogle Scholar
  119. 119.
    Zhao Y, Truhlar DG (2007) J Chem Theory Comput 3:289CrossRefGoogle Scholar
  120. 120.
    Zhao Y, Truhlar DG (2005) J Phys Chem A 109:5656CrossRefGoogle Scholar
  121. 121.
    Zhao Y, Truhlar DG (2005) Phys Chem Chem Phys 7:2701CrossRefGoogle Scholar
  122. 122.
    Grimme S (2006) J Comput Chem 27:1787CrossRefGoogle Scholar
  123. 123.
    Valdés H, Řeha D, Hobza P (2006) J Phys Chem B 110:6385CrossRefGoogle Scholar
  124. 124.
    Dobés P, Otyepka M, Strnad M, Hobza P (2006) Chem Eur J 12:4297CrossRefGoogle Scholar
  125. 125.
    Adamo C, Barone V (1998) J Chem Phys 108:664CrossRefGoogle Scholar
  126. 126.
    Perdew J, Burke K, Wang Y (1996) Phys Rev B: Condens Matter Mater Phys 54:16533Google Scholar
  127. 127.
    Easton RE, Giesen DJ, Welch A, Cramer CJ, Truhlar DG (1996) Theor Chem Acc 93:281CrossRefGoogle Scholar
  128. 128.
    Morgado C, Vincent MA, Hillier IH, Shan X (2007) Phys Chem Chem Phys 9:448CrossRefGoogle Scholar
  129. 129.
    Anthony J, Grimme S (2006) Phys Chem Chem Phys 8:5287CrossRefGoogle Scholar
  130. 130.
    Jurečka P, Černy J, Hobza P, Salahub DR (2007) J Comput Chem 28:555CrossRefGoogle Scholar
  131. 131.
    Vondrášek J, Bendová L, Klusák V, Hobza P (2005) J Am Chem Soc 127:2615CrossRefGoogle Scholar
  132. 132.
    Shaik S, Kumar D, de Visser SP, Altun A, Thiel W (2005) Chem Rev 105:2279CrossRefGoogle Scholar
  133. 133.
    Sundararajan M, Surendran R, Hillier IH (2005) Chem Phys Lett 418:92Google Scholar
  134. 134.
    Rosta E, Klähn M, Warshel A (2006) J Phys Chem B 110:2934CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jonathan P. Mcnamara
    • 1
  • Ian H. Hillier
    • 1
  1. 1.School of ChemistryUniversity of ManchesterManchesterUK

Personalised recommendations