Skip to main content

XUV Probing as a Diagnostic of Rayleigh-Taylor Instability Growth

  • Conference paper
X-Ray Lasers 2008

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 130))

  • 841 Accesses

Abstract

The application of extreme ultra-violet (XUV) lasers to the probing of Rayleigh Taylor instability (RTI) growth on planar targets has been investigated using the 2D hydrodynamic code POLLUX. Simulations of XUV probing have allowed characterisation of the expected effects of lateral movement of material on the transmission of plastic and iron targets. The effects on XUV transmission of seeding the Rayleigh-Taylor Instability with varying laser modulations has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H J Kull, Phys. Rep. 206 197 (1991)

    Article  ADS  Google Scholar 

  2. H Takabe et al, Phys. Fluids 28 2676 (1985)

    Article  MathSciNet  Google Scholar 

  3. J Nuckolls et a, Nature 239 139 (1972)

    Article  ADS  Google Scholar 

  4. D H Kalantar et al, Phys. Plasmas 4 1985 (1997)

    Article  ADS  Google Scholar 

  5. M H Key et al, JQSRT 54 2221 (1995)

    Google Scholar 

  6. R Cauble et al, Phys. Re. Lett. 74 3816 (1995)

    Article  ADS  Google Scholar 

  7. R J Taylor et al, Phys. Rev. Lett. 76 1643 (1996)

    Article  ADS  Google Scholar 

  8. D H Kalantar et al, Rev. Sci. Instrum. 67 781 (1996)

    Article  ADS  Google Scholar 

  9. D H Kalantar et al, Rev. Sci. Instrum. 68 802 (1996)

    Article  ADS  Google Scholar 

  10. E Wolfrum et al, Phys. Plasmas 5 227 (1997)

    Article  ADS  Google Scholar 

  11. M H Edwards et al, Phys. Rev. Lett. 99 195002 (2007)

    Article  ADS  Google Scholar 

  12. M Edwards et al, Phys. Rev. Lett. 97 035001 (2006)

    Article  ADS  Google Scholar 

  13. S J Rose, J. Phys. B: At. Mol. Opt. Phys. 25 1667 (1992)

    Article  ADS  Google Scholar 

  14. G J Pert, J. Comp. Phys. 43 111 (1981)

    Article  MATH  ADS  Google Scholar 

  15. R Taylor, J Edwards and R Evans, POLLUX modifications 1993–1996

    Google Scholar 

  16. A Al-Khateeb et al, Appl. Phys. A 69 S479 (1999)

    Article  ADS  Google Scholar 

  17. M J De, C Henshaw, G J Pert and D L Youngs, Plasma Phys. Control. Fus. 29 405 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this paper

Cite this paper

Gartside, L.M.R., Tallents, G.J., Pasley, J., Gaffney, J., Rose, S. (2009). XUV Probing as a Diagnostic of Rayleigh-Taylor Instability Growth. In: Lewis, C.L.S., Riley, D. (eds) X-Ray Lasers 2008. Springer Proceedings in Physics, vol 130. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9924-3_55

Download citation

Publish with us

Policies and ethics