Skip to main content

Large-Eddy Simulation of Passively-Controlled Transonic Cavity Flow

  • Conference paper
IUTAM Symposium on Unsteady Separated Flows and their Control

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 14))

  • 2183 Accesses

Abstract

A 30 dB reduction of the peak pressure tone and a reduction by 6 dB of the background pressure found in an experiment of high-subsonic cavity flow controlled by a spanwise rod is retrieved numerically. The injection of deterministic upstream fluctuations in the LES domain is found to be of crucial importance, in contrast with the baseflow case. Reduction of the vortex impingement onto the aft edge of the cavity is confirmed, together with reduction of mass flow rate breathing through the grazing plane. Visual evidence of merging between the Kelvin-Helmholtz-type vortices shed downstream of the fore edge of the cavity and the von Kármán vortices shed behind the cylinder is provided. Shocklets downstream of the cylinder are also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here defined as in [5,12], as the clearance between the bottom of the cylinder and the wall.

References

  1. S. Arunajatesan, J. D. Shipman, and N. Sinha. Hybrid RANS-LES simulation of cavity flow fields with control. AIAA Paper 2002–1130, 2002.

    Google Scholar 

  2. L. Cattafesta, D. Williams, C. W. Rowley, and F. Alvi. Review of active control of flow-induced cavity resonance. AIAA Paper 2003–3567, 2003.

    Google Scholar 

  3. L. Chatellier, J. Laumonier, and Y. Gervais. Theoretical and experimental investigation of low mach number cavity flow. Exp. Fluids, 36:728–740, 2004.

    Article  Google Scholar 

  4. F. Daude, I. Mary, and P. Comte. Improvement of a Newton-based iteration strategy for the large-eddy simulation of compressible flows. submitted to J. Comp. Phys.

    Google Scholar 

  5. N. Forestier, L. Jacquin, and P. Geffroy. The mixing layer over a deep cavity at high-subsonic speed. J. Fluid Mech, 475:101–145, 2003.

    Article  MATH  ADS  Google Scholar 

  6. M. Howe. Edge, cavity and aperture tones at very low mach numbers. J. Fluid Mech., 330:61– 84, 1997.

    Article  MATH  ADS  Google Scholar 

  7. H. Illy. Contrôle de l'écoulement au-dessus d'une cavité en régime transsonique. Ph.D. thesis, École Centrale de Lyon, 2005.

    Google Scholar 

  8. H. Illy, P. Geffroy, and L. Jacquin. Control of cavity flow by means of a spanwise cylinder. 21st ICTAM, Warsaw, 2004.

    Google Scholar 

  9. A. G Kravchenko and P. Moin. Numerical studies of flow over a circular cylinder at Re D = 3900. Phys. Fluids, 12(2):403–417, 2000.

    Article  MATH  ADS  Google Scholar 

  10. L. Larchevêque. Simulation des Grandes Échelles de l'écoulement au-dessus d'une cavité. Ph.D. thesis, Université de Paris VI-Pierre et Marie Curie, 2003.

    Google Scholar 

  11. 11.L. Larchevêque, P. Sagaut, T.-H. Lê, and P. Comte. Large-eddy simulation of a compressible flow in three-dimensional open cavity at high Reynolds number. J. Fluid Mech., 516:265–301, 2004.

    Article  MATH  ADS  Google Scholar 

  12. L. Larchevêque, P. Sagaut, I. Mary, O. Labbe, and P. Comte. Large-eddy simulation of a compressible flow past a deep cavity. Phys. Fluids, 15(1):193–210, 2003.

    Article  ADS  Google Scholar 

  13. E. Lenormand, P. Sagaut, L. Ta Phuoc, and P. Comte. Subgrid-scale models for large-eddy simulation of compressible wall bounded flows. AIAA J., 38(8): 1340–1350, 2000.

    Article  ADS  Google Scholar 

  14. T. S. Lund, X. Wu, and K. D. Squires. Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comp. Phys, 140(2):233–258, 1998.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. S. F McGrath and L. L. Shaw. Active control of shallow cavity acoustic resonance. AIAA Paper 96–1949, 1996.

    Google Scholar 

  16. A. Powell. On the edgetone. J. Acoust. Soc. Am., 33:395–409, 1961.

    Article  ADS  Google Scholar 

  17. D. Rockwell and E. Naudascher. Review: Self-sustained oscillations of flow past cavities. ASME J. Fluids Eng, 100:152–165, 1978.

    Article  Google Scholar 

  18. J. E. Rossiter. Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Aeronautical Research Council Reports and Memoranda, 3438, 1964.

    Google Scholar 

  19. C. W. Rowley and D. R. Williams. Dynamics and control of high Reynolds-number flow over open cavities. Ann. Rev. Fluid Mech., 38:251–276, 2006.

    Article  MathSciNet  ADS  Google Scholar 

  20. M. J. Stanek, G. Raman, V. Kibens, J. A. Ross, J. Odedra, and J. W. Peto. Control of cavity resonance through very high frequency forcing. AIAA Paper 2000–1905, 2000.

    Google Scholar 

  21. L. S. Ukeiley, M. K. Ponton, J. M. Seiner, and B. Jansen. Suppression of pressure loads in cavity flows. AIAA Paper 2002–0661, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Comte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Comte, P., Daude, F., Mary, I. (2009). Large-Eddy Simulation of Passively-Controlled Transonic Cavity Flow. In: Braza, M., Hourigan, K. (eds) IUTAM Symposium on Unsteady Separated Flows and their Control. IUTAM Bookseries, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9898-7_45

Download citation

Publish with us

Policies and ethics