Production of Mushrooms Using Agro-Industrial Residues as Substrates

  • Antonios N. Philippoussis

Abstract

Mushroom cultivation as a prominent biotechnological process for the valorization of agro-industrial residues generated as a result of agro-forestry and agro-industrial production. A huge amount of lignocellulosic agricultural crop residues and agro-industrial by-products are annually generated, rich in organiccompounds that are worthy of being recovered and transformed. A number of these residues have been employed as feedstocks in solid state fermentation (SSF) processes using higher basidiomycetus fungi for the production of mushroom food, animal feed, enzymes and medicinal compounds. Likewise, the above-mentioned microorganisms have been successfully employed in processes related with the bioremediation of hazardous compounds and waste detoxification. Mushroom cultivation presents a worldwide expanded and economically important biotechnological industry that uses efficient solid-state-fermentation process of food protein recovery from lignocellulosic materials. Several aspects of mushroom physiology along with impacts of different environmental and nutritional conditions on mycelium growth and fruiting bodies production are highlined. Moreover, cultivation technologies of Agaricusbisporus, Pleurotus spp and Lentinula edodes, comprising spawn (inoculum) production, substrate preparation and mushroom growing process i.e. inoculation, substrate colonization by the cultivated fungus, fruiting, harvesting and processing of the fruiting bodies, are outlined. Finally, the efficiency of residues conversion into fruiting bodies are outlined in two medicinal mushroom genera, Pleurotus and Lentinula, widely cultivated for their nutritional value and extensively researched for their biodegradation capabilities. Experimental data concerning residue-substrates used, as well as biological efficiencies obtained during their cultivation were considered and discussed.

Keywords

Fungi Mushroom cultivation Biotechnology Agricultural residues By-products Solid state fermentation Fruiting bodies Yield Biological efficiency Agaricus spp. Pleurotus spp. Lentinula edodes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alborés S, Pianzzola MJ, Soubes M et al. (2006) Biodegradation of agr-oindustrial wastes by Pleurotus spp for its use as ruminant feed. Electron J Biotechnol 9(3): 215–220CrossRefGoogle Scholar
  2. Alderman DR Jr (1998) Assessing the availability of wood residues and residue markets in Virginia. Master thesis in: Wood Science and Forest products, Blacksburg, VirginiaGoogle Scholar
  3. Anonymous (2006) Listing of the properties of biomass materials for the selection of additives to adjust the components of compost produced from livestock manure. http://nkk.naro.affrc.go.jp/eng/topics/research/2006/9.pdf. Accessed 5 June 2008
  4. Baldrian P (2005) Fungal laccases-occurrence and properties. FEMS Microb Rev 30: 215–242CrossRefGoogle Scholar
  5. Baldrian P, Valášková V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32: 501–521PubMedCrossRefGoogle Scholar
  6. Bennet JW, Wunch KG, Faison BD (2002) Use of fungi Biodegradation. In: Hurst CC (ed) Environmental Microbiology. 2nd edition, ASM Press Washington DCGoogle Scholar
  7. Bisaria R, Madan M, Bisaria VS (1987) Biological efficiency and nutritive value of Pleurotus sajor-cajucultivated on agro-wastes. Biol Wastes 19(4): 239–255CrossRefGoogle Scholar
  8. Boucqué CV, Fiems LO (1988) Vegetable by-products of agro-industrial origin. Livest Prod Sci 19: 97–135CrossRefGoogle Scholar
  9. Brand D, Pandey A, Roussos S et al. (2000) Biological detoxification of coffee husk by filamentous fungi using a solid state fermentation system. Enzyme Microb Technol 27(1–2): 127–13PubMedCrossRefGoogle Scholar
  10. Bushwell JA, Cai YJ, Chang ST (1996) Ligninolytic enzyme production and secretion in edible mushroom fungi. In: Royse DJ (ed) Mushroom Biology and Mushroom Products, Penn State University, PensnylvaniaGoogle Scholar
  11. Cai YJ, Chapman SJ, Buswell JA et al. (1999) Production and distribution of endoglucanase, cellobiohydrolase, and β-glucosidase components of the cellulolytic system of Volvariella volvacea, the edible straw mushroom. Appl Environ Microbiol 65(2): 553–559PubMedGoogle Scholar
  12. Campbell AC, Racjan M (1999) The commercial exploitation of the white-rot fungus Lentinula edodes(Shiitake). Int Biodeteriorat Biodegrad 43: 101–107CrossRefGoogle Scholar
  13. Castro RIL, Delmastro S, Curvetto NR (2008) Spent Oyster Mushroom substrate in a mix with organic soil for plant pot cultivation. Micol Appl Int 20(1): 17–26Google Scholar
  14. Chang ST (1998) A global strategy for mushroom cultivation – a challenge of a “non-green revolution”. In: Lu M, Gao K, Si HF et al. (eds) Proceedings of the ’98 Nanjing International Symposium, Science and Cultivation of Mushrooms, NanjingGoogle Scholar
  15. Chang ST (1999) World production of cultivated edible and medicinal mushrooms in 1997 with emphasis on Lentinus edodes (Berk.) Sing. in China. Int J Med Mush 1: 291–300Google Scholar
  16. Chang ST (2001) A 40-year journey through bioconversion of lignocellulosic wastes to mushrooms and dietary supplements. Int J Med Mush 3: 80Google Scholar
  17. Chang ST (2006) The World Mushroom Industry: Trends and technological development. Int J Med Mush 8(4): 297–314CrossRefGoogle Scholar
  18. Chang ST (2007) Products of Medicinal Mushrooms as a good source of dietary supplements for HIV/AIDS patiens. Int J Med Mush 9(3–4): 189–190Google Scholar
  19. Chang ST, Chiu EW (1992) Mushroom production – An economic measure in maintenance of food security. In: DaSilva EJ, Ratledge C, Sasson A (eds) Microbial Technology: Economic and Social Aspects, Cambridge University Press, CambridgeGoogle Scholar
  20. Chang ST, Lau OW, Cho KY (1981) The cultivation and nutritional value of Pleurotus sajor caju. Europ J Appl Microbiol 12: 58–62CrossRefGoogle Scholar
  21. Chen AW, Arrold N, Stamets P (2000) Shiitake cultivation systems. In: Van Griensven JLJD (ed) Science and Cultivation of Edible Fungi, Balkema, RotterdamGoogle Scholar
  22. Chen DM, Bastias BA, Taylor AFS et al. (2003) Identification of laccase-like genes in ectomycorrhizal basidiomycetes and transcriptional regulation by nitrogen in Piloderma byssinum. New Phytolog 157: 547–554CrossRefGoogle Scholar
  23. Chiu SW, Law SC, Ching ML (2000) Themes for mushroom exploitation in the 21st century: Sustainability, waste management, and conservation. J Gen Appl Microbiol 46: 269–282PubMedCrossRefGoogle Scholar
  24. Chiu SW, Moore D (2001) Threats to biodiversity caused by the traditional mushroom cultivation in China. In: Moore D, Nauta M, Rotheroe M (eds) Fungal Conservation: The 21st Century issue, CambridgeGoogle Scholar
  25. Cohen R, Persky L, Hadar Y (2002) Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus. Appl Microbiol Biotechnol 58: 582–594PubMedCrossRefGoogle Scholar
  26. Çöpür Y, Güler, C, Akgül. M et al. (2007) Some chemical properties of hazelnut husk and its suitability for particleboard production. Build Environ 42: 2568–2572CrossRefGoogle Scholar
  27. Coutiño F, Jiménez L, Sánchez JE et al. (2004) Digitaria decumbensGrass Substrate prepared by Alkaline Immersion for culture of Pleurotus spp. In: Romaine CP, Keil CB, Rinker DL et al. (eds) Science and Cultivation of Edible and Medicinal Fungi. Penn State University, PennsylvaniaGoogle Scholar
  28. Croan SC (2003) Utilization of treated conifer wood chips by Pleurotus (Fr.) P. Karst. species for cultivating mushrooms. Mush Int 91: 4–7Google Scholar
  29. Curvetto NR, Figlas D, Devalis et al. (2002) Growth and productivity of different Pleurotus ostreatus strains on sunflower seed hulls supplemented with N-NH4+ and/or Mn(II). Bioresour Technol 84(2): 171–176PubMedCrossRefGoogle Scholar
  30. Curvetto NR, Figlas D, Gonzalez Matute R et al. (2005) Sunflower seed hulls. In: Gush R (ed) Mushroom’s Grower’s Handbook 2, Mush World, SeoulGoogle Scholar
  31. Daba AS, Ezeronye OU (2003) Anti-cancer effect of polysaccharides isolated from higher basidiomycetes mushrooms. African Journal of Biotechnology 2(12): 672–678Google Scholar
  32. Darjania L, Curvetto N, Schapiro M et al. (1997) Sunflower seed hulls as a substrate for cultivation of Pleurotus ostreatus.Mush News 45(2): 6–10Google Scholar
  33. Das N, Mukherjee M (2007) Cultivation of Pleurotus ostreatus on weed plants. Bioresour Technol 98: 2723–2726PubMedCrossRefGoogle Scholar
  34. Das N, Singh SK (2004) Useful byproducts from cellulosic wastes of agriculture and food industry – a critical appraisal. Crit Rev Food Sci Nutr 44: 77–89PubMedCrossRefGoogle Scholar
  35. Davis DD, Kuhns LJ, Harpster TL (2005) Use of Mushroom compost to suppress artillery fungi. J Environ Hort 23(4): 212–215Google Scholar
  36. Demeke S (2007) Comparative nutritive value of Atellaand industrial brewers grains in chicken starter ration in Ethiopia. Livest Res Rural Develop 19: http://www.cipav.org.co/lrrd/lrrd19/1/deme19008.htm
  37. Desrumaux B (2007) European market 2006. Mush Bus 22: 4Google Scholar
  38. Diamantopoulou P, Philippoussis A (2001) Production attributes of Agaricus bisporus white and off-white strains and the effect of CaCl2 irrigation on productivity and quality. Sci Hortic 91 (3–4): 379–391CrossRefGoogle Scholar
  39. Diamantopoulou P, Philippoussis A, Kastanias MA et al. (2006) Effect of famoxadone, tebuconazole and trifloxystrobin on Agaricus bisporus productivity and quality. Sci Hortic 109: 190–195CrossRefGoogle Scholar
  40. Diamantopoulou P, Varzakas T, Papadopoulou K et al. (2007) Evaluating the growth and lignocellulolytic enzymes activity of Ganoderma species during Solid State Fermentation (SSF) of agricultural and littoral residues. In: Book of Abstracts II International Conference on Environmental, Industrial and Applied Microbiology (Bio Micro World 2007), SevilleGoogle Scholar
  41. Diehle DA, Royse DJ (1986) Shiitake cultivation on sawdust: Evaluation of selected genotypes for biological efficiency and mushroom size. Mycol 78(6): 929–933CrossRefGoogle Scholar
  42. Donoghue JD, Denison WC (1995) Shiitake cultivation: Gas phase during Incubation Influences Productivity. Mycol 87(2): 239–244CrossRefGoogle Scholar
  43. Donoghue JD, Denison WC (1996) Commercial production of shiitake (Lentinula edodes) using whole-log chip of Quercus, Lithocarpus, and Acer. In: Royse DJ (ed.), Mushroom Biology and Mushroom Products, Penn State University, PennsylvaniaGoogle Scholar
  44. Eggen T (1999) Application of fungal substrate from commercial mushroom production – Pleurotus ostreatus – for bioremediation of creosote contaminated soil. Int Biodeterior Biodegrad 44: 117–126CrossRefGoogle Scholar
  45. Elisashvili V, Asatiani M, Kachlishvili ET et al. (2007) Basidiomycetes as a source of food, enzymes, polysaccharides, lectins, and antioxidants. Int J Med Mush 9(3–4): 206Google Scholar
  46. Elisashvili V, Penninckx M, Kachlishvili E et al. (2008) Lentinus edodes and Pleurotus species lignocellulolytic enzymes activity in submerged and solid-state fermentation of lignocellulosic wastes of different composition. Bioresour Technol 99: 457–462PubMedCrossRefGoogle Scholar
  47. Fan L, Soccol CR (2005) Coffee residues. In: Gush R (ed) Mushroom Growers’ Handbook 2, Mush World, SeoulGoogle Scholar
  48. Fan L, Pandey A, Mohan R et al. (2000a) Use of various coffee industry residues for the cultivation of Pleurotus ostreatus in solid state fermentation. Acta Biotechnol 20(1): 41–52CrossRefGoogle Scholar
  49. Fan L, Pandey A, Soccol CR (2000b) Solid state cultivation – an efficient method to use toxic agro-industrial residues. J Basic Microbiol 40(3): 187–197CrossRefGoogle Scholar
  50. FAO (2004) Food and Agriculture Organization of the United Nations. http://www.fao.org. Accessed 5 June 2008
  51. Fermor T, Watts N, Duncombe T et al. (2000) Bioremediation: Use of composts and composting technologies. In: Van Griensven JLJD (ed) Science and Cultivation of Edible Fungi, Balkema, RotterdamGoogle Scholar
  52. Gabriel V (2004) Cereal straw and corncobs. In: Gush R (ed) Mushroom Growers’ Handbook 1, Mush World, SeoulGoogle Scholar
  53. Gaitán-Hernández RG, Mata G (2004) Cultivation of the edible mushroom Lentinula edodes (Shiitake) in pasteurized wheat straw – Alternative use of geothermal energy on Mexico. Eng Life Sci 4(4): 363–367CrossRefGoogle Scholar
  54. Gaitán-Hernández RG, Esqueda M, Gutiérrez A et al. (2006) Bioconversion of agrowastes by Lentinula edodes: the high potential of viticulture residues. Appl Microbiol Biotechnol 71: 432–439PubMedCrossRefGoogle Scholar
  55. Gañan J, Al-Kassir Abdula A, Cuerda Correa EM et al. (2006) Energetic exploitation of vine shoot by gasification processes. A preliminary study. Fuel Proc Technol 87: 891–897CrossRefGoogle Scholar
  56. Gezer ED, Yildiz ÜC, Yildiz S et al. (2007) Use of Common Reed (Phragmites communisTrin.) as raw material in the cultivation of Pleurotus ostreatus. http://www.mushworld.com/tech/view.asp?vid=7744&cata_id=1110 (1 of 7) 22/6/2007 6:02:23. Accessed 10 May 2008
  57. Giljum S, Kovanda J, Niza S et al. (2005) Material Input Data for the GINFORS model. Technical Report: Word Package 3.1. http://www.mosus.net/documents/MOSUS%20MFA_technical%20report.pdf. Accessed 10 May 2008
  58. Gregori A, Svagelj M, Pohleven F (2007) Cultivation techniques and medicinal properties of Pleurotus spp. Food Technol Biotechnol 45(3): 236–247Google Scholar
  59. Hammel KE (1997) Fungal Degradation of Lignin. In: Cadisch G, Giller KE (eds) Driven by Nature: Plant Litter Quality and Decomposition. CAB Int, pp. 33–45Google Scholar
  60. Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol Rev 13: 125–135CrossRefGoogle Scholar
  61. Hatakka A (2001) Biodegradation of lignin. In: Hofrichter M, Steinbüchel A (eds) Biopolymers, Wiley-VCH, WeinheimGoogle Scholar
  62. Hernández D, Sánchez JE, Yamasaki K (2003) A simple procedure for preparing substrate for Pleurotus ostreatuscultivation. Bioresour Technol 90: 145–150PubMedCrossRefGoogle Scholar
  63. Hiromoto BT (1991) Comparative analysis of Shiitake culture systems. In: Maher MJ (ed) Science and Cultivation of Edible Fungi, Balkema, RotterdamGoogle Scholar
  64. Hofrichter M (2002) Review: Lignin conversion by maganese peroxidase (MnP). Enzyme Microb Technol 30: 454–466CrossRefGoogle Scholar
  65. Hölker U, Höfer M, Lenz J (2004) Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64: 175–186PubMedCrossRefGoogle Scholar
  66. Howard RL, Abotsi E, Jansen van Rensburg EL (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. African J Biotechnol 2(12): 602–619Google Scholar
  67. Huang Y (2007) Chinese market trends. Mush Bus 23: 10–11Google Scholar
  68. Israilides C, Philippoussis A (2003) Bio-technologies of recycling agro-industrial wastes for the production of commercially important polysaccharides and mushrooms. Biotechnol Genet Eng Rev 20: 247–259PubMedGoogle Scholar
  69. Israilides C, Kletsas D, Arapoglou D et al. (2008) Cytostatic and immunomodulatory properties of the medicinal mushroom Lentinula edodes. Phytomed 15: 512–519CrossRefGoogle Scholar
  70. Jiang J, Slivova V, Valachovicova T et al. (2004) Ganoderma lucidum inhibits proliferation and induces apoptosis in human prostate cancer cells PC-3. Int J Oncol 24: 1093–1099PubMedGoogle Scholar
  71. Jiménez L, González F (1991) Study of the physical and chemical properties of lignocellulosic residues with a view to the production of fuels. Fuel 70: 947–950CrossRefGoogle Scholar
  72. Kachlishvili E, Penninckx MJ, Tsiklauri N et al. (2005) Effect of nitrogen source on lignocellulolytic enzyme production by white-rot basidiomycetes under solid-state cultivation. W J Microb Biotechnol 22(4): 391–397CrossRefGoogle Scholar
  73. Kalberer PP (1987) Water potentials of casing and substrate and osmotic potentials of fruit bodies ofAgaricus bisporus. Sci Hortic 32:175–182CrossRefGoogle Scholar
  74. Kalberer PP (1995) An investigation of the incubation phase of a shiitake (Lentinus edodes) culture. Mush Sci 14: 375–383Google Scholar
  75. Kalberer PP (2000) Influence of urea and ammonium chloride on crop yield and fruit body size of Shiitake (Lentinula edodes). In: Van Griensven LJLD (ed) Science and Cultivation of Edible Fungi, Balkema RotterdamGoogle Scholar
  76. Kalmiş E, Sargin S (2004) Cultivation of two Pleurotusspecies on wheat straw substrates containing olive mill waste water. Int Biodeterior Biodegrad 53: 43–47CrossRefGoogle Scholar
  77. Kawai G, Kobayashi H, Fukushima Y et al. (1996) Effect of liquid mycelial culture used as a spawn on sawdust cultivation of shiitake (Lentinula edodes). Mycosci 37: 201–207CrossRefGoogle Scholar
  78. Kidd PM (2000) The Use of Mushroom Glucans and Proteoglucans in Cancer treatment. Alternative Medicine Review 5(1): 4–27.PubMedGoogle Scholar
  79. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg 26: 361–375CrossRefGoogle Scholar
  80. Kirchhoff B, Lelley J (1991) Investigations of Shiitake (Lentinus edodes (Berk.) Sing.) bag-log cultivation to increase the yield in Germany. In: Maher MJ (ed) Science and Cultivation of Edible Fungi, Balkema, RotterdamGoogle Scholar
  81. Kirk PM, Cannon PF, David JC et al. (2001) Ainsworth and Bisby Dictionary of the fungi. 9th edition, CABI Bioscience, EghamGoogle Scholar
  82. Ko HG, Park SH, Kim SH (2005) Detection and recovery of hydrolytic enzymes from spent compost of four mushroom species. Folia Microbiol 50(2): 103–106CrossRefGoogle Scholar
  83. Koopmans A and Koppejan J (1997) Agricultural and forest residues – Generation, utilization and availability. Regional Consultation on Modern Applications of Biomass Energy, Kuala Lumpur, MalaysiaGoogle Scholar
  84. Krishna C (2005) Solid-state fermentation systems-an overview. Critic Rev Biotechnol 25: 1–30CrossRefGoogle Scholar
  85. Kuhad RC, Singh A, Eriksson K-EL (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. In: Eriksson K-EL (ed) Advances in Biochemical Engineering Biotechnology, Springer-Verlag, BerlinGoogle Scholar
  86. Kües U, Liu Y (2000) Fruiting body production in basidiomycetes. Appl Microbiol Biotechnol 54: 141–152PubMedCrossRefGoogle Scholar
  87. Lankinen P, Hildén K, Aro N et al. (2005) Manganese peroxidase of Agaricus bisporus:grain bran-promoted production and gene characterization. Appl Microbiol Biotechnol 66: 401–407PubMedCrossRefGoogle Scholar
  88. Lal R (2005) World crop residues production and implications of its use as a biofuel. Environ Int 31 (4): 575–584PubMedCrossRefGoogle Scholar
  89. Lal, R (2008) Crop residues as soil amendments and feedstock for bioethanol production. Waste Manag 28 (4): 747–758PubMedCrossRefGoogle Scholar
  90. Lara M, Arias A, Villasenor L (2002) Cultivation of Pleurotus ostreatus and P. Pulmonarius on spent brewer’s grain and tequila maguey bagasse. In: Sánchez JE, Huerta G, Montiel E (eds) Mushroom Biology and Mushroom Products, Universidad Autónoma del Estado de Morelos, MexicoGoogle Scholar
  91. Laufenberg G, Kunz B, Nystroem M (2003) Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations. Bioresour Technol 87: 167–198PubMedCrossRefGoogle Scholar
  92. Levanon D, Rothschild N, Danai O (1993) Bulk treatment of substrate for the cultivation of shiitake mushrooms (Lentinus edodes) on straw. Bioresour Technol 45: 63–64CrossRefGoogle Scholar
  93. Lin Z (2005) Grass. In: Gush R (ed) Mushroom Growers’ Handbook 2, Mush World, SeoulGoogle Scholar
  94. Liou TH, Chang F-W, Lo JJ (1997) Pyrolysis kinetics of acid-leached rice husk. Ind Eng Chem Res 36: 568–573CrossRefGoogle Scholar
  95. López CJ, Valencia NR, Chang ST (2004) Cultivation of Shiitake on Coffee Waste. In: Romaine CP, Keil CB, Rinker DL et al. (eds) Science and Cultivation of Edible and Medicinal Fungi, Penn State University, PennsylvaniaGoogle Scholar
  96. Mabee WE, Gregg DJ, Saddler JN (2005) Assessing the emerging biorefinery sector in Canada. Appl Biochem Biotechnol 121–124: 765–778PubMedCrossRefGoogle Scholar
  97. Mande S (2005) Biomass gasifier-based power plants: potential, problems, and research needs for decentralized rural electrification. In: Lal B, Reddy MRVP (eds) Wealth from Waste: Trends and Technologies, New DelhiGoogle Scholar
  98. Mandeel Q, Al-Laith A, Mohamed S (2005) Cultivation of oyster mushrooms (Pleurotus spp.) on various lignocellulosic wastes. World J Microbiol Biotechnol 21: 601–607CrossRefGoogle Scholar
  99. Manpreet S, Sawraj S, Sachin D et al. (2005) Influence of process parameters on the production of metabolites in solid-state fermentation. Mal J Microbiol 1(2): 1–9Google Scholar
  100. Marino RH, Ferreira da Eira A, Kuramae EE (2003) Morphomolecular characterization of Pleurotus ostreatus (Jacq. Fr.) kummer strains in relation to luminosity and temperature of fructification. Sci Agric 60(3):531–535CrossRefGoogle Scholar
  101. Martínez-Carrera D, Aguilar A, Martínez W (2000) Commercial production and marketing of edible mushrooms cultivated on coffee pulp in Mexico. In: Sera T, Soccol C, Pandey A et al. (eds) Coffee Biotechnology and Quality, Klewer Academic Publishers, DordrechtGoogle Scholar
  102. Martínez-Carrera D, Guzmán G, Soto C (1985) The effect of fermentation of coffee pulp in the cultivation of Pleurotus ostreatus in Mexico. Mush Newslet Trop 6: 21–28Google Scholar
  103. Mata G, Savoie JM (2005a) Wheat straw. In: Gush R (ed) Mushroom’s Grower’s Handbook 2, Mush World, SeoulGoogle Scholar
  104. Mata G, Savoie JM (2005b) Improvement of spawn for cultivation in alternative substrates. In: Gush R (ed) Mushroom’s Grower’s Handbook 2, Mush World, SeoulGoogle Scholar
  105. Mata G Savoie JM (2005c) Extracellular enzyme activities in six Lentinula edodes strains during cultivation in wheat straw. World J Microb Biotechnol 14: 513–519CrossRefGoogle Scholar
  106. Mills HA, Jones JB (1996) Plant analysis handbook II. Micromacro Publishing Inc., Athens, USAGoogle Scholar
  107. Mizuno T (1999) The extraction and development of antitumour-active polysaccharides from medicinal mushrooms in Japan. Int J Med Mush 1: 9–29.Google Scholar
  108. Moda EM, Horii J, Spoto FMH (2005) Edible mushroom Pleurotus sajor-caju production on washed and supplemented sugarcane bagasse. Sci Agric 62(2): 127–132CrossRefGoogle Scholar
  109. Moghtaderi B, Sheng C, Wall TF (2006) An overview of the Australian biomass resources and utilization technologies. Bioresour 1(1): 93–115Google Scholar
  110. Moore D, Chiu SW (2001) Filamentous fungi as food. In: Pointing SB, Hyde KD (eds) Exploitation of Filamentous Fungi, Fungal Diversity Press, Hong KongGoogle Scholar
  111. Mosier N, Wyman C, Dale B, Blander R (2005) Features of promising technologies for pre-treatment of lignocellulosic biomass. Bioresour Technol 96: 673–686PubMedCrossRefGoogle Scholar
  112. Mulkey S, Alavalapati J, Hodges A, Wilkie AC et al. (2008) Opportunities for Greenhouse Gas Reduction Through Forestry and Agriculture in Florida. University of Florida, School of Natural Resources and Environment. http://snre.ufl.edu
  113. Mussato SI, Rocha GJM, Roberto IC (2008) Hydrogen peroxide bleaching of cellulose pulps obtained from brewer’s spent grain. Cellul. doi 10.1007/s10570-008-9198-4Google Scholar
  114. Naraian R, Sahu RK, Kumar S et al. (2008) Influence of different nitrogen rich supplements during cultivation of Pleurotus florida on corn cob substrate. Environ. doi 10.1007/s10669-008-9174-4Google Scholar
  115. Nigam P, Robinson T, Singh D (2004) Solid-state fermentation: An overview. In: Arora D (ed) Handbook of Fungal Biotechnology, Mycology 20, CRC Press, LondonGoogle Scholar
  116. Nikitina VE, Tsivileva OM, Pankratou AN et al. (2007) Lentinula edodes biotechnology – from lentinan to lectins. Food Technol Biotechnol 45(3): 230–237Google Scholar
  117. Nikolaou A, Remrova M, Jeliazkov I (2003) A report of the project—Lot 5: Bioenergy’s role in the EU Energy Market, Biomass availability in EuropeGoogle Scholar
  118. Obodai M, Cleland-Okine J, Vowotor KA (2003) Comparative study on the growth and yield of Pleurotus ostreatus mushroom on different lignocellulosic by-products. J Industr Microbiol Biotechnol 30: 146–149Google Scholar
  119. Ohga S (1999) Effect of water potential on the fruit body formation of Lentinula edodes in sawdust-based substrate. J Wood Sci 45: 337–342CrossRefGoogle Scholar
  120. Ohga S, Royse DJ (2001) Transcriptional regulation of laccase and cellulase genes during growth and fruiting of Lentinula edodes on supplemented sawdust. FEMS Microbiol Let 201:111–115CrossRefGoogle Scholar
  121. Ohga S, Smith M, Thurston, CF et al. (2001) Transcriptional regulation of laccase and cellulase genes in the mycelium of Agaricus bisporus fruit body development on the solid substrate. Mycol Res 103: 1557–1560CrossRefGoogle Scholar
  122. Okano K, lida Y, Samsuri M (2006) Comparison of in vitro digestibility and chemical composition among sugarcane bagasses treated by four white-rot fungi. Anim Sci J 77: 308–313CrossRefGoogle Scholar
  123. Ooi, CVE, Liu F (2000) Immunomodulation and anti-cancert activity of polysaccharide-protein complexes. Cur Med Chem 7(7): 715–729Google Scholar
  124. Ortega GM, Martínez EO, Betancourt, D (1992) Bioconversion of sugar cane crop residues with white-rot fungi Pleurotus sp. World J Microbiol Biotechnol 8: 402–405CrossRefGoogle Scholar
  125. Özçelik E, Pekşen A (2007) Hazelnut husk as a substrate for the cultivation of shiitake mushroom (Lentinula edodes). Bioresour Technol 98: 2652–2658PubMedCrossRefGoogle Scholar
  126. Palonen H (2004) Role of lignin in the enzymatic hydrolysis of lignocellulose. Dissertation for the degree of Doctor of Technology, Helsinki University of Technology, HelsinkiGoogle Scholar
  127. Pandey A, Soccol CR, Mitchell D (2000a) New developments in solid state fermentation: I – Bioprocesses and products. Process Biochem 35: 1153–1169CrossRefGoogle Scholar
  128. Pandey A, Soccol CR, Nigam P et al. (2000b) Biotechnological potential of agro-industrial residues: I – Sugarcane bagasse. Bioresour Technol 74: 69–80CrossRefGoogle Scholar
  129. Pandey A, Soccol CR, Nigam P et al. (2000c) Biotechnological potential of agro-industrial residues: II – Cassava bagasse. Bioresour Technol 74: 81–87CrossRefGoogle Scholar
  130. Pandey A, Soccol CR, Nigam P et al. (2000d) Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochem Eng J 6: 153–162PubMedCrossRefGoogle Scholar
  131. Pant D, Gangi Reddy U, Adholeya A (2006) Cultivation of oyster mushrooms on wheat straw and bagasse substrate amended with distillery effluent. World J Microbiol Biotechnol 22: 267–275CrossRefGoogle Scholar
  132. Paterson RRM (2006) Ganoderma – A therapeutic fungal biofactory. Phytochem 67: 1985–2001CrossRefGoogle Scholar
  133. Patra AK, Pani BK (1995) Evaluation of banana leaf as a new alternative substrate to paddy straw for oyster mushroom cultivation. J Phytol Res 8:145–148Google Scholar
  134. Pérez J, Munoz-Dorado J, Martínez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. Int Microbiol 5: 53–63PubMedCrossRefGoogle Scholar
  135. Pérez SR, García Oduardo N, Bermúdez RC et al. (2007) Decolourisation of mushroom farm wastewater by Pleurotus ostreatus. Biodegrad. doi 10.1007/s10532-007-9157-zGoogle Scholar
  136. Philippoussis A, Zervakis G, Diamantopoulou P (2000). Potential for the cultivation of exotic mushroom species by exploitation of Mediterranean agricultural wastes. In: Van Griensven LJLD (ed) Science and Cultivation of Edible Fungi, Balkema, RotterdamGoogle Scholar
  137. Philippoussis A, Zervakis G, Diamantopoulou P (2001a) Bioconversion of lignocellulosic wastes through the cultivation of the edible mushrooms Agrocybe aegerita, Volvariella volvacea and Pleurotus spp. World J Microbiol Biotechnol 17(2): 191–200CrossRefGoogle Scholar
  138. Philippoussis A, Diamantopoulou P, Zervakis G (2001b) Calcium chloride irrigation influence on yield, calcium content, quality and shelf-life of the white mushroom Agaricus bisporus. J Sci Food Agric 81(15): 1447–1454CrossRefGoogle Scholar
  139. Philippoussis A, Diamantopoulou P, Euthimiadou H et al. (2001c) The composition and porosity of lignocellulosic substrates influence mycelium growth and respiration rates of Lentinus edodes (Berk.) Sing. Int J Med Mush 3(2–3): 198Google Scholar
  140. Philippoussis A, Diamantopoulou P, Zervakis G (2002) Monitoring of mycelium growth and fructification of Lentinula edodes on several agricultural residues. In: Sánchez JE, Huerta G, Montiel E (eds), Mushroom Biology and Mushroom Products, UAEM, CuernavacaGoogle Scholar
  141. Philippoussis A, Diamantopoulou P, Zervakis G (2003) Correlation of the properties of several lignocellulosic substrates to the crop performance of the shiitake mushroom Lentinula edodes. World J Microbiol Biotechnol 19(6): 551–557CrossRefGoogle Scholar
  142. Philippoussis A, Zervakis GI, Diamantopoulou P et al. (2004). Use of spent mushroom compost as substrate for plant growth and against plant infections caused by Phytophora spp. In: Romaine CP, Keil CB, Rinker DL et al. (eds) Science and Cultivation of Edible and Medicinal Fungi, Penn State University, PennsylvaniaGoogle Scholar
  143. Philippoussis A, Diamantopoulou P, Israilides C (2007) Production of functional food from the sporophores of the medicinal mushroom Lentinula edodes through exploitation of lingo-cellulosic agricultural residues. Int Biodeteriorat Biodegrad 59(3): 216–219CrossRefGoogle Scholar
  144. Przybylowicz P, Donoghue J (1990) Shiitake Growers Handbook, The Art and science of Mushroom cultivation. Kendall/Hunt Publishing Company, IowaGoogle Scholar
  145. Pire DG, Wright JE, Albertó E (2001) Cultivation of Shiitake using Sawdust from widely available local woods in Argentina. Micol Appl Int 13(2): 87–91Google Scholar
  146. Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57: 20–33PubMedCrossRefGoogle Scholar
  147. Poppe J (2000) Use of Agricultural waste materials in the cultivation of mushrooms. In: Van Griensven LJLD (ed) Science and Cultivation of Edible Fungi, Balkema, RotterdamGoogle Scholar
  148. Poppe J (2004) Agricultural wastes as substrates for oyster mushrooms. In: Gush R (ed) Mushroom Growers’ Handbook 1, Mush World, SeoulGoogle Scholar
  149. Quian G (2004) Cottonseed hulls. In: Gush R (ed) Mushroom Growers’ Handbook 1, Mush World, SeoulGoogle Scholar
  150. Qu Y, Zhu M, Liu K (2006) Studies on cellulosic ethanol production for sustainable supply of liquid fuel in China. J Biotechnol 1: 1235–1240CrossRefGoogle Scholar
  151. Ragunathan R, Gurusamy R, Palaniswamy M (1996) Cultivation of Pleurotus spp. on various agro-residues. Food Chem 55(2): 139–144Google Scholar
  152. Rajarathnam S, Shashireka MNJ, Bano Z (1998) Biodegradative and biosynthetic capacities of mushrooms: Present and future strategies. Critic Rev Biotechnol 18(2–3): 91–236CrossRefGoogle Scholar
  153. Raimbault M (1998) General and microbiological aspects of solid substrate fermentation. Electron J Biotechnol 1(3): 1–15Google Scholar
  154. Reddy N, Yang Y (2005) Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol 23(1): 22–27PubMedCrossRefGoogle Scholar
  155. Revankar MS, Desai KM, Lele SS, (2007) Solid-state fermentation for enhanced production of Laccase using indigenously isolated Ganoderma sp. Appl Biochem Biotechnol 143: 16–26PubMedCrossRefGoogle Scholar
  156. Rigas F, Papadopoulou K, Dritsa V et al. (2007) Bioremediation of a soil contaminated by lindane utilizing the fungus Ganoderma australe via response surface methodology. J Haz Mat 140: 325–332CrossRefGoogle Scholar
  157. Rinker DL (2002) Handling and using “Spent” Mushroom Substrate around the world. In: Sánchez JE, Huerta G, Montiel E (eds), Mushroom Biology and Mushroom Products, UAEM, CuernavacaGoogle Scholar
  158. Rodriguez-Estrada AE, Royse DJ (2007) Yield, size and bacterial blotch resistance of Pleurotus eryngii grown on cottonseed hulls/oak sawdust supplemented with manganese copper and whole soybean. Biores Technol 98: 1898–1906CrossRefGoogle Scholar
  159. Rossi IH, Monteiro AC, Machado JO (2003) Shiitake Lentinula edodes Production on a sterilized bagasse substrate enriched with rice bran and sugarcane molasses. Braz J Microbiol 34: 66–71Google Scholar
  160. Royse DJ (1996) Yield Stimulation of Shiitake by Millet. Supplementation of Wood Chip Substrate. In: Royse DJ (ed) Mushroom Biology and Mushroom Products, Penn State University, PensnylvaniaGoogle Scholar
  161. Royse DJ (2001) Cultivation of Shiitake on Natural and Synthetic Logs. College of Agricultural Sciences, Penn State University, PennsylvaniaGoogle Scholar
  162. Royse DJ (2002) Influence of Spawn rate and commercial delayed release nutrient levels on Pleurotus cornucopiae (oyster mushroom) yield, size, and time to production. Appl Microbiol Biotechnol 58: 527–531PubMedCrossRefGoogle Scholar
  163. Royse DJ (2003a) Cultivation of Oyster Mushrooms. College of Agricultural Sciences, The Pennsylvania State University, University Park, PA.Google Scholar
  164. Royse DJ (2003b) Influence of precipitated calcium carbonate (CaCO3) on Shiitake (Lentinula edodes) yield and mushroom size. Bioresour Technol 90: 225–228PubMedCrossRefGoogle Scholar
  165. Royse DJ (2004) Specialty mushrooms. In: Mushroom Fact Sheet, Mushroom Spawn Laboratory, Penn State University, PennsylvaniaGoogle Scholar
  166. Royse DJ, Bahler CC (1986) Effects of genotype, spawn run time, and substrate formulation on biological efficiency on shiitake. Appl Environ Microbiol 52(6): 1425–1427PubMedGoogle Scholar
  167. Royse DJ, Schisler LC (1987) Yield and size of Pleurotus ostreatus andPleurotus sajor-caju as affected by delayed-release nutrient. Appl Microbiol Biotechnol 26: 191–194CrossRefGoogle Scholar
  168. Royse DJ, Sanchez JE (2007) Ground wheat Straw as a substitute for portions of oak wood chips used in Shiitake (Lentinula edodes) substrate formulae. Biorsour Technol 98: 2137–2141CrossRefGoogle Scholar
  169. Royse DJ, Bahler BD, Bahler CC (1990) Enhanced Yield of shiitake by saccharide amendment of the synthetic substrate. Appl Environ Microbiol 56(2): 479–482PubMedGoogle Scholar
  170. Royse DJ, Sanchez-Vazquez JE (2001) Influence of substrate wood-chip particle size on Shiitake (Lentinula edodes) yield. Bioresour Technol 76: 229–233PubMedCrossRefGoogle Scholar
  171. Royse DJ, Rhodes TW, Sánchez JE (2002) Vacuum-soaking of wood chip Shiitake (Lentinula edodes) logs to reduce soak time and log weight variability and to stimulate mushroom yield. Appl Microbiol Biotechnol 58: 58–62.PubMedCrossRefGoogle Scholar
  172. Sabota C (1996) Strain of Shiitake mushroom [Lentinula edodes (Berk.) Pegler] and wood species affect the yield of Shiitake mushrooms. HortTechnol 6(4): 388–393Google Scholar
  173. Salmones D, Mata G, Waliszewski KN (2005) Comparative culturing of Pleurotus spp. On coffee pulp and wheat straw: Biomass production and substrate biodegradation. Bioresour Technol 96: 537–544PubMedCrossRefGoogle Scholar
  174. Salmones D, Mata G, Ramos LM, Waliszewski KN (1999) Cultivation of shiitake mushroom, Lentinula edodes, in several lignocellulosic materials originating from the subtropics. Agronomie 19(1): 13–19CrossRefGoogle Scholar
  175. Sánchez C (2004) Modern aspects of mushroom culture technology. Appl Microbiol Biotechnol 64: 756–762PubMedCrossRefGoogle Scholar
  176. Sánchez A, Ysunza F, Beltrán-García MJ (2002). Biodegradation of Viticulture Wastes by Pleurotus: a source of microbial and human food and its potential use in animal feeding. J Agric Food Chem 50: 2537–2542PubMedCrossRefGoogle Scholar
  177. Saura-Calixto F, Cañellas J, García-Raso J (1983) Determination of hemicellulose, cellulose and lignin contents of dietary fibre and crude fibre of several seed hulls. Data Comparison. Z Lebensm Unters Forsch 177: 200–202CrossRefGoogle Scholar
  178. Serra M, Kirby R (1999) Development of Pleurotus (Oyster) mushroom production in Southern Africa using alien wood species as lignocellulose substrate. Int J Mush Sci 2(3): 49–55Google Scholar
  179. Shah ZA, Ashraf M, Ishtiaq CM (2004) Comparative study on cultivation and yield performance of oyster mushroom (Pleurotus ostreatus) on different substrates (Wheat Straw, Leaves, Saw Dust). Pakistan J Nutr 3(3): 158–160CrossRefGoogle Scholar
  180. Silva EM, Machuca A, Milagres AMF (2005) Effect of cereal brans on Lentinula edodes growth and enzyme activities during cultivation on forestry waste. Lett Appl Microbiol 40: 283–288PubMedCrossRefGoogle Scholar
  181. Silva ÉS, Cavallazzi JRP, Muller G (2007) Biotechnological applications of Lentinus edodes. J Food, Agric Environ 5(3,4): 403–407Google Scholar
  182. Singh MP (2000) Biodegradation of lignocellulosic wastes through cultivation of Pleurotus sajor-caju. In: Van Griensven JLJD (ed) Science and Cultivation of Edible Fungi, Balkema, RotterdamGoogle Scholar
  183. Smith JE, Rowan NJ, Sullivan R (2002) Medicinal mushrooms: a rapidly developing area of biotechnology for cancer therapy and other bioactivities. Biotechnol Lett 24: 1839–1845CrossRefGoogle Scholar
  184. Soccol CR, Vandenberghe LPS (2003) Overview of applied solid-state fermentation in Brazil. Biochem Eng J 13: 205–218CrossRefGoogle Scholar
  185. Soto C, Martínez-Carrera D, Morales P, Sobal M (1987) La pulpa de café secada al sol, como una forma de almacenamiento para el cultivo de Pleurotus ostreatus. Rev Mex Mic 3: 133–136Google Scholar
  186. Stamets P (2000) Growing Gourmet and Medicinal Mushrooms. Ten Speed Press, BerkeleyGoogle Scholar
  187. Steffen KT, Cajthaml T, šnajdr J, Baldrian P (2007) Differential degradation of oak (Quercus petraea) leaf litter by litter-decomposing basidiomycetes. Res Micobiol 158: 447–455Google Scholar
  188. Tengerdy RP, Szakacs G (2003) Bioconversion of lignocellulose in solid substrate fermentation. Biochem Eng J 13: 169–179CrossRefGoogle Scholar
  189. Thomsen MH (2005) Complex media from processing of agricultural crops for microbial fermentation. Appl Microbiol Biotechnol 68: 598–606PubMedCrossRefGoogle Scholar
  190. Tisdale TE, Miyasaka SC, Hemmes DE (2006) Cultivation of the oyster mushroom (Pleurotus ostreatus) on wood substrates in Hawaii. World J Microbiol Biotechnol 22: 201–206CrossRefGoogle Scholar
  191. Upadhyay RC, Verma RN, Singh SK et al. (2002) Effect of organic nitrogen supplementation in Pleurotus species In: Sánchez JE, Huerta G, Montiel E (eds) Mushroom Biology and Mushroom Products, Universidad Autónoma del Estado de Morelos, MexicoGoogle Scholar
  192. USDA-US DOE (2005). Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annyal supply. http://feedstockreview.ornl.gov/pdf/billion_ton_vision.pdf. Accessed 10 May 2008
  193. Vega A, Caballero RE, Garcia JR (2005) Bioconversion of agro-industrial residues by Pleurotus ostreatus cultivation. Revist Mex Micol 20: 33–38Google Scholar
  194. Velázquez-Cedeño MA, Mata G, Savoie JM (2002) Waste-reducing cultivation of Pleurotus ostreatus and Pleurotus pulmonarius on coffee pulp: changes in the production of some lignocellulolytic enzymes. World J Microbiol Biotechnol 18: 201–207CrossRefGoogle Scholar
  195. Ververis C, Georghiou K, Christodoulakis N (2004) Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Ind Crops Prod 19:245–254.CrossRefGoogle Scholar
  196. Vetayasuporn S (2006) Oyster mushroom cultivation on different cellulosic substrates. Res J Agric Biol Sci 2(6): 548–551Google Scholar
  197. Wang HH (1999) Development and/or reclamation of bioresources with solid state fermentation. Proc Nat Sci Counc 23(2): 45–61Google Scholar
  198. Wang D, Sakoda A, Suzuki M (2001) Biological efficiency and nutritional value of Pleurotus ostreatus cultivated on spent beer grain. Bioresour Technol 78(3): 293–300PubMedCrossRefGoogle Scholar
  199. Ward PL, Wohlt JE, Zajac PK et al. (2000) Chemical and physical properties of processed newspaper compared to wheat straw and wood shavings as animal bedding. J Dairy Sci 83: 359–367PubMedCrossRefGoogle Scholar
  200. Wasser SP (2002) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60: 258–274PubMedCrossRefGoogle Scholar
  201. Wasser SP, Weis AL (1999) Medicinal properties of substances occurring in higher basidiomycetes mushrooms: current perspectives. Int J Med Mush 1: 31–62Google Scholar
  202. Webb C, Koutinas AA, Wang R (2004) Developing a sustainable bioprocessing strategy based on a generic feedstock. Adv Biochem Eng Biotechnol 86: 195–268Google Scholar
  203. Wong SM, Wong KK, Chiu L et al. (2007) Non-starch polysaccharides from different developmental stages of Pleurotus tuber-regium inhibited the growth of human acute promyelocytic leukemia HL-60 cells by cell-cycle arrest and/or apoptotic induction. Carbohydr Polym 68: 206–217CrossRefGoogle Scholar
  204. Wood DA, Smith JF (1987) The cultivation of mushrooms. In: Norris JR, Pettipher GL, (eds) Essays in Agricultural and Food Microbiology, John Willey and Sons Ltd, LondonGoogle Scholar
  205. Wood DA (1989) Mushroom Biotechnology. Int Ind Biotechnol 9: 5–9Google Scholar
  206. Worrall JJ, Yang CS (1992) Shiitake and oyster mushroom production on apple pomace and sawdust. HortSci 27(10): 1131–1133Google Scholar
  207. Yildiz S, Yildiz ÜC, Gezer ED (2002) Some lignocellulosic wastes used as raw material in cultivation of the Pleurotus ostreatus culture mushroom. Proc Biochem 38: 301–306CrossRefGoogle Scholar
  208. Zadrazil F (1993) Lentinula (=Lentinus) edodes: physiology and condition of industrial production. Mush Inf 6: 5–27Google Scholar
  209. Zadrazil F (2000) Is conversion of lignocellulosics into feed with white-rot fungi realizable? Practical problems of scale-up and technology. In: Van Griensven LJLD (ed) Science and Cultivation of Edible Fungi, Balkema, RotterdamGoogle Scholar
  210. Zadrazil F, Kamra DN, Isikhuemhen OS et al. (1996) Bioconversion of lignocellulose into ruminant feed with white rot fungi – Review of work done at the FAL, Braunschweig. J Appl Anim Res 10: 105–124Google Scholar
  211. Zadrazil F, Compare G, Maziero R (2004) Biology, cultivation and utilization of Pleurotus species. In: Romaine CP, Keil CB, Rinker DL et al. (eds) Science and Cultivation of Edible and Medicinal Fungi, Penn State University, PennsylvaniaGoogle Scholar
  212. Zervakis G, Balis C (1992) Comparative study on the cultural characters of Pleurotus species under the influence of different substrates and fruiting temperatures. Micol Neotrop Aplicada 5: 39–47Google Scholar
  213. Zervakis G, Philippoussis A (2000) Management of agro-industrial wastes through the cultivation of edible mushrooms. In: Proceedings o f IV European Waste Forum ‘Innovation in waste management’, C.I.P.A., MilanGoogle Scholar
  214. Zervakis G, Philippoussis A, Ioannidou S et al. (2001) Mycelium growth kinetics and optimal temperature conditions for the cultivation of edible mushroom species on lignocellulosic substrates. Folia Microbiol 46(3): 231–234CrossRefGoogle Scholar
  215. Zervakis G, Papadopoulou K, Ehaliotis C et al. (2005) Use of composts deriving from Mediterranean agro-industrial wastes in vegetable crops: effects on disease suppression and plant growth. In: de Kreij C, Warmenhoven M (eds) Proceedings of the International Symposium on the Use of Composted Organic Wastes in Horticulture, WageningenGoogle Scholar
  216. Zhang CK, Gong F, Li DS (1995) A note on the utilization of spent mushroom compost in animal feeds. Biores Technol 52(1):89–91CrossRefGoogle Scholar
  217. Zhang R, Li X, Fadel JG (2002) Oyster mushroom cultivation with rice and wheat straw. Bioresour Technol 82: 277–284PubMedCrossRefGoogle Scholar
  218. Zhang YHP (2008) Reviving the carbohydrate economy via multi-product lignocellulose bioefineries. J Ind Microbiol Biotechnol 35: 367–375PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Antonios N. Philippoussis
    • 1
  1. 1.Laboratory of Edible and Medicinal FungiNational Agricultural Research Foundation, I.A.A.C.13561 Ag, AnargyriGreece

Personalised recommendations