Advertisement

Ag-Conducting Chalcogenide Glasses: Applications In Programmable Metallization Cells

  • A. Pradel
  • A. A. Piarristeguy
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Recent work performed on the Ag—Ge—Se glass system, a potential candidate to the fabrication of electrical memories, is reviewed in this paper. The combined investigation of the electrical conductivity by complex impedance spectroscopy and the microstructure by field emission scanning electron microscopy and electric force microscopy indicated that phase separation is a key to the understanding of the electrical properties. An ab-initio molecular dynamic simulation along with neutron diffraction experiments performed on the D4 instrument at the Institut Laue Langevin helped to understand the short and intermediate range order of the glasses. Under dynamic conditions, a thermodiffraction study carried out on the D1B instrument at the ILL evidenced the existence of a new Ag2GeSe3 phase at high temperatures. This phase partially decomposed with time or when the temperature decreased to GeSe2 and a new Ag10Ge3Se11 phase which can be found in the compound at room temperature.

Keywords

chalcogenide glasses programmable metallization cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.N. Kozicki, M. Mitkova, M. Park, M. Balakrishnan, C. Gopalan, Superlattice Microstruct. 34, 459 (2003).CrossRefADSGoogle Scholar
  2. 2.
    M.A. Ureña, A.A. Piarristeguy, M. Fontana, B. Arcondo, SolID State Ionics 176, 505 (2005).CrossRefGoogle Scholar
  3. 3.
    A.A. Piarristeguy, J.M. Conde GarrIDo, M.A. Ureña, M. Fontana, B. Arcondo, J. Non-Cryst. SolIDs 353, 3314 (2007).CrossRefADSGoogle Scholar
  4. 4.
    V. Balan, A.A. Piarristeguy, M. Ramonda, A. Pradel, M. Ribes, J. Optoelectron. Adv. Mater. 8, 2112 (2006).Google Scholar
  5. 5.
    A.A. Piarristeguy, M. Ramonda, M.A. Ureña, A. Pradel, M. Ribes, J. Non-Cryst. SolIDs 353, 1261 (2007).CrossRefADSGoogle Scholar
  6. 6.
    M. Kawasaki, J. Kawamura, Y. Nakamura, M. Aniya, J. Non-Cryst. SolIDs 123, 259 (1999).Google Scholar
  7. 7.
    H.E. Fischer, G.J. Cuello, P. Palleau, D. Feltin, A.C. Barnes, Y.S. Badyal, J.M. Simonson, Appl. Phys. A: Mat. Sci. Process. 74, S160 (2002).CrossRefADSGoogle Scholar
  8. 8.
    M.A. Howe, R.L. McGreevy, P. Zetterström, Computer Code CORRECT, Correction Program for Neutron Diffraction Data (NFL, Studsvik, 1996).Google Scholar
  9. 9.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996).ADSGoogle Scholar
  10. 10.
    G. Kresse, J. Furthmüller, VASP (Vienna University of Technology, Vienna 1999).Google Scholar
  11. 11.
    A.A. Piarristeguy, M. Mirandou, M. Fontana, B. Arcondo, J. Non-Cryst. SolIDs 273, 30 (2000).CrossRefADSGoogle Scholar
  12. 12.
    G.J. Cuello, A.A. Piarristeguy, A. Fernández-Martínez, M. Fontana, A. Pradel, J. Non-Cryst. SolIDs 353, 729 (2007).CrossRefADSGoogle Scholar
  13. 13.
    G. Dittmar, H. Schafer, Acta Crystallogr. B 32, 2726 (1976).Google Scholar
  14. 14.
    G.A. Wiegers, Am. Mineral 56, 1882 (1971).Google Scholar
  15. 15.
    M. Olivera, R.K. McMullan,B.J. Wuensch, SolID State Ionics 28–30, 1332 (1988).CrossRefGoogle Scholar
  16. 16.
    W. Kuhs, R. Nitsche, K. Scheunemann, Mater. Res. Bull. 14, 241 (1979).CrossRefGoogle Scholar
  17. 17.
    D. Carre, R. Ollitrault-Fichet, J. Flahaut, Acta Crystallogr. B 36, 245 (1980).Google Scholar
  18. 18.
    R.J. Dejus, S. Susman, K.J. Volin, D.G. Montague, D.L. Price, J. Non-Cryst. SolIDs 143, 162 (2007).CrossRefADSGoogle Scholar
  19. 19.
    A.A. Piarristeguy et al., In preparation (2008).Google Scholar
  20. 20.
    A.A. Piarristeguy, G.J. Cuello, P. Yot, A. Pradel, M. Ribes, J. Phys.: Condens. Mat. 20, 155106 (2008).CrossRefADSGoogle Scholar
  21. 21.
    A. Prince, Ternary Alloys (VCG, New York, 1988) p. 195.Google Scholar
  22. 22.
    M.A. Ureña, M. Fontana, B. Arcondo, M.T. Clavaguera-Mora, J. Non-Cryst SolIDs 320, 151 (2003).CrossRefADSGoogle Scholar
  23. 23.
    R. Ollitrault-Fichet, J. Rivet, J. Flahaut, J. Less-Common Met. 114, 273 (1985).CrossRefGoogle Scholar
  24. 24.
    A.A. Movsum-Zade, Z.Y. Salaeva, M.R. Allazov, Zh. Neorg. Khim. 32, 1705 (1987).Google Scholar
  25. 25.
    A. Velázquez-Velázquez, E. Belandría, B.J. Fernández, R.A. Godoy, G. Delgado, G.D. Acosta-Najarro, Phys. Status SolIDi 220, 683 (2000).CrossRefGoogle Scholar
  26. 26.
    A.G. Mikolaichuk, V.N. Moroz, Zh. Neorg. Khim. 32, 2312 (1987).Google Scholar
  27. 27.
    A. Nagel, K. Range, Z. Naturf. B 33, 1461 (1978).Google Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  1. 1.Institut Charles Gerhardt Montpellier UMR 5253 UM2 CNRS ENSCM UM1, Equipe Physicochimie des Matériaux Désordonnés et Poreux, CC 1503Université Montpellier 2France

Personalised recommendations