Dependence Between Shock and Separation Bubble in a Shock Wave Boundary Layer Interaction

  • J.F. Debiève
  • P. Dupont
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 14)

Abstract

We present experimental results obtained in a turbulent boundary layer at a Mach number of 2.3 impinged by an oblique shock wave. Strong unsteadinesses are developed in the interaction, involving several frequency ranges which can extend over two orders of magnitude. In this paper, attention is focused on the links between the low frequencies shock motions and the separation bubble. An interpretation based on a simple scheme of the longitudinal evolution of the instantaneous pressure is proposed. As it is mainly based on the pressure signals properties inside the region of the shock oscillation, it may be expected that it will be still relevant for different configurations of shock induced separation as compression ramp, blunt bodies or over expanded nozzles.

Keywords

Shock wave Boundary layer separation Unsteadiness 

Notes

Acknowledgments

Part of this work was carried out with the support of the Research Pole CNES/ONERA Aérodynamique des Tuyères et Arrière-Corps (ATAC) and with a grant of the European STREP UFAST (DGXII). Their support is gratefully acknowledged. Comments of Dr. J.P. Dussauge are also gratefully acknowledged.

References

  1. 1.
    D. Dolling, AIAA Journal, 39, 8, 1517 (2001)CrossRefADSGoogle Scholar
  2. 2.
    F. Thomas, C. Putman, H. Chu, Experiments in Fluids, 18, 69 (1994)CrossRefADSGoogle Scholar
  3. 3.
    A. Nguyen, H. Deniau, S. Girard, T.A. de Roquefort, in 38th AIAA Joint Propulsion Conference, Indianapolis, AIAA Paper, 02-4001, Indianapolis, Indiana, USA (2002)Google Scholar
  4. 4.
    C. Haddad, Instationnarités, mouvements d'onde de choc et tourbillons à grande échelles dans une interaction onde de choc/couche limite avec décollement. Thèse de doctorat, Université de Provence Aix-Marseille I (2005)Google Scholar
  5. 5.
    J. Dussauge, P. Dupont, J. Debiève, Aerospace Science and Technology, 10, 85 (2006)CrossRefGoogle Scholar
  6. 6.
    P. Dupont, C. Haddad, J. Debiève, J. Fluid Mech., 559, 255 (2006)MATHCrossRefADSGoogle Scholar
  7. 7.
    Ö. Ünalmis, D. Dolling, AIAA Journal, 36, 3, 371 (1998)CrossRefADSGoogle Scholar
  8. 8.
    B. Ganapathisubramani, N. Clemens, D. Dolling, in 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 8–11 January (2007)Google Scholar
  9. 9.
    M. Erengil, D. Dolling, AIAA Journal, 29, 5, 728 (1991)ADSGoogle Scholar
  10. 10.
    P. Dupont, S. Piponniau, A. Sidorenko, J. Debiève, AIAA Journal, 46, 6, 1365–1370 (2008)CrossRefADSGoogle Scholar
  11. 11.
    P. Dupont, C. Haddad, J. Ardissone, J. Debiève, Aerospace Science and Technology, 9, 7, 561 (2005)CrossRefGoogle Scholar
  12. 12.
    M. Kiya, K. Sasaki, Journal of Fluid Mechanics 137, 83 (1983)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • J.F. Debiève
    • 1
  • P. Dupont
    • 1
  1. 1.Institut Universitaire des Systèmes Thermiques IndustrielsUniversité de Provence and UMR CNRS 6595France

Personalised recommendations