A Multimode Radio Transceiver for Cellular Applications

  • John Groe
Part of the Series on Integrated Circuits and Systems book series (ICIR)

The explosive growth of wireless communications continues to drive the development of cellular networks with upgraded services. Many GSM networks now support EDGE and WCDMA features that allow high-speed data access. Future networks will add LTE capability for even faster data service. Consequently, multimode devices are becoming increasingly common and practically mandatory.

To fuel this growth, it becomes essential to provide these complex systems economically. This has lead to a rebirth of radio technologies focused on efficient multimode architectures.

Keywords

Microwave Attenuation Explosive Resis Convolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Crols and M. S. J. Steyaert, “A Single-Chip 900 MHz CMOS Receiver Front-End with a High Performance Low-IF Topology”, IEEE Journal of Solid-State Circuits, Dec., 1995, pp. 1483–1492.Google Scholar
  2. 2.
    J. Crols and M. S. J. Steyaert, “Low-IF Topologies for High-Performance Analog Front Ends of Fully Integrated Receivers”, IEEE Transactions on Circuits and Systems II, Mar., 1998, pp. 269–282.Google Scholar
  3. 3.
    S. Cipriani, G. Sirna, P. Cusinato, L. Carpineto, F. Monchal, C. Sorace, and E. Duvivier, “Low-IF 90 nm CMOS Receiver for 2.5G Application”, Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference, May, 2004, pp. 151–154.Google Scholar
  4. 4.
    A. A. Abidi, “Direct-Conversion Radio transceivers for Digital Communications”, IEEE Journal of Solid-State Circuits, Dec, 1995, pp. 1399–1410.Google Scholar
  5. 5.
    B. Razavi, “Design Considerations for Direct-Conversion Receivers”, IEEE Transactions on Circuits and Systems II, June, 1997, pp. 428–435.Google Scholar
  6. 6.
    D. Manstretta, R. Castello, F. Gatta, P. Rossi, and F. Svelto, “A 018μ im CMOS Direct-Conversion Receiver Front-End for UMTS”, 2002 IEEE International Solid-State Circuits Conference, Feb., 2002, pp. 240–463.Google Scholar
  7. 7.
    J. Groe, “Polar Transmitters for Wireless Communications”, IEEE Communications Magazine, Sept., 2007, pp. 58–63.Google Scholar
  8. 8.
    J. Groe, “A Multimode Cellular Radio”, IEEE Transactions on Circuits and Systems II, Mar., 2008, pp. 269–273.Google Scholar
  9. 9.
    M.S. Khan and N. Yanduru, “Analysis of Self Mixing of Transmitter Interference in WCDMA Receivers”, 2006 International Symposium on Circuits and Systems, May, 2006, pp. 5451– 5454.Google Scholar
  10. 10.
    B. Bauer, “Distortion Measuring Equipment”, HP Technical Journal, Aug., 1951.Google Scholar
  11. 11.
    A. B. Williams, Handbook on Electronic Filter Design, McGraw-Hill, New York, 1980.Google Scholar
  12. 12.
    J. Groe and L. Larson, CDMA Mobile Radio Design, Artech House, 2000.Google Scholar
  13. 13.
    T. Rappaport, Wireless Communications — Principles and Practice, Prentice-Hall, New York, 1996.Google Scholar
  14. 14.
    A. Rusu, D. Rodriguez de Llera Gonzalez, and M. Ismail, “Reconfigurable ADCs Enable Smart Radios for 4G Wireless Connectivity”, IEEE Circuits & Device Magazine, May, 2006, pp. 6–11.Google Scholar
  15. 15.
    T. Karema, T. Ritoniemi, and H. Tenhunen, “An Oversampled Sigma-Delta A/D Converter Circuit Using Two-Stage Fourth Order Modulators”, 1990 IEEE International Symposium on Circuits and Systems, 1990, pp. 3279–3282.Google Scholar
  16. 16.
    H. Baher and E. Afifi, “A Novel Switched-Capacitor Cascade Structure for Sigma-Delta Converters”, 1992 Proceedings of the 34th Midwest Symposium on Circuits and Systems, 1992, pp. 1106–1107.Google Scholar
  17. 17.
    J. C. Candy, “Decimation for Sigma Delta Modulation”, IEEE Transactions on Communications, Jan., 1986, pp. 72–76.Google Scholar
  18. 18.
    J. K. Cavers and M. W Liao, “Adaptive Compensation for Imbalance and Offset Losses in Direct Conversion Transceivers”, IEEE Transactions on Vehicular Technology, Nov., 1993, pp. 581–588.Google Scholar
  19. 19.
    J. Proakis, Digital Communications, McGraw-Hill, New York, 1995.Google Scholar
  20. 20.
    H. Sjoland, “Improved Switched Tuning of Differential CMOS VCOs”, IEEE Transactions on Circuits and Systems II, May, 2002, pp. 352–355.Google Scholar
  21. 21.
    B. Razavi, RFMicroelectronics, Prentice-Hall, Upper Saddle River, NJ, 1998.Google Scholar
  22. 22.
    I. Galton, “Granular Quantization in a Class of Delta-Sigma Modulators”, IEEE Trans. On Information Theory, May, 1994, pp. 848–859.Google Scholar
  23. 23.
    M. R. Elliott, T. Montalvo, B. P. Jeffries, F. Murden, J. Strange, A. Hill, S. Nandipaku, and J. Harrebek, “A Polar Modulator Transmitter for GSM/EDGE”, IEEE Journal of Solid-State Circuits, Dec, 2004, pp. 2190–2199.Google Scholar
  24. 24.
    A. W. Hietala, “A Quad-Band 8PSK/GMSK Polar Transceiver”, IEEE Journal of Solid-State Circuits, May, 2006, pp. 1133–1141.Google Scholar
  25. 25.
    C. Durdodt et al., “A Low-IF Rx Two-Point Δ ∑-Modulation Tx CMOS Single-Chip Bluetooth Solution”, IEEE Transactions on Microwave Theory and Techniques, Sept., 2001, pp. 1531– 1537.Google Scholar
  26. 26.
    J. Groe, “Highly Linear Phase Modulation”, US patent 10/420,952.Google Scholar
  27. 27.
    B. Razavi, “A Study of Injection Locking and Pulling in Oscillators”, IEEE Journal of Solid-State Circuits, Sep., 2004, pp. 1415–1424.Google Scholar
  28. 28.
    J. Groe, “Low-Noise RF Modulators”, submitted to IEEE Transactions on Circuits and Systems II.Google Scholar
  29. 29.
    D. Kimball et al., “High-Efficiency Envelope-Tracking WCDMA Base-Station Amplifier using GaN HFETs”, IEEE Transactions on Microwave Theory and Techniques, Nov., 2006, pp. 3848–3856.Google Scholar
  30. 30.
    J. K. Cavers, “Amplifier Linearization Using a Digital Predistorter with Fast Adaptation and Low Memory Requirements”, IEEE Transactions on Vehicular Technology, Nov., 1990, pp. 374–382.Google Scholar
  31. 31.
    P. M. Asbeck et al., “Augmented Behavioral Characterization for Modeling the Nonlinear Response of Power Amplifiers”, IEEE Microwave Theory and Techniques Symposium, 2002, pp. 135–138.Google Scholar
  32. 32.
    W. Bosch and G. Gatti, “Measurement and Simulation of Memory Effects in Predistortion Linearizers”, IEEE Transactions on Microwave Theory and Techniques, Dec., 1989, pp. 1885– 1890.Google Scholar
  33. 33.
    T. Sowlati et al., “Quad-Band GSM/GPRS/EDGE Polar Loop Transmitter”, IEEE Journal of Solid-State Circuits, Dec., 2004, pp. 2179–2189.Google Scholar
  34. 34.
    J. L. Dawson and T. H. Lee, “Automatic Phase Alignment for a Fully Integrated Cartesian Feedback Power Amplifier System”, IEEE Journal of Solid-State Circuits, Sep., 2003, pp. 2269–2279.Google Scholar
  35. 35.
    W. Kim et al., “Digital Predistortion Linearizes Wireless Power Amplifiers”, IEEE Microwave Magazine, Sep., 2005, pp. 54–61.Google Scholar
  36. 36.
    H. Taub and D. L. Schilling, Principles of Communication Systems, McGraw-Hill, New York, 1986.Google Scholar
  37. 37.
    J. Groe, “Spectrum Shaping of Polar Components and Composite Signal”, US patent application 60/979,740.Google Scholar
  38. 38.
    H. Ekstrom et al., “Technical Solutions for the 3G Long-Term Evolution”, IEEE Communications Magazine, Mar., 2006, pp. 38–45.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • John Groe
    • 1
  1. 1.Sequoia CommunicationsSan Diego

Personalised recommendations