Advertisement

Modeling Protonation Equilibria In Biological Macromolecules

  • Jana Khandogin
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 7)

Abstract

The stability and function of proteins are dependent on the charge states. For more than a decade, theoretical methods for the prediction of protonation equilibria in proteins have been based on a macroscopic description in which the dielectric response of protein to the fluctuating environment is modeled implicitly through an effective dielectric constant. Recently, constant pH molecular dynamics methods have been developed, which allow for an explicit coupling between the conformational dynamics and protonation equilibria in proteins. Of particular interest is the continuous constant pH method based on λ dynamics and GB implicit models. This method has enabled accurate and robust pK a predictions for proteins, and simulations of pH-coupled protein folding from first principles

Keywords

Molecular dynamics pKa Protein folding pH-dependent conformational change 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexov EG, Gunner MR (1997) Incorporating protein conformational flexibility into the calculation of pH-dependent protein properties. Biophys J 72:2075–2093.CrossRefGoogle Scholar
  2. 2.
    Antosiewicz J, McCammon JA, Gilson MK (1994) Prediction of pH-dependent properties of proteins. J Mol Biol 238:415–436.CrossRefGoogle Scholar
  3. 3.
    Baptista M (2002) Comment on “Explicit-solvent molecular dynamics simulation at constant pH: Methodology and application to small amines”. J Chem Phys 116:7766–7768.CrossRefGoogle Scholar
  4. 4.
    Baptista M, Teixeira VH, Soares CM (2002) Constant-pH molecular dynamics using stochastic titration. J Chem Phys 117:4184–4200.CrossRefGoogle Scholar
  5. 5.
    Bashford D (1997) Scientific Computing in Object-Oriented Parallel Environments: Lecture Notes in Computer Science, volume 1343, chapter An object-oriented programming suite for electrostatic effects in biological molecules. Springer, Berlin, pp 233–240.Google Scholar
  6. 6.
    Bashford D (2004) Macroscopic electrostatic models for protonation states in proteins. Front Bioscience 9:1082–1099.CrossRefGoogle Scholar
  7. 7.
    Bashford D, Gerwert K (1992) Electrostatic calculations of the pK a values of ionizable groups in bacteriorhodopsin. J Mol Biol 224:473–486.CrossRefGoogle Scholar
  8. 8.
    Bashford D, Karplus M (1990) pK a s of ionizable groups in proteins: Atomic detail from a continuum electrostatic model. Biochemistry 29:10219–10225.CrossRefGoogle Scholar
  9. 9.
    Belevich I, Verkhovsky MI, Wikström M (2006) Proton-coupled electron transfer drives the proton pump of cytochrome c oxidase. Nature 440:829–832.CrossRefGoogle Scholar
  10. 10.
    Berendsen HJC, Postma JPM, van Gunsteren WF, Dinola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690.CrossRefGoogle Scholar
  11. 11.
    Bierzynski, Kim PS, Baldwin RL (1982) A salt bridge stabilizes the helix formed by isolated C-peptide of RNase A. Proc Natl Acad Sci USA 79:2470–2474.CrossRefGoogle Scholar
  12. 12.
    Bone S, Pethig R (1985) Dielectric studies of protein hydration and hydration-induced flexibility. J Mol Biol 181:323–326.CrossRefGoogle Scholar
  13. 13.
    Börjesson U, Hünenberger PH (2001) Explicit-solvent molecular dynamics simulation at constant pH: Methodology and application to small amines. J Chem Phys 114(22):9706–9719.CrossRefGoogle Scholar
  14. 14.
    Börjesson U, Hünenberger PH (2004) pH-dependent stability of a decalysine α-helix studied by explicit-solvent molecular dynamics simulations at constant pH. J Phys Chem B 108:13551–13559.CrossRefGoogle Scholar
  15. 15.
    Brooks R, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) Charmm: A program for macromolecular energy minimization and dynamics calculations. J Comput Chem 4:187–217.CrossRefGoogle Scholar
  16. 16.
    Bürgi R, Kollman PA, van Gunsteren WF (2002) Simulating proteins at constant pH: An approach combining molecular dynamics and Monte Carlo simulation. Proteins 47:469–480.CrossRefGoogle Scholar
  17. 17.
    Chen J, Im W, Brooks CL III (2006) Balancing solvation and intramolecular interactions: Toward a consistent generalized Born force field. J Am Chem Soc 128:3728–3736.CrossRefGoogle Scholar
  18. 18.
    Chen J, Brooks CL III, Khandogin J (2008) Recent advances in implicit solvent based methods for biomolecular simulations. Curr Opin Struct Biol 18:140–148.Google Scholar
  19. 19.
    Chipman M (2002) Computation of pKa from Dielectric Continuum Theory. J Phys Chem A 106: 7413–7422.CrossRefGoogle Scholar
  20. 20.
    Cho J-H, Raleigh DP (2005) Mutational analysis demonstrates that specific electrostatic interactions can play a key role in the denatured state ensemble of proteins. J Mol Biol 353:174–185.CrossRefGoogle Scholar
  21. 21.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092.CrossRefGoogle Scholar
  22. 22.
    Davis ME, Madura JD, Luty BA, McCammon JA (1991) Electrostatics and diffusion of molecules in solution: Simulations with the University of Houston Brownian dynamics program. Comput Phys Commun 62:187–197.CrossRefGoogle Scholar
  23. 23.
    Del Buono GS, Figueirido FE, Levy RM (1994) Intrinsic pKas of ionizable residues in proteins: An explicit solvent calculation for lysozyme. Proteins 20:85–97.CrossRefGoogle Scholar
  24. 24.
    Dillet V, Dyson HJ, Bashford D (1998) Calculations of electrostatic interactions and pKas in the active site of Escherichia coli thioredoxin. Biochemistry 37:10298–10306.CrossRefGoogle Scholar
  25. 25.
    Dlugosz M, Antosiewicz JM (2004) Constant-pH molecular dynamics simulations: A test case of succinic acid. Chem Phys 302:161–170.CrossRefGoogle Scholar
  26. 26.
    Dlugosz M, Antosiewicz JM (2005) Effects of solute-solvent proton exchange on polypeptide chain dynamics: A constant-pH molecular dynamics study. J Phys Chem B 109:13777–13784.CrossRefGoogle Scholar
  27. 27.
    Dlugosz M, Antosiewicz JM, Robertson AD (2004) Constant-pH molecular dynamics study of protonation-structure relationship in a heptapeptide derived from ovomucoid third domain. Phys Rev E 69:021915.CrossRefGoogle Scholar
  28. 28.
    Edgcomb SP, Murphy KP (2002) Variability in the pKa of histidine side-chains correlates with burial within proteins. Proteins 49:1–6.CrossRefGoogle Scholar
  29. 29.
    Feig M, Karanicolas J, Brooks CL, III (2004) MMTSB tool set: Enhanced sampling and multiscale modeling methods for applications in structure biology. J Mol Graph Model 22:377–395.CrossRefGoogle Scholar
  30. 30.
    Feig M, Onufriev A, Lee MS, Im W, Case DA, Brooks CL III (2004) Performance comparison of generalized born and poisson methods in the calculation of electrostatic solvation energies for protein structures. J Comput Chem 25:265–284.CrossRefGoogle Scholar
  31. 31.
    Forsyth WR, Antosiewicz JM, Robertson AD (2002) Empirical relationships between protein structure and carboxyl pK a values in proteins. Proteins 48:388–403.CrossRefGoogle Scholar
  32. 32.
    García-Moreno EB, Fitch CA (2004) Structural interpretation of pH and salt-dependent processes in proteins with computational methods. Methods Enzymol 380:20–51.CrossRefGoogle Scholar
  33. 33.
    Georgescu RE, Alexov EG, Gunner MR (2002) Combining conformational flexibility and continuum electrostatics for calculating pKas in proteins. Biophys J 83:1731–1748.CrossRefGoogle Scholar
  34. 34.
    Grey MJ,f Tang Y, Alexov E, McKnight CJ, Raleigh DP, Palmer AG III (2006) Characterizing a partially folded intermediate of the villin headpiece domain under non-denaturing conditions: Contribution of His41 to the pH-dependent stability of the N-terminal subdomain. J Mol Biol 355: 1078–1094.CrossRefGoogle Scholar
  35. 35.
    Harvey SC, Hoekstra P (1972) Dielectric relaxation spectra of water adsorbed on lysozyme. J Phys Chem 76:2987–2994.CrossRefGoogle Scholar
  36. 36.
    Hunte C, Screpanti E, Venturi M, Rimon A, Padan E, Michel H (2005) Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435:1197–1202.CrossRefGoogle Scholar
  37. 37.
    Im W, Lee MS, Brooks CL III (2003) Generalized Born model with a simple smoothing function. J Comput Chem 24:1691–1702.CrossRefGoogle Scholar
  38. 38.
    Im W, Chen J, Brooks CL III (2006) Peptide and protein folding and conformational equilibria: Theoretical treatment of electrostatics and hydrogen bonding with implicit solvent models. Adv Protein Chem 72:173–198.CrossRefGoogle Scholar
  39. 39.
    Kelly JW (1996) Alternative conformations of amyloidogenic proteins govern their behavior. Curr Opin Struct Biol 6:11–17.CrossRefGoogle Scholar
  40. 40.
    Kelly JW (1998) The environmental dependency of protein folding best explains prion and amyloid diseases. Proc Natl Acad Sci USA 95:930–932.CrossRefGoogle Scholar
  41. 41.
    Khandogin J, Brooks CL III (2006) Toward the accurate first-principles prediction of ionization equilibria in proteins. Biochemistry 45:9363–9373.CrossRefGoogle Scholar
  42. 42.
    Khandogin J, Brooks CL III (2005) Constant pH molecular dynamics with proton tautomerism. Biophys J 89:141–157.CrossRefGoogle Scholar
  43. 43.
    Khandogin J, Brooks CL III (2007) Linking folding with aggregation in Alzheimer’s beta amyloid peptides. Proc Natl Acad Sci USA 104:16880–16885.CrossRefGoogle Scholar
  44. 44.
    Khandogin J, Brooks CL III (2007) Annual report of computational chemistry, volume 3, chapter Molecular Simulations of pH-Mediated Biological Processes, Elsevier, Amsterdam, pp 3–11.Google Scholar
  45. 45.
    Khandogin J, Chen J, Brooks CL III (2006) Exploring atomistic details of pH-dependent peptide folding. Proc Natl Acad Sci USA 103:18546–18550.CrossRefGoogle Scholar
  46. 46.
    Khandogin J, Raleigh DP, Brooks CL III (2007) Folding intermediate in the villin headpiece domain arises from disruption of a N-terminal hydrogen-bonded network. J Am Chem Soc 129:3056–3057.CrossRefGoogle Scholar
  47. 47.
    Klamt A, Schüürmann G (1993) COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2, 2: 799–805.CrossRefGoogle Scholar
  48. 48.
    Klamt A, Eckert F, Diedenhofen M, Beck ME (2003) First Principles Calculations of Aqueous pK a Values for Organic and Inorganic Acids Using COSMO-RS Reveal an Inconsistency in the Slope of the pK a Scale. J Phys Chem A 107:9380–9386.CrossRefGoogle Scholar
  49. 49.
    Klapper I, Hagstrom R, Fine R, Sharp K, Honig B (1986) Focusing of Electric Fields in the Active Site of Cu-Zn Superoxide Dismutase: Effects of Ionic Strength and Amino-Acid Modification. Proteins 1:47–59.CrossRefGoogle Scholar
  50. 50.
    Kong X, Brooks CL, III (1996) α-dynamics: A new approach to free energy calculations. J Chem Phys 105:2414–2423.CrossRefGoogle Scholar
  51. 51.
    Koumanov A, Karshikoff A, Friis EP, Borchert TV (2001) Conformational averaging in pK calculations: Improvement and limitations in prediction of ionization properties of proteins. J Phys Chem B 105:9339–9344.CrossRefGoogle Scholar
  52. 52.
    Kuhn B, Kollman PA, Stahl M (2004) Prediction of pK a shifts in proteins using a combination of molecular mechanical and continuum solvent calculations. J Comput Chem 25:1865–1872.CrossRefGoogle Scholar
  53. 53.
    Langsetmo K, Fuchs JA, Woodward C (1991) The conserved, buried aspartic acid in oxidized Escherichia coli thioredoxin has a pK a of 7.5. its titration produces a related shift in global stability? Biochemistry 30:7603–7609.CrossRefGoogle Scholar
  54. 54.
    Langsetmo K, Fuchs JA, Woodward C, Sharp KA (1991) Linkage of thioredoxin stability to titration of ionizable groups with perturbed pK a. Biochemistry 30:7609–7614.CrossRefGoogle Scholar
  55. 55.
    Lee S, Chu ZT, Warshel A (1993) Microscopic and semimicroscopic calculations of electrostatic energies in proteins by the POLARIS and ENZYMIX programs. J Comput Chem 14: 161–185.CrossRefGoogle Scholar
  56. 56.
    Lee K, Fitch CA, Lecomte JT, García-Moreno EB (2002) Electrostatic effects in highly charged proteins: Salt sensitivity of pK a values of histidines in staphylococcal nuclease. Biochemistry 41:5656–5667.CrossRefGoogle Scholar
  57. 57.
    Lee S, Feig M, Salsbury FR Jr, Brooks CL III (2003) New analytic approximation to the standard molecular volume definition and its application to generalized Born calculations. J Comput Chem 24:1348–1356.CrossRefGoogle Scholar
  58. 58.
    Lee S, Salsbury FR Jr, Brooks CL III (2004) Constant-pH molecular dynamics using continuous titration coordinates. Proteins 56:738–752.CrossRefGoogle Scholar
  59. 59.
    Levy RM, Belhadj M, Kitchen DB (1991) Gaussian fluctuation formula for electrostatic free energy changes in solution. J Chem Phys 95:3627–3633.CrossRefGoogle Scholar
  60. 60.
    Lim C, Bashford D, Karplus M (1991) Absolute pK a calculations with continuum dielectric methods. J Phys Chem 95:5610–5620.CrossRefGoogle Scholar
  61. 61.
    Machuqueiro M, Baptista AM (2006) Constant-pH molecular dynamics with ionic strength effects: Protonation-conformation coupling in decalysine. J Phys Chem B 110:2927–2933.CrossRefGoogle Scholar
  62. 62.
    Machuqueiro M, Baptista AM (2007). Stochastic titration study of hen egg lysozyme. Proteins 72:289–298.CrossRefGoogle Scholar
  63. 63.
    Madura JD, Briggs JM, Wade RC, Davis ME, Luty BA, Ilin A, Antosiewicz J, Gilson MK, Bagheri B, Scott LR, McCammon JA (1995) Electrostatics and diffusion of molecules in solution: Simulations with the University of Houston Brownian Dynamics program. Comput Phys Commun 91:57–95.CrossRefGoogle Scholar
  64. 64.
    Mehler EL, Eichele G (1984) Electrostatic effects in water-accessible regions of proteinst. Biochemistry 23:3887–3891.CrossRefGoogle Scholar
  65. 65.
    Mehler EL, Guarnieri F (1999) A self-consistent, microenvironment modulated screened coulomb potential approximation to calculate pH-dependent electrostatic effects in proteins. Biophys J 75:3–22.CrossRefGoogle Scholar
  66. 66.
    Mehler EL, Fuxreiter M, Simon I, Garcia B-Moreno (2002) The Role of hydrophobic microenvironments in modulating pK a shifts in proteins. Proteins 48:283–292.CrossRefGoogle Scholar
  67. 67.
    Mertz JE, Pettitt BM (1994) Molecular dynamics at a constant pH. Int J Supercomput Appl High Perform Comput 8:47–53.CrossRefGoogle Scholar
  68. 68.
    Merz KM Jr (1991) Determination of pK a’s of ionizable groups in proteins: The pK a of Glu 7 and 35 in hen egg white lysozyme and Glu 106 in human carbonic anhydrase II. J Am Chem Soc 113:3572–2575.CrossRefGoogle Scholar
  69. 69.
    Mok KH, Kuhn LT, Goez M, Day IJ, Lin JC, Andersen NH, Hore PJ (2007) A pre-existing hydrophobic collapse in the unfolded state of an ultrafast folding protein. Nature 447:106–109.CrossRefGoogle Scholar
  70. 70.
    Mongan J, Case DA (2005) Biomolecular simulations at constant pH. Curr Opin Struct Biol 15:157–163.CrossRefGoogle Scholar
  71. 71.
    Mongan J, Case DA, McCammon JA (2004) Constant pH molecular dynamics in generalized Born implicit solvent. J Comput Chem 25:2038–2048.CrossRefGoogle Scholar
  72. 72.
    Nicholls A, Honig B (1991) A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson-Boltzmann equation. J Comput Chem 12:435–445.CrossRefGoogle Scholar
  73. 73.
    Nozaki Y, Tanford C (1967) Examination of titration behavior. Methods Enzymol 11:715–734.CrossRefGoogle Scholar
  74. 74.
    Nymeyer H, Gnanakaran S, García AE (2004) Atomic simulations of protein folding using the replica exchange algorithm. Methods Enzymol 383:119–149.CrossRefGoogle Scholar
  75. 75.
    Oliveberg M, Arcus VL, Fersht AR (1995) pK a values of carboxyl groups in the native and denatured states of barnase: The pK a values of the denatured state are on average 0.4 units lower than those of model compounds. Biochemistry 34:9424–9433.CrossRefGoogle Scholar
  76. 76.
    Osterhout JJ Jr, Baldwin RL, York EJ, Stewart JM, Dyson HJ, Wright PE (1989) 1H NMR studies of the solution conformations of an analogue of the C-peptide of ribonuclease A. Biochemistry 28:7059–7064.CrossRefGoogle Scholar
  77. 77.
    Parr R, Yang W (1989) Density-Functional Theory of Atoms and Molecules. Oxford University Press, New York.Google Scholar
  78. 78.
    Patel S, Brooks CL, III (2003) CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations. J Comput Chem 25:1–16.CrossRefGoogle Scholar
  79. 79.
    Patel S, Mackerell AD Jr, Brooks CL III (2004) CHARMM fluctuating charge force field for proteins: II Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model. J Comput Chem 25:1504–1514.CrossRefGoogle Scholar
  80. 80.
    Riccardi D, Schaefer P, Cui Q (2005) pKa Calculations in Solution and Proteins with QM/MM Free Energy Perturbation Simulations: A Quantitative Test of QM/MM Protocols. J Phys Chem B 109:17715–17733.CrossRefGoogle Scholar
  81. 81.
    Richardson WH, Peng C, Bashford D, Noodleman L, Case DA (1997) Incorporating Solvation Effects into Density Functional Theory: Calculation of Absolute Acidities. Int J Quantum Chem 61:207–217.CrossRefGoogle Scholar
  82. 82.
    Rick SW, Lynch DL, Doll JD (1991) A variational Monte Carlo study of argon, neon, and helium clusters. J Chem Phys 95:3506–3520.CrossRefGoogle Scholar
  83. 83.
    Ripoll DR, Vorobjev YN, Liwo A, Vila JA, Scheraga HA (1996) Coupling between folding and ionization equilibria: Effects of ph on the conformational preferences of polypeptides. J Mol Biol 264:770–783.CrossRefGoogle Scholar
  84. 84.
    Schaefer M, Karplus M (1996) A Comprehensive Analytical Treatment of Continuum Electrostatics. J Phys Chem 100(5):1578–1600.CrossRefGoogle Scholar
  85. 85.
    Schaefer M, van Vlijmen HWT, Karplus M (1998) Electrostatic contributions to molecular free energies in solution. Adv Protein Chem 51:1–57.CrossRefGoogle Scholar
  86. 86.
    Schäfer A, Klamt A, Sattel D, Lohrenz JCW, Eckert F (2000) Cosmo implementation in turbomole: Extension of an efficient quantum chemical code towards liquid systems. Phys Chem Chem Phys 2:2187–2193.CrossRefGoogle Scholar
  87. 87.
    Schutz CN, Warshel A (2001) What are the dielectric constants of proteins and how to validate electrostatic models? Proteins 44:400–417.CrossRefGoogle Scholar
  88. 88.
    Sham YY, Chu ZT, Warshel A (1997) Consistent calculations of pK as of ionizable residues in proteins: Semi-microscopic and microscopic approaches. J Phys Chem B 101:4458–4472.CrossRefGoogle Scholar
  89. 89.
    Shoemaker KR, Fairman R, Schultz DA, Robertson AD, York EJ, Stewart JM, Baldwin RL (1990) Side-chain interactions in the C-peptide helix: Phe8-His12+. Biopolymers 29:1–11.CrossRefGoogle Scholar
  90. 90.
    Simonson T, Brooks CL III (1996) Charge screening and the dielectric constant of proteins: Insights from molecular dynamics. J Am Chem Soc 118:8452–8458.CrossRefGoogle Scholar
  91. 91.
    Simonson T, Carlsson J, Case DA (2004) Proton binding to proteins: pK a calculations with explicit and implicit solvent models. J Am Chem Soc 126:4167–4180.CrossRefGoogle Scholar
  92. 92.
    Srinivasan J, Trevathan MW, Beroza P, Case DA (1999) Application of a pairwise generalized Born model to proteins and nucleic acids: Inclusion of salt effects. Theor Chem Acc 101:426–434.Google Scholar
  93. 93.
    Stern HA (2007) Molecular simulation with variable protonation states at constant pH. J Chem Phys 126:164112.CrossRefGoogle Scholar
  94. 94.
    Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) Semianalytical treatment of salvation for molecular mechanics and dynamics. J Am Chem Soc 112:6127–6129.CrossRefGoogle Scholar
  95. 95.
    Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151.CrossRefGoogle Scholar
  96. 96.
    Tanford C, Kirkwood JG (1957) Theory of protein titration curves. I. general equations for impenetrable spheres. J Am Chem Soc 79:5333–5339.CrossRefGoogle Scholar
  97. 97.
    Tanokura M (1983) 1H-NMstudy R on the tautomerism of the imidazole ring of histidine residues: I. Microscopic pK values and molar ratios of tautomers in histidine-containing peptides. Biochim Biophys Acta 742:576–585.Google Scholar
  98. 98.
    Tironi G, Sperb R, Smith PE, van Gunsteren WF (1995) A generalized reaction field method for molecular dynamics simulations. J Chem Phys 102:5451–5459.CrossRefGoogle Scholar
  99. 99.
    van Vlijmen HW, Schaefer M, Karplus M (1998) Improving the accuracy of protein pK a calculations: Conformational averaging versus the average structure. Proteins 33:145–158.CrossRefGoogle Scholar
  100. 100.
    Vila JA, Ripoll DR, Scheraga HA (2001) Influence of lysine content and pH on the stability of alanine-based copolypeptides. Biopolymers 58:235–246.CrossRefGoogle Scholar
  101. 101.
    Von Arnim M, Ahlrichs R (1998) Performance of Parallel TURBOMOLE for Density Functional Calculations. J Comput Chem 19(15):1746–1757.CrossRefGoogle Scholar
  102. 102.
    Walczak M, Antosiewicz JM (2002) Langevin dynamics of proteins at constant pH. Phys Rev E 66:051911.CrossRefGoogle Scholar
  103. 103.
    Warshel A, Sussman F, King G (1986) Free energy of charges in solvated proteins: Microscopic calculations using a reversible charging process. Biochemistry 25:8368–8372.CrossRefGoogle Scholar
  104. 104.
    Warshel A, Sharmaa PK, Katoa M, Parson WW (2006) Modeling electrostatic effects in proteins. Biochim Biophys Acta 1764:1647–1676.Google Scholar
  105. 105.
    Weiss N (1997) The Hill equation revisited: Uses and misuses. FASEB J 11:835–841.Google Scholar
  106. 106.
    Yang A-S, Gunner MR, Sampogna R, Sharp K, Honig B (1993) On the calculation of pK a’s in proteins. Proteins 15:252–265.CrossRefGoogle Scholar
  107. 107.
    You TJ, Bashford D (1995) Conformation and hydrogen ion titration of proteins: A continuum electrostatic model with conformational flexibility. Biophys J 69:1721–1733.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Chemistry & BiochemistryUniversity of OklahomaNormanUSA

Personalised recommendations