Advertisement

Structural Study Of Multi-Component Glasses By The Reverse Monte Carlo Simulation Technique

  • P. JÓvÁri
  • I. Kaban
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Using the example of amorphous Ge2Sb2Te5 it is shown on how the local order at the level of pair distribution functions, coordination numbers and most probable interatomic distances can be revealed by combining the information obtained by different experimental techniques, when the measured data are modeled simultaneously by the reverse Monte-Carlo simulation technique (RMC). Special attention is paid to the information content of individual datasets. The capability of the new RMC implementation to assess the reliability of model structures is demonstrated.

Keywords

Neutron Diffraction Pair Distribution Function Reverse Monte Carlo Partial Structure Factor Total Structure Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Debye, Annalen der Physik IV. 46, 809 (1915).CrossRefGoogle Scholar
  2. 2.
    W. H. Zachariassen, J. Am. Chem. Soc. 54, 3841 (1932).Google Scholar
  3. 3.
    B. E. Warren, J. Chem. Phys. 2, 551 (1934).CrossRefGoogle Scholar
  4. 4.
    A. Eisenstein and N. S. Gingrich, Phys. Rev. 58, 307 (1940).CrossRefADSGoogle Scholar
  5. 5.
    J. E. Enderby, D. M. North, and P. A. Egelstaff, Phil. Mag. 14, 961 (1966).CrossRefADSGoogle Scholar
  6. 6.
    C. Kunz, J. Phys.: Condens. Matter 13, 7499 (2001).CrossRefADSGoogle Scholar
  7. 7.
    T. E. Faber and J. M. Ziman, Phil. Mag. 11, 153 (1965).CrossRefADSGoogle Scholar
  8. 8.
    D. A. Keen, J. Appl. Cryst. 34, 172 (2001).CrossRefGoogle Scholar
  9. 9.
    B. -K. Teo, EXAFS: Basic Principles and Data Analysis (Springer, New York, 1986).Google Scholar
  10. 10.
    J. J. Rehr and R. C. Albers, Rev. Mod. Phys. 72, 621 (2000).CrossRefADSGoogle Scholar
  11. 11.
    A. L. Ankudinov, B. Ravel, J. J. Rehr, and S. D. Conradson, Phys. Rev. B 58, 7565 (1998).CrossRefGoogle Scholar
  12. 12.
  13. 13.
    R. L. McGreevy and L. Pusztai, Mol. Simulat. 1, 359 (1988).CrossRefGoogle Scholar
  14. 14.
    R. L. McGreevy J. Phys.: Condens. Matter 13, R877 (2001).CrossRefADSGoogle Scholar
  15. 15.
    O. Gereben, P. Jóvári, L. Temleitner, L. Pusztai, J. Optoel. Adv. Mater. 9, 3021–3027 (2007). The RMC++ code is available at http://www.szfki.hu/~nphys/rmc++/down- loads.html
  16. 16.
    M. D. Rechtin, A. L. Renninger, B. L. Averbach, J. Non-Cryst. Solids 15, 74 (1974).CrossRefADSGoogle Scholar
  17. 17.
    J. Feinleib, J. de Neufville, S. C. Moss, and S. R. Ovshinsky, Appl. Phys. Lett. 18, 254 (1971).CrossRefADSGoogle Scholar
  18. 18.
    N. Yamada and T. Matsunaga, J. Appl. Phys. 88, 7020 (2000).CrossRefADSGoogle Scholar
  19. 19.
    P. Jóvári, I. Kaban, J. Steiner, B. Beuneu, A. Schöps, A. Webb, Phys. Rev. B 77, 035202 (2008).CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  1. 1.Research Institute for Solid State Physics and OpticsBudapestHungary
  2. 2.Institute of PhysicsChemnitz University of TechnologyChemnitzGermany

Personalised recommendations