Nanostructured Ionic Conductors: Investigation Of Sio2−Mi (M = Li, Ag) Composites

  • A. Pradel
  • P. Yot
  • S. Albert
  • N. Frolet
  • M. Ribes
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Synthesis and characterization of porous Vycor®7930—MI (M = Li, Ag) composites are discussed. Two types of composites were prepared: sintered composites obtained by classical sintering (CS) and composites obtained by electro-crystallisation (EC). In the case of LiI composites an increase of the conductivity of two orders of magnitude as compared to the conductivity of pure LiI was observed. In such a case good coating of insulating particles and filling of the pores was observed. In the case of AgI the main important finding is the presence of an hysteresis phenomenon in the conductivity versus temperature curve at a temperature close to the transition α ↔ β AgI.


ion conductors nanostructured composites porous oxide glasses 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.C Liang, J. Electrochem. Soc. 120, 1289 (1973).CrossRefGoogle Scholar
  2. 2.
    J.B. Phipps, D.L. Johnson, D.H. Whitmore, Solid State Ionics 5, 393 (1981).CrossRefGoogle Scholar
  3. 3.
    F.W. Poulsen, N.H. Andersen, B. Kindl, J. Schoonman, Solid State Ionics 9 & 10, 119 (1983).Google Scholar
  4. 4.
    J. Maier, J. Phys. Chem. Solids 46, 309 (1985).CrossRefADSGoogle Scholar
  5. 5.
    G. Ardel, D. Golonitsky, E. Peled, Y. Wang, G. Wang, S. Bajue, S. Greenbaum, Solid State Ionics 113–115, 477 (1998).Google Scholar
  6. 6.
    H. Yamada, A. J. Bhattacharyya, J. Maier, Adv. Funct. Mater. 16, 525 (2006).CrossRefGoogle Scholar
  7. 7.
    H. Maekawa, R. Tanaka, T. Sato, Y. Fujimaki, T. Yamamura, Solid State Ionics 175,281 (2004).CrossRefGoogle Scholar
  8. 8.
    H. Maekawa, Y. Fujimaki, H. Shen, J. Kawamura, T. Yamamura, Solid State Ionics 177, 2711 (2006).CrossRefGoogle Scholar
  9. 9.
    H. Yamada, I. Moriguchi, T. Kudo, Solid State Ionics 176, 945 (2005).CrossRefGoogle Scholar
  10. 10.
    S. Albert, N. Frolet, P. Yot, A. Pradel, M. Ribes, Solid State Ionics 177, 3009 (2006).CrossRefGoogle Scholar
  11. 11.
    S. Albert, N. Frolet, P. Yot, A. Pradel, M. Ribes, Micropor. Mesopor. Mater. 99, 56 (2007).CrossRefGoogle Scholar
  12. 12.
    S. Albert, N. Frolet, P.G. Yot, A. Pradel, M. Ribes, Mater. Sci. Eng. B 150 (3), 199 (2008).CrossRefGoogle Scholar
  13. 13.
    T.H. Elmer (Ed.), Engineered Materials Handbook, Porous and Reconstructed Glasses, Vol. 4: Ceramics and Glasses (ASM International, Materials Park, OH, USA, 1992), p. 427.Google Scholar
  14. 14.
  15. 15.
    H.P. Hood, M.E. Nordberg, “Treated Borosilicate Glass,” U.S. patent 2,106,744, Feb. 1938.Google Scholar
  16. 16.
    H.P. Hood, M.E. Nordberg, “Method of Treating Borosilicate Glasses,” U.S. patent 2,286,275, June 1942.Google Scholar
  17. 17.
    M. Nagai, T. Nishino, Solid State Ionics 53–56, 63 (1992).Google Scholar
  18. 18.
    M. Nagai, T. Nishino, J. Mater. Synth. Process. 6 (3), 197 (1998).CrossRefGoogle Scholar
  19. 19.
    J.-S. Lee, S. Adams, J. Maier, J. Phys. Chem. Solids, 61, 1607 (2000).CrossRefADSGoogle Scholar
  20. 20.
    M. Tatsumisago, Y. Shinkuma, T. Minami, Nature 354, 217 (1991).CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  • A. Pradel
    • 1
  • P. Yot
    • 1
  • S. Albert
    • 1
  • N. Frolet
    • 1
  • M. Ribes
    • 1
  1. 1.Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM2-ENSCM-UM1, Equipe Physicochimie des Matériaux Désordonnés et Poreux (PMDP)CC 1503 Université Montpellier 2, Place E. BataillonFrance

Personalised recommendations