Comparison Of Reaction Barriers In Energy And Free Energy For Enzyme Catalysis

  • G. Andrés CisnerosEmail author
  • Weitao Yang
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 7)


Reaction paths on potential energy surfaces obtained from QM/MM calculations of enzymatic or solution reactions depend on the starting structure employed for the path calculations. The free energies associated with these paths should be more reliable for studying reaction mechanisms, because statistical averages are used. To investigate this, the role of enzyme environment fluctuations on reaction paths has been studied with an ab initio QM/MM method for the first step of the reaction catalyzed by 4-oxalocrotonate tautomerase (4OT). Four minimum energy paths (MEPs) are compared, which have been determined with two different methods. The first path (path A) has been determined with a procedure that combines the nudged elastic band (NEB) method and a second order parallel path optimizer recently developed in our group. The second path (path B) has also been determined by the combined procedure, however, the enzyme environment has been relaxed by molecular dynamics (MD) simulations. The third path (path C) has been determined with the coordinate driving (CD) method, using the enzyme environment from path B. We compare these three paths to a previously determined path (path D) determined with the CD method. In all four cases the QM/MM–FE method (Y. Zhang et al., JCP, 112, 3483) was employed to obtain the free energy barriers for all four paths. In the case of the combined procedure, the reaction path is approximated by a small number of images which are optimized to the MEP in parallel, which results in a reduced computational cost. However, this does not allow the FEP calculation on the MEP. In order to perform FEP calculations on these paths, we introduce a modification to the NEB method that enables the addition of as many extra images to the path as needed for the FEP calculations. The calculated potential energy barriers show differences in the activation barrier between the calculated paths of as much as 5.17 kcal/mol. However, the largest free energy barrier difference is 1.58 kcal/mol. These results show the importance of the inclusion of the environment fluctuation in the calculation of enzymatic activation barriers


QM/MM 4-oxalocrotonate tautomerase Free energy Perturbation Enzyme catalysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wolfenden R, Snyder M (2001) Acc Chem Res 34: 938CrossRefGoogle Scholar
  2. 2.
    Villa J, Warshel A (2001) J Phys Chem B 105: 7887CrossRefGoogle Scholar
  3. 3.
    Kollman P et al. (2001) Acc Chem Res 34: 72CrossRefGoogle Scholar
  4. 4.
    Warshel A (2002) Acc Chem Res 35: 385CrossRefGoogle Scholar
  5. 5.
    Gao J, Truhlar D (2002) Ann Rev Phys Chem 53: 467CrossRefGoogle Scholar
  6. 6.
    Monard G, Prat-Resina X, González-Lafont A, Lluch J (2003) Int J Quantum Chem 93: 229CrossRefGoogle Scholar
  7. 7.
    Warshel A (2003) Annu Rev Biophys Biomol Struct 32: 425CrossRefGoogle Scholar
  8. 8.
    Hermann JC, Ridder L, Höltje H-D, Mulholland AJ (2006) Org Biomol Chem 4: 206CrossRefGoogle Scholar
  9. 9.
    Zhang Y (2006) Theo Chem Acc 116: 43CrossRefGoogle Scholar
  10. 10.
    Senn H, Thiel W (2007) “QM/MM methods for biological systems” in Atomistic approachs in modern biology, Vol. 268 of Topics in Current Chemistry, Springer Berlin/Heidelberg, Berlin, Germany, pp 173–290CrossRefGoogle Scholar
  11. 11.
    Hu H, Yang W (2008) Ann Rev Phys Chem 59: 573CrossRefGoogle Scholar
  12. 12.
    Warshel A, Levitt M (1977) J Mol Biol 103: 227CrossRefGoogle Scholar
  13. 13.
    Zhang Y, Liu H, Yang W (2000) J Chem Phys 112: 3483CrossRefGoogle Scholar
  14. 14.
    Jorgensen W (1989) Acc Chem Res 22: 184CrossRefGoogle Scholar
  15. 15.
    Stanton R, Perakyla M, Bakowies D, Kollman P (1998) J Am Chem Soc 120: 3448CrossRefGoogle Scholar
  16. 16.
    Hu H, Lu Z, Yang W (2007) J Chem Theo Comp 3: 309Google Scholar
  17. 17.
    Hu H et al. (2008) J Chem Phys 128: 034105CrossRefGoogle Scholar
  18. 18.
    Wang S, Hu P, Zhang Y (2007) J Phys Chem B 111: 3758CrossRefGoogle Scholar
  19. 19.
    Williams I, Maggiora G (1982) J Mol Struct 89: 365CrossRefGoogle Scholar
  20. 20.
    Jónsson H, Mills G, Jacobsen K (1998) In: Berne BJ, Ciccotti G, Coker DF (eds) “Nudged Elastic Band Method”, in Classical and quantum dynamics in condensed phase simulations, World Scientific, Singapore, pp 387–404Google Scholar
  21. 21.
    Henkelman G, Jónsson H (1999) J Chem Phys 111: 7010CrossRefGoogle Scholar
  22. 22.
    Henkelman G, Jónsson H (2000) J Chem Phys 113: 9978CrossRefGoogle Scholar
  23. 23.
    Maragakis P et al. (2002) J Chem Phys 117: 4651CrossRefGoogle Scholar
  24. 24.
    Jhih-Wei C, Trout B, Brooks B (2003) J Chem Phys 119: 12708CrossRefGoogle Scholar
  25. 25.
    Liu H, Lu Z, Cisneros GA, Yang W (2004) J Chem Phys 121: 697CrossRefGoogle Scholar
  26. 26.
    Ayala P, Schlegel H (1997) J Chem Phys 107: 375CrossRefGoogle Scholar
  27. 27.
    Cisneros GA, Liu H, Lu Z, Yang W (2005) J Chem Phys 122: 114502CrossRefGoogle Scholar
  28. 28.
    Burger SK, Yang W (2006) J Chem Phys 124: 054109CrossRefGoogle Scholar
  29. 29.
    Burger SK, Yang W (2006) J Chem Phys 124: 224108CrossRefGoogle Scholar
  30. 30.
    Woodcock HL et al. (2003) Theo Chem Acc 109: 140Google Scholar
  31. 31.
    Elber R, Karplus M (1987) Chem Phys Lett 139: 375CrossRefGoogle Scholar
  32. 32.
    Harris T et al. (1999) Biochemistry 38: 12343CrossRefGoogle Scholar
  33. 33.
    Cisneros GA, Liu H, Zhang Y, Yang W (2003) J Am Chem Soc 134: 10348Google Scholar
  34. 34.
    Cisneros GA et al. (2004) Biochemistry 43: 6885CrossRefGoogle Scholar
  35. 35.
    Cisneros GA et al. (2006) J Phys Chem A 110: 700CrossRefGoogle Scholar
  36. 36.
    Tuttle T, Keinan E, Thiel W (2006) J Phys Chem B 110: 19685CrossRefGoogle Scholar
  37. 37.
    Besler BH, Merz KM Jr, Kollman P (1990) J Comp Chem 11: 431CrossRefGoogle Scholar
  38. 38.
    Zwanzig RW (1954) J Chem Phys 22: 1420CrossRefGoogle Scholar
  39. 39.
    Zhang Y, Lee T, Yang W (1999) J Chem Phys 110: 46CrossRefGoogle Scholar
  40. 40.
    Lu Z, Yang W (2004) J Chem Phys 121: 89CrossRefGoogle Scholar
  41. 41.
    Zhang Y, Liu H, Yang W (2002) In: Schlick T, Gan HH (eds) “Ab Initio QM/MM and Free Energy Calculations of Enzyme Reactions”, in Computational Methods for Macromolecules–Challenges and Applications, Springer Verlag, Heidelberg, Germany, pp 332–354Google Scholar
  42. 42.
    Frisch MJ et al. (1998) Gaussian 98, Revision A.8, Gaussian, Inc., Pittsburgh PAGoogle Scholar
  43. 43.
    Ponder J (1998) TINKER, Software Tools for Molecular Design, Version 3.6: the most updated version for the TINKER program can be obtained from J.W. Ponder’s site at University, St. Louis
  44. 44.
    Cornell WD et al. (1995) J Am Chem Soc 117: 5179CrossRefGoogle Scholar
  45. 45.
    Jorgensen W et al. (1983) J Chem Phys 79: 926CrossRefGoogle Scholar
  46. 46.
    van Gunsteren W et al. (1984) J Comp Chem 5: 272CrossRefGoogle Scholar
  47. 47.
    Ryckaert J, Ciccotti G, Berendsen H (1977) J Comp Phys 23: 327CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Laboratory of Structural BiologyNational Institute of Environmental Health SciencesUSA
  2. 2.Department of ChemistryDuke UniversityDurhamUSA

Personalised recommendations