Skip to main content

Neuroimaging Studies of Pediatric Obsessive–Compulsive Disorder: Special Emphasis on Genetics and Biomarkers

  • Chapter
The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes

Abstract

Obsessive–Compulsive Disorder (or OCD) is a severe and chronically debilitating disorder that affects over 3 million people in the United States. People with OCD have distressing obsessions and compulsions that cripple their functioning in every day life. Selective serotonin reuptake inhibitors (SSRIs) are the only FDA approved medications for OCD. However, SSRIs are typically only effective in 40–60% of patients, leaving a substantial number still ill. Indeed, as treatment response is defined by a 20–40% reduction in symptoms, many “responders” are still markedly symptomatic. Approximately 2 million people are not sufficiently served by current medication remedies. Hence, advancement in our understanding of the neurobiology of OCD is sorely needed. The emergence of newer, non-invasive neu-roimaging approaches offers great promise in enhancing our understanding of normative brain development and the developmental neurobiologic underpinnings of childhood onset neuropsychiatric disorders. In this chapter, we describe an approach combining comprehensive assessment and treatment with sophisticated neuroimaging studies to elucidate a mechanistic understanding of the pathogenesis and treatment response of pediatric OCD. Our neuroimaging studies have implicated the cortical—striatal—thalamic—corti-cal (CSTC) loop in the pathophysiology of pediatric OCD. This has led to a focus on the neurotransmitter glutamate. Indeed, our work using proton magnetic resonance spectroscopy (1H-MRS) has shown regionally specific alterations of glutamate/glutamine (or Glx) that resolve with effective treatment. This finding has been supported by other neuroimaging and cerebral spinal fluid (CSF) studies. Genetic studies have noted increased susceptibility to OCD in those expressing alterations in the neuronal glutamate transporter gene (SLC1A1) and certain glutamate receptor genes (GRIK2 and GRIN2B). Additionally, a transgenic animal model of OCD has also noted a high level of glutamatergic excitation as well. Hence, 1H-MRS, CSF, genetic and animal studies have all implicated glutamate in OCD. This has led to the application of the glutamate modulating agents, such as riluzole, to treat OCD symptoms. The approach of bringing neuroimaging and genetic methods to bear on the study of the disorder serves as a model for increasing our understanding of other neuropsychiatric illness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pauls DL, Alsobrook JP, 2nd, Goodman W, et al. A family study of obsessive-compulsive disorder. Am J Psychiat 1995;152(1):76–84

    PubMed  CAS  Google Scholar 

  2. Rosenberg DR, Keshavan MS. A.E. Bennett Research Award. Toward a neurodevelopmental model of obsessive— compulsive disorder. Biol Psychiat 1998;43(9):623–640

    Article  PubMed  CAS  Google Scholar 

  3. Rosenberg DR, Mac Master FP, Mirza Y, Easter PC, Buhagiar CJ. Neurobiology, neuropsychology and neuroimaging of child and adolescent obsessive-compulsive dis order. In: Storch E, Geffken G, Murphy T, eds. A comprehensive handbook of child and adolescent obsessive-compulsive disorder. Lawrence Erlbaum Associates; Mahwah, New Jersey 2007, pp. 131–161

    Google Scholar 

  4. Pasik P, Pasik T, DiFiglia M. Quantitative aspects in the neu-rostriatum of the macaque monkey. In: Yahr MD, ed. The basal ganglia. New York: Raven Press; 1976, pp. 57–90

    Google Scholar 

  5. Mello LEAM, Villares J. Neuroanatomy of the basal ganglia. In: Miguel EC, Rauch SL, Leckman JF, eds. Neuropsychiatry of the basal ganglia. Philadelphia: W.B. Saunders; 1997, Vol. 20, pp. 691–704

    Google Scholar 

  6. Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 1990;13(7):266–271

    Article  PubMed  CAS  Google Scholar 

  7. Alexander GE. Basal ganglia-thalamocortical circuits: their role in control of movements. J Clin Neurophysiol 1994;11(4):420–431

    PubMed  CAS  Google Scholar 

  8. Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 1986;9:357–381

    Article  PubMed  CAS  Google Scholar 

  9. Gerfen CR. The neostriatal mosaic: multiple levels of compart-mental organization. Trends Neurosci 1992;15(4):133–139

    Article  PubMed  CAS  Google Scholar 

  10. Gerfen CR. The neostriatal mosaic: multiple levels of com-partmental organization in the basal ganglia. Ann Rev Neurosci 1992;15:285–320

    Article  PubMed  CAS  Google Scholar 

  11. Graybiel AM. Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 1990;13(7):244–254

    Article  PubMed  CAS  Google Scholar 

  12. Rauch SL, Savage CR. Neuroimaging and neuropsychology of the striatum. In: Miguel EC, Rauch SL, Leckman JF, eds. Neuropsychiatry of the basal ganglia. Philadelphia: W.B. Saunders; 1997, Vol. 20, pp. 741–768

    Google Scholar 

  13. Rosenberg DR, Dick EL, O'Hearn KM, Sweeney JA. Response-inhibition deficits in obsessive-compulsive disorder: an indicator of dysfunction in frontostriatal circuits. J Psychiat Neurosci 1997;22(1):29–38

    CAS  Google Scholar 

  14. Beers SR, Rosenberg DR, Dick EL, et al. Neuropsychological study of frontal lobe function in psychotropic-naive children with obsessive-compulsive disorder. Am J Psychiat 1999;156(5):777–779

    PubMed  CAS  Google Scholar 

  15. Chang SW, McCracken JT, Piacentini JC. Neurocognitive correlates of child obsessive compulsive disorder and Tourette syndrome. J Clin Exp Neuropsychol 2007;29(7):724–733

    Article  PubMed  Google Scholar 

  16. Rosenberg DR, Averbach DH, O'Hearn KM, Seymour AB, Birmaher B, Sweeney JA. Oculomotor response inhibition abnormalities in pediatric obsessive-compulsive disorder. Arch Gen Psychiat 1997;54(9):831–838

    PubMed  CAS  Google Scholar 

  17. Woolley J, Heyman I, Brammer M, Frampton I, McGuire PK, Rubia K. Brain activation in paediatric obsessive compulsive disorder during tasks of inhibitory control. Br J Psychiat 2008;192(1):25–31

    Article  Google Scholar 

  18. Szeszko P, Christian C, Mac Master FP, et al. Gray matter structural alterations in psychotropic drug-naäve pediatric obsessive-compulsive disorder: an optimized voxel based morphometry study. Am J Psychiat 2008; 165(10): 1299–1307

    Article  PubMed  Google Scholar 

  19. Szeszko PR, MacMillan S, McMeniman M, et al. Brain structural abnormalities in psychotropic drug-naive pediat-ric patients with obsessive-compulsive disorder. Am J Psychiat 2004;161(6):1049–1056

    Article  PubMed  Google Scholar 

  20. Carmona S, Bassas N, Rovira M, et al. Pediatric OCD structural brain deficits in conflict monitoring circuits: a voxel-based morphometry study. Neurosci Lett 2007;421(3):218–223

    Article  PubMed  CAS  Google Scholar 

  21. Thacker NA. Tutorial: a critical analysis of voxel based mor-phometry (VBM). Manchester: University of Manchester; 2005

    Google Scholar 

  22. Rosenberg DR, Mirza Y, Russell A, et al. Reduced anterior cingulate glutamatergic concentrations in childhood OCD and major depression versus healthy controls. J Am Acad Child Adol Psychiat 2004;43(9):1146–1153

    Article  Google Scholar 

  23. Yucel M, Wood SJ, Wellard RM, et al. Anterior cingulate glutamate—glutamine levels predict symptom severity in women with obsessive-compulsive disorder. Aust NZJ Psychiatry 2008; 42(6):467– 477

    Google Scholar 

  24. Russell A, Cortese B, Lorch E, et al. Localized functional neurochemical marker abnormalities in dorsolateral pre-frontal cortex in pediatric obsessive-compulsive disorder. J Child Adol Psychopharmacol 2003;13(Suppl 1):S31–S38

    Article  Google Scholar 

  25. Rosenberg DR, Keshavan MS, O'Hearn KM, et al. Frontostriatal measurement in treatment-naive children with obsessive-compulsive disorder. Arch Gen Psychiat 1997;54(9):824–830

    PubMed  CAS  Google Scholar 

  26. Moore GJ, MacMaster FP, Stewart C, Rosenberg DR. Case study: caudate glutamatergic changes with paroxetine therapy for pediatric obsessive-compulsive disorder. J Am Acad Child Adol Psychiat 1998;37(6):663–667

    CAS  Google Scholar 

  27. Rosenberg DR, MacMaster FP, Keshavan MS, Fitzgerald KD, Stewart CM, Moore GJ. Decrease in caudate gluta-matergic concentrations in pediatric obsessive-compulsive disorder patients taking paroxetine. J Am Acad Child Adol Psychiat 2000;39(9):1096–1103

    Article  CAS  Google Scholar 

  28. Amat JA, Bronen RA, Saluja S, et al. Increased number of subcortical hyperintensities on MRI in children and adolescents with Tourette's syndrome, obsessive-compulsive disorder, and attention deficit hyperactivity disorder. Am J Psychiat 2006;163(6):1106–1108

    Article  PubMed  Google Scholar 

  29. Gilbert AR, Moore GJ, Keshavan MS, et al. Decrease in thalamic volumes of pediatric patients with obsessive-compulsive disorder who are taking paroxetine. Arch Gen Psychiat 2000;57(5):449–456

    Article  PubMed  CAS  Google Scholar 

  30. Fitzgerald KD, Moore GJ, Paulson LA, Stewart CM, Rosenberg DR. Proton spectroscopic imaging of the thala-mus in treatment-naive pediatric obsessive-compulsive disorder. Biol Psychiat 2000;47(3):174–182

    Article  PubMed  CAS  Google Scholar 

  31. Rosenberg DR, Amponsah A, Sullivan A, MacMillan S, Moore GJ. Increased medial thalamic choline in pediatric obsessive-compulsive disorder as detected by quantitative in vivo spectro-scopic imaging. J Child Neurol 2001;16(9):636–641

    Article  PubMed  CAS  Google Scholar 

  32. Smith EA, Russell A, Lorch E, et al. Increased medial thal-amic choline found in pediatric patients with obsessive-compulsive disorder versus major depression or healthy control subjects: a magnetic resonance spectroscopy study. Biol Psychiat 2003;54(12):1399–1405

    Article  PubMed  CAS  Google Scholar 

  33. Mirza Y, O'Neill J, Smith EA, et al. Increased medial thal-amic creatine-phosphocreatine found by proton magnetic resonance spectroscopy in children with obsessive-compulsive disorder versus major depression and healthy controls. J Child Neurol 2006;21(2):106–111

    Article  PubMed  Google Scholar 

  34. Rosenberg DR, Keshavan MS, Dick EL, Bagwell WW, MacMaster FP, Birmaher B. Corpus callosal morphology in treatment-naive pediatric obsessive compulsive disorder. Prog Neuropsychopharmacol Biol Psychiat 1997;21(8):1269–1283

    Article  CAS  Google Scholar 

  35. MacMaster FP, Keshavan MS, Dick EL, Rosenberg DR. Corpus callosal signal intensity in treatment-naive pediatric obsessive compulsive disorders. Prog Neuropsychopharmacol Biol Psychiat 1999;23(4):601–612

    Article  CAS  Google Scholar 

  36. Altemus M, Cizza G, Gold PW. Chronic fluoxetine treatment reduces hypothalamic vasopressin secretion in vitro. Brain Res 1992;593(2):311–313

    Article  PubMed  CAS  Google Scholar 

  37. Monteleone P, Catapano F, Tortorella A, Maj M. Cortisol response to d-fenfluramine in patients with obsessive-compulsive disorder and in healthy subjects: evidence for a gender-related effect. Neuropsychobiology 1997;36(1):8–12

    Article  PubMed  CAS  Google Scholar 

  38. Monteleone P, Catapano F, Tortorella A, Di Martino S, Maj M. Plasma melatonin and cortisol circadian patterns in patients with obsessive-compulsive disorder before and after fluoxetine treatment. Psychoneuroendocrinology 1995;20(7):763–770

    Article  PubMed  CAS  Google Scholar 

  39. Catapano F, Monteleone P, Fuschino A, Maj M, Kemali D. Melatonin and cortisol secretion in patients with primary obsessive-compulsive disorder. Psychiat Res 1992;44(3):217–225

    Article  CAS  Google Scholar 

  40. MacMaster FP, Russell A, Mirza Y, et al. Pituitary volume in pediatric obsessive-compulsive disorder. Biol Psychiat 2006;59(3):252–257

    Article  PubMed  Google Scholar 

  41. Carter AS, Pollock RA, Suvak MK, Pauls DL. Anxiety and major depression comorbidity in a family study of obsessive-compulsive disorder. Depress Anxiety 2004;20(4):165–174

    Article  PubMed  Google Scholar 

  42. Fava M, Rankin MA, Wright EC, et al. Anxiety disorders in major depression. Compr Psychiat 2000;41(2):97–102

    Article  PubMed  CAS  Google Scholar 

  43. MacMaster FP, Kusumakar V. Pituitary gland volume in adolescent depression. J Psychiat Res 2004;38(3):231–236

    Article  PubMed  Google Scholar 

  44. MacMaster FP, Russell A, Mirza Y, et al. Pituitary volume in treatment-naive pediatric major depressive disorder. Biol Psychiat 2006;60(8):862–866

    Article  PubMed  Google Scholar 

  45. MacMaster FP, Leslie R, Rosenberg DR, Kusumakar V. Pituitary gland volume in adolescent and young adult bipolar and unipolar depression. Bipolar Disord 2008;10(1):101–104

    PubMed  Google Scholar 

  46. Bolton J, Moore GJ, MacMillan S, Stewart CM, Rosenberg DR. Case study: caudate glutamatergic changes with parox-etine persist after medication discontinuation in pediatric OCD. J Am Acad Child Adol Psychiat 2001;40(8):903–906

    Article  CAS  Google Scholar 

  47. Benazon NR, Moore GJ, Rosenberg DR. Neurochemical analyses in pediatric obsessive-compulsive disorder in patients treated with cognitive-behavioral therapy. J Am Acad Child Adol Psychiat 2003;42(11):1279–1285

    Article  Google Scholar 

  48. Chakos MH, Lieberman JA, Bilder RM, et al. Increase in caudate nuclei volumes of first-episode schizophrenic patients taking antipsychotic drugs. Am J Psychiat 1994;151(10):1430–1436

    PubMed  CAS  Google Scholar 

  49. Keshavan MS, Bagwell WW, Haas GL, Sweeney JA, Schooler NR, Pettegrew JW. Changes in caudate volume with neuroleptic treatment. Lancet 1994;344(8934):1434

    Article  PubMed  CAS  Google Scholar 

  50. MacMaster FP, El-Sheikh R, Upadhyaya AR, Nutche J, Rosenberg DR, Keshavan M. Effect of antipsychotics on pituitary gland volume in treatment-naive first-episode schizophrenia: a pilot study. Schizophr Res 2007;92(1–3):207–210

    Article  PubMed  Google Scholar 

  51. Rosenberg DR, Benazon NR, Gilbert A, Sullivan A, Moore GJ. Thalamic volume in pediatric obsessive-compulsive disorder patients before and after cognitive behavioral therapy. Biol Psychiat 2000;48(4):294–300

    Article  PubMed  CAS  Google Scholar 

  52. MacMaster FP. Brain imaging studies of the pituitary gland in pediatric mental illness. Halifax: Anatomy and Neurobiology, Dalhousie University; 2007

    Google Scholar 

  53. van Grootheest DS, Cath DC, Beekman AT, Boomsma DI. Twin studies on obsessive-compulsive disorder: a review. Twin Res Hum Genet 2005;8(5):450–458

    PubMed  Google Scholar 

  54. Arnold PD, Sicard T, Burroughs E, Richter MA, Kennedy JL. Glutamate transporter gene SLC1A1 associated with obsessive-compulsive disorder. Arch Gen Psychiat 2006;63(7):769–776

    Article  PubMed  CAS  Google Scholar 

  55. Dickel DE, Veenstra-VanderWeele J, Cox NJ, et al. Association testing of the positional and functional candidate gene SLC1A1/EAAC1 in early-onset obsessive-compulsive disorder. Arch Gen Psychiat 2006;63(7):778–785

    Article  PubMed  CAS  Google Scholar 

  56. Stewart SE, Fagerness JA, Platko J, et al. Association of the SLC1A1 glutamate transporter gene and obsessive-compulsive disorder. Am J Med Genet B Neuropsychiat Genet 2007;144(8):1027–1033

    Article  CAS  Google Scholar 

  57. Aoyama K, Suh SW, Hamby AM, et al. Neuronal glutathi-one deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. Nat Neurosci 2006;9(1):119–126

    Article  PubMed  CAS  Google Scholar 

  58. Franklin RB, Zou J, Yu Z, Costello LC. EAAC1 is expressed in rat and human prostate epithelial cells; functions as a high-affinity L-aspartate transporter; and is regulated by prolactin and testosterone. BMC Biochem 2006;7:10

    Article  PubMed  CAS  Google Scholar 

  59. Guillet BA, Velly LJ, Canolle B, Masmejean FM, Nieoullon AL, Pisano P. Differential regulation by protein kinases of activity and cell surface expression of glutamate transporters in neuron-enriched cultures. Neurochem Int 2005; 46(4):337–346

    Article  PubMed  CAS  Google Scholar 

  60. Rothstein JD, Martin L, Levey AI, et al. Localization of neuronal and glial glutamate transporters. Neuron 1994;13(3):713–725

    Article  PubMed  CAS  Google Scholar 

  61. Kanai Y, Smith CP, Hediger MA. A new family of neu-rotransmitter transporters: the high-affinity glutamate transporters. FASEB J 1993;7(15):1450–1459

    PubMed  CAS  Google Scholar 

  62. Nieoullon A, Canolle B, Masmejean F, Guillet B, Pisano P, Lortet S. The neuronal excitatory amino acid transporter EAAC1/EAAT3: does it represent a major actor at the brain excitatory synapse? J Neurochem 2006;98(4):1007–1018

    Article  PubMed  CAS  Google Scholar 

  63. Loftis JM, Janowsky A. The N-methyl-D-aspartate receptor subunit NR2B: localization, functional properties, regulation, and clinical implications. Pharmacol Ther 2003;97(1):55–85

    Article  PubMed  CAS  Google Scholar 

  64. Arnold PD, Rosenberg DR, Mundo E, Tharmalingam S, Kennedy JL, Richter MA. Association of a glutamate (NMDA) subunit receptor gene (GRIN2B) with obsessive-compulsive disorder: a preliminary study. Psychopharmacology (Berlin) 2004;174(4):530–538

    Article  CAS  Google Scholar 

  65. Li D, He L. Association study between the NMDA receptor 2B subunit gene (GRIN2B) and schizophrenia: a HuGE review and meta-analysis. Genet Med 2007;9(1):4–8

    Article  PubMed  CAS  Google Scholar 

  66. Martucci L, Wong AH, De Luca V, et al. N-methyl-D-aspartate receptor NR2B subunit gene GRIN2B in schizophrenia and bipolar disorder: polymorphisms and mRNA levels. Schizophr Res 2006;84(2–3):214–221

    Article  PubMed  Google Scholar 

  67. Dorval KM, Wigg KG, Crosbie J, et al. Association of the glutamate receptor subunit gene GRIN2B with attention-deficit/hyperactivity disorder. Genes Brain Behav 2007;6(5):444–452

    Article  PubMed  CAS  Google Scholar 

  68. Sheng M, Cummings J, Roldan LA, Jan YN, Jan LY. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 1994;368(6467):144–147

    Article  PubMed  CAS  Google Scholar 

  69. Beas-Zarate C, Rivera-Huizar SV, Martinez-Contreras A, Feria-Velasco A, Armendariz-Borunda J. Changes in NMDA-receptor gene expression are associated with neuro-toxicity induced neonatally by glutamate in the rat brain. Neurochem Int 2001;39(1):1–10

    Article  Google Scholar 

  70. Ueda Y, Doi T, Tsuru N, Tokumaru J, Mitsuyama Y. Expression of glutamate transporters and ionotropic gluta-mate receptors in GLAST knockout mice. Brain Res Mol Brain Res 2002;104(2):120–126

    Article  PubMed  CAS  Google Scholar 

  71. Jenike MA. Clinical practice. Obsessive-compulsive disorder. N Engl J Med 2004;350(3):259–265

    Article  PubMed  CAS  Google Scholar 

  72. Whiteside SP, Port JD, Deacon BJ, Abramowitz JS. A magnetic resonance spectroscopy investigation of obsessive-compulsive disorder and anxiety. Psychiat Res 2006;146(2):137–147

    Article  Google Scholar 

  73. Chakrabarty K, Bhattacharyya S, Christopher R, Khanna S. Glutamatergic dysfunction in OCD. Neuropsychopharmacology 2005;30(9):1735–1740

    Article  PubMed  CAS  Google Scholar 

  74. Delorme R, Krebs MO, Chabane N, et al. Frequency and transmission of glutamate receptors GRIK2 and GRIK3 polymorphisms in patients with obsessive compulsive disorder. Neuroreport 2004;15(4):699–702

    Article  PubMed  CAS  Google Scholar 

  75. Nordstrom EJ, Burton FH. A transgenic model of comorbid Tourette's syndrome and obsessive-compulsive disorder circuitry. Mol Psychiat 2002;7(6):617–625, 524

    Article  CAS  Google Scholar 

  76. Pittenger C, Krystal JH, Coric V. Glutamate-modulating drugs as novel pharmacotherapeutic agents in the treatment of obsessive-compulsive disorder. NeuroRx 2006;3(1):69–81

    Article  PubMed  CAS  Google Scholar 

  77. Coric V, Milanovic S, Wasylink S, Patel P, Malison R, Krystal JH. Beneficial effects of the antiglutamatergic agent riluzole in a patient diagnosed with obsessive-compulsive disorder and major depressive disorder. Psychopharmacology (Berlin) 2003;167(2):219–220

    CAS  Google Scholar 

  78. Coric V, Taskiran S, Pittenger C, et al. Riluzole augmentation in treatment-resistant obsessive-compulsive disorder: an open-label trial. Biol Psychiat 2005;58(5):424–428

    Article  PubMed  CAS  Google Scholar 

  79. Zarate CA Jr., Payne JL, Quiroz J, et al. An open-label trial of riluzole in patients with treatment-resistant major depression. Am J Psychiat 2004;161(1):171–174

    Article  PubMed  Google Scholar 

  80. Zarate CA Jr., Quiroz JA, Singh JB, et al. An open-label trial of the glutamate-modulating agent riluzole in combination with lithium for the treatment of bipolar depression. Biol Psychiat 2005;57(4):430–432

    Article  PubMed  CAS  Google Scholar 

  81. Sanacora G, Kendell SF, Fenton L, Coric V, Krystal JH. Riluzole augmentation for treatment-resistant depression. Am J Psychiat 2004;161(11):2132

    Article  PubMed  Google Scholar 

  82. Sanacora G, Kendell SF, Levin Y, et al. Preliminary evidence of riluzole efficacy in antidepressant-treated patients with residual depressive symptoms. Biol Psychiat 2007;61(6):822–825

    Article  PubMed  CAS  Google Scholar 

  83. Bensimon G, Lacomblez L, Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med 1994;330(9):585–591

    Article  PubMed  CAS  Google Scholar 

  84. Lacomblez L, Bensimon G, Leigh PN, et al. A confirmatory dose-ranging study of riluzole in ALS. ALS/Riluzole Study Group-II. Neurology 1996;47(6 Suppl 4):S242–S250

    PubMed  CAS  Google Scholar 

  85. Lacomblez L, Bensimon G, Leigh PN, Guillet P, Meininger V. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet 1996;347(9013):1425–1431

    PubMed  CAS  Google Scholar 

  86. Stefani A, Spadoni F, Bernardi G. Differential inhibition by riluzole, lamotrigine, and phenytoin of sodium and calcium currents in cortical neurons: implications for neuroprotec-tive strategies. Exp Neurol 1997;147(1):115–122

    Article  PubMed  CAS  Google Scholar 

  87. Jehle T, Bauer J, Blauth E, et al. Effects of riluzole on electrically evoked neurotransmitter release. Br J Pharmacol 2000;130(6):1227–1234

    Article  PubMed  CAS  Google Scholar 

  88. Urbani A, Belluzzi O. Riluzole inhibits the persistent sodium current in mammalian CNS neurons. Eur J Neurosci 2000;12(10):3567–3574

    Article  PubMed  CAS  Google Scholar 

  89. Grant P, Lougee L, Hirschtritt M, Swedo SE. An open-label trial of riluzole, a glutamate antagonist, in children with treatment-resistant obsessive-compulsive disorder. J Child Adol Psychopharmacol 2007;17(6):761–767

    Article  Google Scholar 

  90. Insel TR, Scolnick EM. Cure therapeutics and strategic prevention: raising the bar for mental health research. Mol Psychiat 2006;11(1):11–17

    Article  CAS  Google Scholar 

  91. Insel TR, Quirion R. Psychiatry as a clinical neuroscience discipline. JAMA 2005;294(17):2221–2224

    Article  PubMed  CAS  Google Scholar 

  92. Rosenberg DR, MacMaster FP, Mirza Y, et al. Reduced anterior cingulate glutamate in pediatric major depression: a magnetic resonance spectroscopy study. Biol Psychiat 2005;58(9):700–704

    Article  PubMed  CAS  Google Scholar 

  93. Provencher S W. Automatic quantitation of localized in vivo 1 H spectra with LCModel. NMR Biomed 2001;14(4):260–264

    Article  PubMed  CAS  Google Scholar 

  94. Kanowski M, Kaufmann J, Braun J, Bernarding J, Tempelmann C. Quantitation of simulated short echo time 1 H human brain spectra by LCModel and AMARES. Magn Reson Med 2004;51(5):904–912

    Article  PubMed  CAS  Google Scholar 

  95. Barker PB, Hearshen DO, Boska MD. Single-voxel proton MRS of the human brain at 1.5 T and 3.0 T. Magn Reson Med 2001;45(5):765–769

    Article  PubMed  CAS  Google Scholar 

  96. Hariri AR, Weinberger DR. Imaging genomics. Br Med Bull 2003;65:259–270

    Article  PubMed  CAS  Google Scholar 

  97. Schiffer HH. Glutamate receptor genes: susceptibility factors in schizophrenia and depressive disorders? Mol Neurobiol 2002;25(2):191–212

    Article  PubMed  Google Scholar 

  98. Giedd JN, Rapoport JL, Garvey MA, Perlmutter S, Swedo SE. MRI assessment of children with obsessive-compulsive disorder or tics associated with streptococcal infection. Am J Psychiat 2000;157(2):281–283

    Article  PubMed  CAS  Google Scholar 

  99. Giedd JN, Rapoport JL, Leonard HL, Richter D, Swedo SE. Case study: acute basal ganglia enlargement and obsessive-compulsive symptoms in an adolescent boy. J Am Acad Child Adol Psychiat 1996;35(7):913–915

    Article  CAS  Google Scholar 

  100. Eichstedt JA, Arnold SL. Childhood-onset obsessive-compulsive disorder: a tic-related subtype of OCD? Clin Psychol Rev 2001;21(1):137–157

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

MacMaster, F.P., Rosenberg, D.R. (2009). Neuroimaging Studies of Pediatric Obsessive–Compulsive Disorder: Special Emphasis on Genetics and Biomarkers. In: Ritsner, M.S. (eds) The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9831-4_9

Download citation

Publish with us

Policies and ethics