Advertisement

Rapid Laser Prototyping Of Polymer-Based Nanoplasmonic Components

  • A. L. Stepanov
  • R. Kiyan
  • C. Reinhardt
  • A. Seidel
  • S. Pas-Singer
  • B. N. Chichkov
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Renewed and growing interest in the field of surface plasmon polaritons (SPPs) comes from a rapid advance of nanostructuring technologies. The application of two-photon polymerization technique for the fabrication of dielectric and metallic SPP-structures, which can be used for localization, guiding, and manipulation of SPPs waves on a subwavelength scale, is studied. This technology is based on nonlinear absorption of near-infrared femtosecond laser pulses. Excitation, propagation, and interaction of SPP waves with nanostructures are controlled and studied by leakage radiation imaging. It is demonstrated that created nanostructures on metal film are very efficient for the excitation and focusing of SPPs. Examples of passive and active SPP components are presented and discussed.

Keywords

surface plasmon polaritons femtosecond laser nanoparticles two-photon polymerization waveguides plasmon leakage radiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Wong, and H. Ieai, Phys. World 18, 40 (2005).ADSGoogle Scholar
  2. 2.
    B. Hitz, Photon. Spectra 39, 52 (2005).Google Scholar
  3. 3.
    W.L. Barnes, A. Dereux, and T.W. Ebbesen, Nature 424, 824 (2003).PubMedCrossRefADSGoogle Scholar
  4. 4.
    E. Ozbay, Science 311, 189 (2006).PubMedCrossRefADSGoogle Scholar
  5. 5.
    H. Raether, Surface Plasmons (Springer Tracts in Modern Physics, Berlin, 1988).Google Scholar
  6. 6.
    J.-C. Weeber, Y. Lacroute, and A. Dereux, Phys. Rev. B 68, 115401, 1 (2003).Google Scholar
  7. 7.
    A. Drezet,A. Hohenau, D. Koller, A.L. Stepanov, H. Ditlbacher, B. Steinberger, F.R. Aussnegg, A. Leitner, and J.R. Krenn, Mater. Sci. Eng. B 149, 220 (2008).CrossRefGoogle Scholar
  8. 8.
    J. Serbin, A. Egbert, A. Ostendorf, B. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Frohlich, and M. Popall, Opt. Lett. 28, 301 (2003).PubMedCrossRefADSGoogle Scholar
  9. 9.
    J. Serbin, A. Ovsianikov, B. Chichkov, Opt. Express 12, 5221 (2008).CrossRefADSGoogle Scholar
  10. 10.
    A.L. Stepanov, J.R. Krenn, H. Ditlbacher, A. Honenau, A. Drezet, B. Steinberger, A. Leitner, and F.R. Aussenneg, Opt. Lett. 30, 1524 (2005).PubMedCrossRefADSGoogle Scholar
  11. 11.
    R. Kiyan, C. Reinhardt, S. Passinger, A.L. Stepanov, A. Hohenau, J.R. Krenn, and Chichkov, B.N., Opt. Express 15, 4205 (2007).CrossRefADSGoogle Scholar
  12. 12.
    A.B. Evlyukhin, A.L. Stepanov, R. Kiyan, and B.N. Chichkov, J. Opt. Soc. Am. B 25, 1011 (2008).ADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  • A. L. Stepanov
    • 1
  • R. Kiyan
    • 2
  • C. Reinhardt
    • 2
  • A. Seidel
    • 2
  • S. Pas-Singer
    • 2
  • B. N. Chichkov
    • 2
  1. 1.Russian Academy of SciencesKazan Physical-Technical InstituteKazanRussia
  2. 2.Laser Zentrum HannoverHannoverGermany

Personalised recommendations