Fulleranes pp 127-148 | Cite as

Synthesis, Stability and Spectroscopy of Perdeuterofulleranes: C60D36 and C70D38 Evidences of Isotope Effects

  • Franco Cataldo
  • Susana Iglesias-Groth
  • Arturo Manchado
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 2)


Perdeuterated fulleranes C60D36 and C70D38 were synthesized by the action of deuterium chloride on zinc dust. The atomic deuterium formed on the surface of the Zn granules was effective in deuterating C60 and C70 fullerenes in solution. The chemical structure of the perdeuterated fulleranes was studied in comparison to the corresponding hydrogenated derivatives C60H36 and C70H38 by electronic absorption spectroscopy and FT-IR spectroscopy. With the latter analytical technique the isotope effect on the infrared spectra was studied in detail. The thermal stability of the perdeuterated fullerenes shows a remarkable isotope effect in comparison to hydrogenated fullerenes as measured by thermogravimetry and differential thermal analysis. Even the oxidation resistance to air appeared improved in the case of the perdeuterated fullerenes.


Electronic Absorption Spectrum Isotope Effect Molar Extinction Coefficient Zinc Dust Fullerene Cage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The present research work has been supported by grant AYA2007-64748 from the Spanish Ministerio de Ciencia e Innovacion.


  1. Adler RW, Baker R, Brown JM (1976) Mechanism in organic chemistry. Wiley, New York,  Chapter 1 Google Scholar
  2. Avent AG, Darwish AD, Heimbach DK, Kroto HW, Meidine MF, Parsons JP, Remars C, Roers R, Ohashi O, Taylor R, Walton DRM (1994) J Chem Soc Perkin Trans 2:15Google Scholar
  3. Avram M, Mateescu GhD (1972) Infrared spectroscopy applications in organic chemistry. Wiley-Interscience, New YorkGoogle Scholar
  4. Balasubramanian K (2004) Chem Phys Lett 400:78CrossRefGoogle Scholar
  5. Bensasson RV, Hill TJ, Land EJ, Leach S, McGarvey DJ, Truscott TG, Ebenhoch J, Gerst M, Ruchardt C (1997) Chem Phys 215:111CrossRefGoogle Scholar
  6. Bini R, Ebenhoch J, Fanti M, Fowler PW, Leach S, Orlandi G, Rüchardt Ch, Sandall JPB, Zerbetto F (1998) Chem Phys 232:75CrossRefGoogle Scholar
  7. Brydson JA (1978) Rubber chemistry. Applied Science, LondonGoogle Scholar
  8. Cataldo F (1997) Fullerene Sci Technol 5:1615CrossRefGoogle Scholar
  9. Cataldo F (2003a) Fullerenes Nanot Carbon Nanostruct 11:295CrossRefGoogle Scholar
  10. Cataldo F (2003b) Fullerenes Nanot Carbon Nanostruct 11:317CrossRefGoogle Scholar
  11. Cataldo F, Iglesias-Groth S, Manchado A (2009a) Fullerenes Nanot Carbon Nanostruct 17:378CrossRefGoogle Scholar
  12. Cataldo F, Iglesias Groth S, Manchado Torres A (2009b) Fullerenes Nanot Carbon Nanostruct 17:401CrossRefGoogle Scholar
  13. Colthup NB, Daly LH, Wiberley SE (1990) Introduction to infrared and Raman Spectroscopy, 3rd edn. Academic, San Diego, CA, pp 152–155Google Scholar
  14. Darwish AD, Abdul-Sada AK, Langley GJ, Kroto HW, Taylor R, Walton DRM (1995) J Chem Soc. Perkin Trans 2:2359CrossRefGoogle Scholar
  15. Darwish AD, Kroto HW, Taylor R, Walton DRM (1996a) Chem Soc Perkin Trans 2:1415CrossRefGoogle Scholar
  16. Darwish AD, Abdul-Sada AK, Langley GJ, Kroto HW, Taylor R, Walton DRM (1996b) Synth Met 77:303CrossRefGoogle Scholar
  17. Dorozhko PA, Lobach AS, Popov AA, Senyavin VM, Korobov MV (2001) Chem Phys Lett 336:39CrossRefGoogle Scholar
  18. Eremtchenko M, Ottking R, Krischok S, Doring S, Temirov R, Schafer JA (2005) Fullerenes Nanot Carbon Nanostruct 13:131CrossRefGoogle Scholar
  19. Fowler PW, Sandall JPB, Austin SJ, Manolopoulos DE, Lawrenson PDM, Smallwood JM (1996) Synth Met 77:97CrossRefGoogle Scholar
  20. Friedel RA, Orchin M (1951) Ultraviolet spectra of aromatic compounds. Wiley, New York, Spectra 13Google Scholar
  21. Gerst M, Beckhaus HD, Rüchardt Ch, Campbell EEB, Tellgmann R (1993) Tetrah Lett 34:7729CrossRefGoogle Scholar
  22. Gourier DRF, Delpoux O, Binet L, Vezin H, Moissette A, Derenne S (2008) Geochim Cosmochim Acta 72:1914CrossRefGoogle Scholar
  23. Hibbert F (1980) Isotopes and organic reaction mechanisms. In: Elvidge JA, Jones JR (eds) Isotopes: essential chemistry & applications. Chemical Society of Chemistry, London,  Chapter 9 Google Scholar
  24. Iglesias-Groth S (2004) Astrophys J 608:L37CrossRefGoogle Scholar
  25. Iglesias-Groth S (2006) Month Not Roy Astron Soc 368:1925CrossRefGoogle Scholar
  26. Jessop PG, Morris RH, Azizian H (1994) Polymer 35:1952CrossRefGoogle Scholar
  27. Karpushenkava LS, Kabo GJ, Diky VV (2007) Fullerenes Nanot Carbon Nanostruct 15:227CrossRefGoogle Scholar
  28. Kerr JA (1987) Bond strength in diatomic molecules. In: Weast RC (ed) CRC handbook of chemistry and physics, 68th edn. CRC Press, Boca Raton, FL, p F170Google Scholar
  29. Kintigh J, Briggs JB, Letourneau K, Miller GP (2007) J Mater Chem 2007:4647CrossRefGoogle Scholar
  30. Kohen A, Limbach HH (2006) Isotope effects in chemistry and biology. CRC Press/Taylor & Francis, Boca Raton, FLGoogle Scholar
  31. Kroto HW, Allaf AW, Balm SP (1991) Chem Rev 91:1213CrossRefGoogle Scholar
  32. Meletov KP, Assimopoulos S, Tsilika I, Bashkin IO, Kulakov VI, Khasanov SS, Kourouklis GA (2001) Chem Phys 263:379CrossRefGoogle Scholar
  33. Palit DK, Mohan H, Mittal JP (1998) J Phys Chem 102:4456CrossRefGoogle Scholar
  34. Peera AA, Alemany LB, Billups WE (2004) Appl Phys A78:995Google Scholar
  35. Perkampus HH (1992) UV–VIS atlas of organic compounds. VCH, WeinheimGoogle Scholar
  36. Petrie S, Becker H, Baranov VI, Bohme DK (1995) Int J Mass Spectrom Ion Process 145:79CrossRefGoogle Scholar
  37. Reichardt C (2003) Solvents and solvent effects in organic chemistry. Weinheim, Wiley-VCHGoogle Scholar
  38. Ruchardt C, Gerst M, Ebenhoch J, Beckhaus HD, Campbell EEB, Tellgmann R, Schwartz H, Weiske T, Pitter S (1993) Angew Chem Int Ed 32:584CrossRefGoogle Scholar
  39. Schur DV, Zaginaichenko S, Veziroglu TN (2008) Int J Hydrogen Energy 33:3330CrossRefGoogle Scholar
  40. Shaw AM (2006) Astrochemistry. Wiley, ChichesterGoogle Scholar
  41. Silverstein RM, Bassler GC, Morrill TC (1981) Spectrometric identification of organic compounds, 4th edn. Wiley, New York, p 313Google Scholar
  42. Stoldt CR, Maboudian R, Carraro C (2001) Astrophys J 548:L225CrossRefGoogle Scholar
  43. Talyzin AV, Shulga YM, Jacob A (2004) Appl Phys A 78:1005CrossRefGoogle Scholar
  44. Talyzin AV, Dzwilewski A, Sundqvist B, Tsybin YO, Purcell JM, Marshall AG, Shulga YM, McCammon C, Dubrovinsky L (2006a) Chem Phys 325:445CrossRefGoogle Scholar
  45. Talyzin AV, Tsybin YO, Purcell JM, Schaub TM, Shulga YM, Noreus D, Sato T, Dzwilewski A, Sundqvist B, Marshall AG (2006b) J Phys Chem A 110:8528CrossRefGoogle Scholar
  46. Taylor R (1999) Lecture notes on fullerene chemistry. A handbook for chemists. Imperial College Press, LondonCrossRefGoogle Scholar
  47. Taylor R (2006) CR Chimie 9:982CrossRefGoogle Scholar
  48. Tielens AGGM (2005) The physics and chemistry of the interstellar medium. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  49. Vieira SMC, Ahmed W, Birkett PR, Rego CA (2001) Chem Phys Lett 347:355CrossRefGoogle Scholar
  50. Vieira SMC, Ahmed W, Birkett PR, Rego CA, Kotsiris S, Drewello Th (2004) Fullerenes Nanot Carbon Nanostruct 12:139CrossRefGoogle Scholar
  51. Wågberg Th, Hedenström M, Talyzin AV, Sethson I, Purcell YO, Marshall JM, Noréus AG, Johnels D (2008) Angew Chem Int Ed 47:2796CrossRefGoogle Scholar
  52. Withers J, Loufty R, Lowe T (1997) Fullerene Sci Technol 5:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Franco Cataldo
    • 1
    • 2
  • Susana Iglesias-Groth
    • 3
  • Arturo Manchado
    • 3
  1. 1.Istituto Nazionale di Astrofisica, Osservatorio Astrofisico di CataniaCataniaItaly
  2. 2.Actinium Chemical ResearchRomeItaly
  3. 3.Instituto de Astrofisica de CanariasLa LagunaSpain

Personalised recommendations