Basics of WIO

Part of the Eco-Efficiency in Industry and Science book series (ECOE, volume 26)

Abstract

The purpose of this chapter is to introduce the basic concepts of Waste Input-Output (WIO) tables and the model (Nakamura [37, 38]). The WIO is a variant of environmental Input-Output (EIO) models, and focuses on issues of waste management (waste treatment and recycling). Familiarity with major EIO models is useful for a proper understanding of the main features of WIO. The first section of this chapter gives a brief review of EIO models from rather broad areas, which include economy–environment (ecology) IO tables and models, IO-based energy analysis, and IO models of emissions. The review in the second section is focused on EIO models that deal with pollution (waste) and its abatement (treatment), which include the seminal work of Leontief [28], and its extension by Duchin, as well as the development of IOTs incorporating waste flows (the Dutch NAMEA and German PIOT). Section 5.3 introduces the concepts of WIO table and its modeling for analytical purposes (further details of WIO model will be dealt with in the next chapter).

Keywords

Combustion Dust Steam Phytoplankton Income 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abfallstatistik (2004). Zahlen und Entwicklungen der schweizerischen Abfallwirtschaft im Jahr 2004. Bern: Bundesamt fur Umwelt BAFU, Bern.Google Scholar
  2. 2.
    Bullard, C., & Herendeen, R. (1975). The energy cost of goods and services. Energy Policy, 3, 268–278.CrossRefGoogle Scholar
  3. 3.
    Centre for Integrated Sustainability Analysis@ The University of Sydney. Ecological systems. http://www.isa.org.usyd.edu.au/research/ee.shtml.Cited 3 May 2008.
  4. 4.
    Daly, H. (1968). On economics as a life science. Journal of Political Economy, 76, 392–406.CrossRefGoogle Scholar
  5. 5.
    Danish Energy Authority (2007). Energy statistics 2005. http://ens.dk/graphics/Publikationer/ Statistik UK/Energy statistics 2005/index.htm. Cited 22. July 2008.
  6. 6.
    Danish Environmental Protection Agency (2002). Waste Statistics 2000, Environmental Review No. 1 2002. Danish Environmental Protection Agency, Copenhagen 2005.Google Scholar
  7. 7.
    Danish Environmental Protection Agency (2007). Waste Statistics 2005, Environmental Review No. 6 2007. Danish Environmental Protection Agency, Copenhagen.Google Scholar
  8. 8.
    De Haan, M., & Keuning, S. J. (1996). Taking the environment into account: the NAMEA approach. Review of Income Wealth, 42, 131–148.CrossRefGoogle Scholar
  9. 9.
    Diamond, J. (2005). Collapse: How societies choose to fall or succeed. New York: Viking.Google Scholar
  10. 10.
    Duchin, F. (1990). The conversion of biological materials and waste to useful products. Structural Change and Economic Dynamics, 1, 243–261.CrossRefGoogle Scholar
  11. 11.
    Economic Input-Output Life Cycle Assessment, Green Design Institute, Carnegie Mellon University. http://www.eiolca.net/
  12. 12.
    European Commission, Environment, Waste. http://ec.europa.eu/environment/waste/landfill index.htm. Cited 21 July 2008.
  13. 13.
    European Commission, Environment. http://ec.europa.eu/environment/waste/weee/index en. htm. Cited 21 July 2008.
  14. 14.
    Federal Statistical Office, Germany, Endbericht zum Projekt A Physical Input-Output-Table for Germany 1995, Vertragsnummer 98/559/3040/B4/MM, 2001 Wiesbaden.Google Scholar
  15. 15.
    Gallego, B., & Lenzen, M. (2008). Estimating generalized regional input-output life cycle assessment case study. In M. Ruth & B. Davidsdottir (Eds.), Dynamics of industrial ecosystems. Boston, MIT Press.Google Scholar
  16. 16.
    Global Environment Centre Foundation Air pollution control technology in Japan. http:// www.gec.jp/AIR/. Cited 28 July 2008.
  17. 17.
    Hannon, B. (1973). The structure of ecosystems. Journal of Theoretical Biology, 41, 535–546.CrossRefGoogle Scholar
  18. 18.
    Hannon, B., & Joiris, C. (1989). A seasonal analysis of the southern North Sea ecosystem. Ecology, 70, 1916–1934.CrossRefGoogle Scholar
  19. 19.
    Heijungs, R., & Suh, S. (2002). The computational structure of life cycle assessment. Dordrecht: Kluwer.Google Scholar
  20. 20.
    Hendrickson, C., Lave, L., & Matthews, S. (2006). Environmental life cycle assessment of goods and services, an input-output approach. Washington, DC: Resources for the Future.Google Scholar
  21. 21.
    Huang, G., Anderson, W., & Baetz, B. (1994). Environmental input-output analysis and its application to regional solid-waste management planning. Journal of Environmental Management, 42, 63–79.CrossRefGoogle Scholar
  22. 22.
    Isard, W., Bassett, K., Choguill, C., Furtado, J., Izumita, R., Kissin, J., Romanoff, E., Seyfarth, R., & Tatlock, R. (1968). On the linkage of socio-economic and ecologic systems. Papers in Regional Science, 21, 79–99.CrossRefGoogle Scholar
  23. 23.
    Isard, W. et al. (1972). Ecological-economic analysis for regional development. New York: Free Press.Google Scholar
  24. 24.
    Jin, D., Hoagland, P., & Dalton, T. (2003). Linking economic and ecological models for a marine ecosystem. Ecological Economics, 46, 367–385.CrossRefGoogle Scholar
  25. 25.
    Keuning, S. J., van Dalen, J., & de Haan, M. (1999). The Netherlands NAMEA; presentation, usage and future extensions. Structural Change and Economic Dynamics, 10, 15–37.CrossRefGoogle Scholar
  26. 26.
    Kleis, H., Dalager, S. 100 Years of Waste Incineration in Denmark. http://www.wte.org/docs/ 100YearsofWasteIncinerationinDenmark.pdf. Cited 22 July 2008.Google Scholar
  27. 27.
    Lenzen, M. (2007). Structural path analysis of ecosystem networks. Ecological Modelling, 200, 334–342.CrossRefGoogle Scholar
  28. 28.
    Leontief, W. (1970). Environmental repercussions and the economic structure: an input-output approach. Review of Economics and Statistics, 52, 262–271.CrossRefGoogle Scholar
  29. 29.
    Leontief, W., & Ford, D. (1972). Air pollution and the economic structure: empirical results of input-output computations. In A. Brody, & A. C. Carter (Eds.), Conference on input-output techniques (pp. 9–30). Geneva, Switzerland: North-Holland.Google Scholar
  30. 30.
    Leontief, W. (1973). National income, economic structure, and environmental externalities. In F. Moss (Ed.), The measurement of economic and social performance, studies in income and wealth (Vol. 38). New York: National Bureau of Economic Research.Google Scholar
  31. 31.
    Management and Coordination Agency, Government of Japan (2004). 2000 input-output tables. Tokyo: The Federation of National Statistics Associations.Google Scholar
  32. 32.
    McDougall, F., White, P., Franke, M., & Hindel, P. (2001). Integrated solid waste management: A life cycle inventory. Oxford: Blackwell Science.Google Scholar
  33. 33.
    Meadows, D., Randers, J., & Behrebs, W. (1972). The limits to growth. New York: Universe Books.Google Scholar
  34. 34.
    Minh, N. H. et al. (2003). Open dumping site in Asian developing countries: a potential source of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Environmental Science & Technology, 37(8), 1493–1502.CrossRefGoogle Scholar
  35. 35.
    Ministry of Environment, The Government of Japan. http://www.env.go.jp/recycle/waste tech/index.html
  36. 36.
    Ministry of International Trade and Industry, The Government of Japan. http://www.meti. go.jp/policy/kaden recycle/en cha/pdf/english.pdf. Cited 21 July 2008.
  37. 37.
    Nakamura, S. (1999). Input-output analysis of waste cycles. First International Symposium on Environmentally Conscious Design and Inverse Manufacturing, Proceedings. IEEE Computer Society, Los Alamitos, 1999, 475–480.Google Scholar
  38. 38.
    Nakamura, S., & Kondo, Y. (2002). Input-output analysis of waste management. Journal of Industrial Ecology, 6(1), 39–63.CrossRefGoogle Scholar
  39. 39.
    Nansai, K., Moriguchi, Y., & Tohno, S. (2002). Embodied energy and emission intensity data for Japan using input-output tables (3EID)-inventory data for LCA-. Tsukuba, Japan: National Institute for Environmental Studies.Google Scholar
  40. 40.
    National Institute of Environmental Studies, Tsukuba, Japan. http://www-cger.nies.go.jp/ publication/D031/index.html
  41. 41.
    Nansai, K., Moriguchi, Y., & Tohno, S. (2003). Compilation and application of Japanese inventories for energy consumption and air pollutant emissions using input-output tables. Environ. Sci. Technol., 37, 2005–2015.CrossRefGoogle Scholar
  42. 42.
    Peters, G. P. (2007). Efficient algorithms for life cycle assessment, input-output analysis, and Monte-Carlo analysis. Int J LCA, 12(6), 373–380.CrossRefGoogle Scholar
  43. 43.
    Proops, J., Faber, M., & Wagenhals, G. (1993). Reducing CO2 emissions: A comparative input-output study for Germany and the UK. Berlin: Springer.Google Scholar
  44. 44.
    Stahmer, C., Kuhn, M., & Braun, N. (1998). Physical input-output tables for Germany, 1990. Eurostat Working Papers 2/1998/B/1, European Commission.Google Scholar
  45. 45.
    The UK Department for Environment, Food and Rural Affairs (2007). Municipal waste statistics 2006/7. http://www.defra.gov.uk/environment/statistics/wastats/bulletin07.htm. Cited Jan 2008.
  46. 46.
    United States Environmental Protection Agency (2006). Municipal solid waste in the United States, 2005 facts and figures. Washington, DC: United States Environmental Protection Agency.Google Scholar
  47. 47.
    U.S. Bureau of Economic Analysis, Industry Economic Accounts. http://www.bea.gov/ industry/index.htm
  48. 48.
    Victor, P. (1972). Pollution, economy and the environment. London: Allen & Unwin.Google Scholar
  49. 49.
    http://en.wikipedia.org/wiki/Waste-to-energy
  50. 50.
    Wright, D. (1974). Goods and services: An input-output analysis. Energy Policy, 2, 307–315.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Personalised recommendations