Skip to main content

Limit Distributions and Scaling Functions

  • Chapter

Part of the book series: Lecture Notes in Physics ((LNP,volume 775))

For a given combinatorial class of objects, such as polygons or polyhedra, the most basic question concerns the number of objects of a given size (always assumed to be finite), or an asymptotic estimate thereof. Informally stated, in this overview we will analyse the refined question:

What does a typical object look like?

In contrast to the combinatorial question about the number of objects of a given size, the latter question is of a probabilistic nature. For counting parameters in addition to object size, one asks for their (asymptotic) probability law. To give this question a meaning, an underlying ensemble has to be specified. The simplest choice is the uniform ensemble, where each object of a given size occurs with equal probability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abramowitz and I.A. Stegun.Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, volume 18. National Bureau of Standards Applied Mathematics Series, 1964. Reprint Dover 1973.

    Google Scholar 

  2. D.J. Aldous. The continuum random tree II: An overview. In M.T. Barlow and N.H. Bingham, editors,Stochastic Analysis, pages 23–70. CambrIDge University Press, CambrIDge, 1991.

    Google Scholar 

  3. G. Aleksandrowicz and G. Barequet. Countingd-dimensional polycubes and nonrectangular planar polyominoes. InProc. 12th Ann. Int. Computing and Combinatorics Conf. (COCOON), Taipei, Taiwan, volume 4112 ofSpringer Lecture Notes in Computer Science, pages 418–427. Springer, 2006.

    Google Scholar 

  4. D. Bennett-Wood, I.G. Enting, D.S. Gaunt, A.J. Guttmann, J.L. Leask, A.L. Owczarek, and S.G. Whittington. Exact enumeration study of free energies of interacting polygons and walks in two dimensions.J. Phys. A: Math. Gen, 31:4725–4741, 1998.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. N. Bleistein and R.A. Handelsman.Asymptotic Expansions of Integrals. Holt, Rinehart and Winston, New York, 1975.

    MATH  Google Scholar 

  6. M. Bousquet-Mélou. Une bijection entre les polyominos convexes dirigés et les mots de Dyck bilatéres.RAIRO Inform. Théor. Appl., 26:205–219, 1992.

    MATH  MathSciNet  Google Scholar 

  7. M. Bousquet-Mélou. A method for the enumeration of various classes of column-convex polygons.Discrete Math., 154:1–25, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Bousquet-Mélou. Families of prudent self-avoIDing walks. Preprint arXiv:0804.4843, 2008.

    Google Scholar 

  9. M. Bousquet-Mélou and J.-M. Fédou. The generating function of convex polyominoes: the resolution of aq-differential system.Discr. Math., 137:53–75, 1995.

    Article  MATH  Google Scholar 

  10. M. Bousquet-Mélou and S. Janson. The density of the ISE and local limit laws for embedded trees.Ann. Appl. Probab., 16:1597–1632, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Bousquet-Mélou and A. Rechnitzer. The site-perimeter of bargraphs.Adv. in Appl. Math., 31:86–112, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  12. R. Brak and J.W. Essam. Directed compact percolation near a wall. III. Exact results for the mean length and number of contacts.J. Phys. A: Math. Gen., 32:355–367, 1999.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. R. Brak and A.L. Owczarek. On the analyticity properties of scaling functions in models of polymer collapse.J. Phys. A: Math. Gen., 28:4709–4725, 1995.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. R. Brak, A.L. Owczarek, and T. Prellberg. A scaling theory of the collapse transition in geometric cluster models of polymers and vesicles.J. Phys. A: Math. Gen., 26:4565–5479, 1993.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. J. Cardy. Mean area of self-avoIDing loops.Phys. Rev. Lett., 72:1580–1583, 1994.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. J. Cardy. Exact scaling functions for self-avoIDing loops and branched polymers.J. Phys. A: Math. Gen., 34:L665–L672, 2001.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. K.L. Chung.A Course in Probability Theory. Academic Press, New York, 2nd edition, 1974.

    MATH  Google Scholar 

  18. G.M. Constantine and T.H. Savits. A multivariate Faa di Bruno formula with applications.Trans. Amer. Math. Soc., 348:503–520, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  19. D.A. Darling. On the supremum of a certain Gaussian process.Ann. Probab., 11:803–806, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  20. M.-P. Delest, D. Gouyou-Beauchamps, and B. Vauquelin. Enumeration of parallelogram poly-ominoes with given bond and site perimeter.Graphs Combin., 3:325–339, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  21. M.-P. Delest and X.G. Viennot. Algebraic languages and polyominoes enumeration.Theor. Comput. Sci., 34:169–206, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  22. J.C. DethrIDge, T.M. Garoni, A.J. Guttmann, and I. Jensen. Prudent walks and polygons. Preprint arXiv:0810:3137, 2008.

    Google Scholar 

  23. G. Doetsch.Introduction to the Theory and Application of the Laplace Transform. Springer, New York, 1974.

    Google Scholar 

  24. M. Drmota. Systems of functional equations.Random Structures Algorithms, 10:103–124, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  25. P. Duchon. q-grammars and wall polyominoes.Ann. Comb., 3:311–321, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  26. J.W. Essam. Directed compact percolation: Cluster size and hyperscaling.J. Phys. A: Math. Gen., 22:4927–4937, 1989.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. J.W. Essam and A.J. Guttmann. Directed compact percolation near a wall. II. Cluster length and size.J. Phys. A: Math. Gen., 28:3591–3598, 1995.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. J.W. Essam and D. Tanlakishani. Directed compact percolation. II. Nodal points, mass distribution, and scaling. InDisorder in physical systems, volume 67, pages 67–86. Oxford Univ. Press, New York, 1990.

    Google Scholar 

  29. J.W. Essam and D. Tanlakishani. Directed compact percolation near a wall. I. Biased growth.J. Phys. A: Math. Gen., 27:3743–3750, 1994.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. J.A. Fill, P. Flajolet, and N. Kapur. Singularity analysis, Hadamard products, and tree recurrences.J. Comput. Appl. Math., 174:271–313, 2005.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. M.E. Fisher, A.J. Guttmann, and S.G. Whittington. Two-dimensional lattice vesicles and polygons.J. Phys. A: Math. Gen., 24:3095–3106, 1991.

    Article  ADS  MathSciNet  Google Scholar 

  32. P. Flajolet. Singularity analysis and asymptotics of Bernoulli sums.Theoret. Comput. Sci., 215:371–381, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  33. P. Flajolet, S. Gerhold, and B. Salvy. On the non-holonomic character of logarithms, powers, and then-th prime function.Electronic Journal of Combinatorics, 11:A2:1–16, 2005.

    MathSciNet  Google Scholar 

  34. P. Flajolet and G. Louchard. Analytic variations on the Airy distribution.Algorithmica, 31:361–377, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  35. P. Flajolet and A. Odlyzko. Singularity analysis of generating functions.SIAM J. Discr. Math., 3:216–240, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  36. P. Flajolet, P. Poblete, and A. Viola. On the analysis of linear probing hashing. Average-case analysis of algorithms.Algorithmica, 22:37–71, 1998.

    Article  MathSciNet  Google Scholar 

  37. P. Flajolet and R. Sedgewick.Analytic Combinatorics. Book in preparation, 2008.

    Google Scholar 

  38. B. Gittenberger. On the contour of random trees.SIAM J. Discr. Math., 12:434–458, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  39. I.P. Goulden and D.M. Jackson.Combinatorial enumeration. John Wiley & Sons, New York, 1983.

    MATH  Google Scholar 

  40. D. Gouyou-Beauchamps and P. Leroux. Enumeration of symmetry classes of convex poly-ominoes on the honeycomb lattice.Theoret. Comput. Sci., 346:307–334, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  41. R.B. Griffiths. Proposal for notation at tricritical points.Phys. Rev. B, 7:545–551, 1973.

    Article  ADS  Google Scholar 

  42. G. Grimmett.Percolation. Springer, Berlin, 1999. 2nd ed.

    Google Scholar 

  43. A.J. Guttmann. Asymptotic analysis of power-series expansions. In C. Domb and J.L. Lebowitz, editors,Phase Transitions and Critical Phenomena, volume 13, pages 1–234. Academic, New York, 1989.

    Google Scholar 

  44. A.J. Guttmann and I. Jensen. Fuchsian differential equation for the perimeter generating function of three-choice polygons.S éminaire Lotharingien de Combinatoire, 54:B54c, 2006.

    MathSciNet  Google Scholar 

  45. A.J. Guttmann and I. Jensen. The perimeter generating function of punctured staircase polygons.J. Phys. A: Math. Gen., 39:3871–3882, 2006.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  46. G.H. Hardy. Divergent Series. Clarendon Press, Oxford, 1949.

    MATH  Google Scholar 

  47. E.J. Janse van Rensburg.The Statistical Mechanics of Interacting Walks, Polygons, Animals and Vesicles, volume 18 ofOxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2000.

    MATH  Google Scholar 

  48. E.J. Janse van Rensburg. Statistical mechanics of directed models of polymers in the square lattice.J. Phys. A: Math. Gen., 36:R11–R61, 2003.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  49. E.J. Janse van Rensburg. Inflating square and rectangular lattice vesicles.J. Phys. A: Math. Gen., 37:3903–3932, 2004.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  50. E.J. Janse van Rensburg and J. Ma. Plane partition vesicles.J. Phys. A: Math. Gen., 39:11171– 11192, 2006.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. S. Janson. The Wiener index of simply generated random trees.Random Structures Algorithms, 22:337–358, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  52. S. Janson. Brownian excursion area, Wright's constants in graph enumeration, and other Brownian areas.Probab. Surv., 4:80–145, 2007.

    MathSciNet  MATH  Google Scholar 

  53. I. Jensen. Perimeter generating function for the mean-squared radius of gyration of convex polygons.J. Phys. A: Math. Gen., 38:L769–775, 2005.

    Article  MATH  ADS  Google Scholar 

  54. B.McK. Johnson and T. Killeen. An explicit formula for the c.d.f. of thel 1 norm of the Brownian bridge.Ann. Prob., 11:807–808, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  55. J.M. Kearney. On a random area variable arising in discrete-time queues and compact directed percolation.J. Phys. A: Math. Gen., 37:8421–8431, 2004.

    Article  ADS  MathSciNet  Google Scholar 

  56. M.J. Kearney. Staircase polygons, scaling functions and asymmetric compact percolation.J. Phys. A: Math. Gen., 35:L731–L735, 2002.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  57. M.J. Kearney. On the finite-size scaling of clusters in compact directed percolation.J. Phys. A: Math. Gen., 36:6629–6633, 2003.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  58. M.J. Kearney, S.N. Majumdar, and R.J. Martin. The first-passage area for drifted Brownian motion and the moments of the Airy distribution.J. Phys. A: Math. Theor., 40:F863–F869, 2007.

    Article  ADS  MathSciNet  Google Scholar 

  59. J.-M. Labarbe and J.-F. Marckert. Asymptotics of Bernoulli random walks, bridges, excursions and meanders with a given number of peaks.Electronic J. Probab., 12:229–261, 2007.

    MATH  MathSciNet  Google Scholar 

  60. G.F. Lawler, O. Schramm, and W. Werner. On the scaling limit of planar self-avoiding walk. InFractal Geometry and Applications: A Jubilee of Benoît Mandelbrot,Part 2, volume 72 ofProceedings of Symposia in Pure Mathematics, pages 339–364. Amer. Math. Soc., Providence, RI, 2004.

    Google Scholar 

  61. I.D. Lawrie and S. Sarbach. Theory of tricritical points. In C. Domb and J.L. Lebowitz, editors,Phase Transitions and Critical Phenomena, volume 9, pages 1–161. Academic Press, London, 1984.

    Google Scholar 

  62. P. Leroux and É. Rassart. Enumeration of symmetry classes of parallelogram polyominoes.Ann. Sci. Math. Québec, 25:71–90, 2001.

    MATH  MathSciNet  Google Scholar 

  63. P. Leroux, É. Rassart, and A. Robitaille. Enumeration of symmetry classes of convex poly-ominoes in the square lattice.Adv. in Appl. Math, 21:343–380, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  64. K.Y. Lin. Rigorous derivation of the perimeter generating functions for the mean-squared radius of gyration of rectangular, Ferrers and pyramid polygons.J. Phys. A: Math. Gen., 39:8741–8745, 2006.

    Article  MATH  ADS  Google Scholar 

  65. M. Lladser.Asymptotic enumeration via singularity analysis. PhD thesis, Ohio State University, 2003. Doctoral dissertation.

    Google Scholar 

  66. G. Louchard. Kac's formula, Lévy's local time and Brownian excursion.J. Appl. Probab., 21:479–499, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  67. G. Louchard. The Brownian excursion area: A numerical analysis.Comput. Math. Appl., 10:413–417, 1985.

    Article  MathSciNet  Google Scholar 

  68. G. Louchard. Erratum:“The Brownian excursion area: A numerical analysis”.Com-put. Math. Appl., 12:375, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  69. G. Louchard. Probabilistic analysis of some (un)directed animals.Theoret. Comput. Sci., 159:65–79, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  70. G. Louchard. Probabilistic analysis of column-convex and directed diagonally-convex animals.Random Structures Algorithms, 11:151–178, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  71. G. Louchard. Probabilistic analysis of column-convex and directed diagonally-convex animals. II. Trajectories and shapes.Random Structures Algorithms, 15:1–23, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  72. A. Del Lungo, M. Mirolli, R. Pinzani, and S. Rinaldi. A bijection for directed-convex poly-ominoes.Discr. Math. Theo. Comput. Sci., AA (DM-CCG):133–144, 2001.

    Google Scholar 

  73. J. Ma and E.J. Janse van Rensburg. Rectangular vesicles in three dimensions.J. Phys. A: Math. Gen., 38:4115–4147, 2005.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  74. N. Madras and G. Slade.The Self-Avoiding Walk. Birkhäuser Boston, Boston, MA, 1993.

    MATH  Google Scholar 

  75. S.N. Majumdar. Brownian functionals in physics and computer science.Current Sci., 89:2076–2092, 2005.

    MathSciNet  Google Scholar 

  76. S.N. Majumdar and A. Comtet. Airy distribution function: From the area under a Brownian excursion to the maximal height of fluctuating interfaces.J. Stat. Phys., 119:777–826, 2005.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  77. M. Nguyễn Thê̗. Area of Brownian motion with generatingfunctionology. In C. Ban-derier and C. Krattenthaler, editors,Discrete Random Walks, DRW'03, Discrete Mathematics and Theoretical Computer Science Proceedings, AC, pages 229–242. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2003.

    Google Scholar 

  78. M. Nguyễn Thê̗. Area and inertial moment of Dyck paths.Combin. Probab. Comput., 13:697– 716, 2004.

    Article  MathSciNet  Google Scholar 

  79. A.M. Odlyzko. Asymptotic enumeration methods. In R.L. Graham, M. Grötschel, and L. Lovàsz, editors,Handbook of Combinatorics, volume 2, pages 1063–1229. Elsevier, Amsterdam, 1995.

    Google Scholar 

  80. F.W.J. Olver.Asymptotics and Special Functions. Academic Press, New York, 1974.

    Google Scholar 

  81. R. Pemantle and M. Wilson. Twenty combinatorial examples of asymptotics derived from multivariate generating functions.SIAM Rev., 50:199–272, 2008.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  82. J. Pitman.Combinatorial Stochastic Processes, volume 1875 ofLecture Notes in Mathematics. Springer-Verlag, Berlin, 2006.

    Google Scholar 

  83. T. Prellberg. Uniform q-series asymptotics for staircase polygons.J. Phys. A: Math. Gen., 28:1289–1304, 1995.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  84. T. Prellberg and R. Brak. Critical exponents from nonlinear functional equations for partially directed cluster models.J. Stat. Phys., 78:701–730, 1995.

    Article  MATH  ADS  Google Scholar 

  85. T. Prellberg and A.L. Owczarek. Stacking models of vesicles and compact clusters.J. Stat. Phys., 80:755–779, 1995.

    Article  MATH  ADS  Google Scholar 

  86. A. Rechnitzer. Haruspicy 2: The anisotropic generating function of self-avoiding polygons is notD-finite.J. Combin. Theory Ser. A, 113:520–546, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  87. C. Richard. Scaling behaviour of two-dimensional polygon models.J. Stat. Phys., 108:459– 493, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  88. C. Richard. Staircase polygons: Moments of diagonal lengths and column heights.J. Phys.: Conf. Ser., 42:239–257, 2006.

    Article  ADS  Google Scholar 

  89. C. Richard. Onq-functional equations and excursion moments.Discr. Math., in press, 2008. math.CO/0503198.

    Google Scholar 

  90. C. Richard and A.J. Guttmann.q-linear approximants: Scaling functions for polygon models.J. Phys. A: Math. Gen., 34:4783–4796, 2001.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  91. C. Richard, A.J. Guttmann, and I. Jensen. Scaling function and universal amplitude combinations for self-avoiding polygons.J. Phys. A: Math. Gen., 34:L495–L501, 2001.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  92. C. Richard, I. Jensen, and A.J. Guttmann. Scaling function for self-avoiding polygons. In D. Iagolnitzer, V. Rivasseau, and J. Zinn-Justin, editors,Proceedings of the International Congress on Theoretical Physics TH2002 (Paris),Supplement, pages 267–277. Birkhäuser, Basel, 2003.

    Google Scholar 

  93. C. Richard, I. Jensen, and A.J. Guttmann. Scaling function for self-avoiding polygons revisited.J. Stat. Mech.: Th. Exp., page P08007, 2004.

    Google Scholar 

  94. C. Richard, I. Jensen, and A.J. Guttmann. Area distribution and scaling function for punctured polygons.Electronic Journal of Combinatorics, 15:#R53, 2008.

    Google Scholar 

  95. C. Richard, U. Schwerdtfeger, and B. Thatte. Area limit laws for symmetry classes of staircase polygons. Preprint arXiv:0710:4041, 2007.

    Google Scholar 

  96. U. Schwerdtfeger. Exact solution of two classes of prudent polygons. Preprint arXiv:0809:5232, 2008.

    Google Scholar 

  97. U. Schwerdtfeger. Volume laws for boxed plane partitions and area laws for Ferrers diagrams. InFifth Colloquium on Mathematics and Computer Science, Discrete Mathematics and Theoretical Computer Science Proceedings, AG, pages 535–544. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2008.

    Google Scholar 

  98. R.P. Stanley.Enumerative Combinatorics, volume 2. Cambridge University Press, Cambridge, Cambridge.

    Google Scholar 

  99. L. Takàcs. On a probability problem connected with railway traffic.J. Appl. Math. Stochastic Anal., 4:1–27, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  100. L. Takàcs. Limit distributions for the Bernoulli meander.J. Appl. Prob., 32:375–395, 1995.

    Article  MATH  Google Scholar 

  101. R. van der Hofstad and W. König. A survey of one-dimensional random polymers.J. Statist. Phys., 103:915–944, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  102. C. Vanderzande.Lattice Models of Polymers, volume 11 ofCambridge Lecture Notes in Physics. Cambridge University Press, Cambridge, 1998.

    Google Scholar 

  103. L. Di Vizio, J.-P. Ramis, J. Sauloy, and C. Zhang. Équations auxq-différences.Gaz. Math.,96:20–49, 2003.

    MathSciNet  Google Scholar 

  104. S.G. Whittington. Statistical mechanics of three-dimensional vesicles.J. Math. Chem., 14:103–110, 1993.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Canopus Academic Publishing Limited

About this chapter

Cite this chapter

Richard, C. (2009). Limit Distributions and Scaling Functions. In: Guttman, A.J. (eds) Polygons, Polyominoes and Polycubes. Lecture Notes in Physics, vol 775. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9927-4_11

Download citation

Publish with us

Policies and ethics