Magnetic Resonance Imaging Biomarkers in Schizophrenia Research

  • Heike Tost
  • Shabnam Hakimi
  • Andreas Meyer-Lindenberg


In the preceding decades, neuroimaging techniques have emerged as a pivotal tool for the noninvasive, in vivo examination of subtle brain dysfunctions in psychiatric patient populations. Methods such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have proven successful in bridging the gap between genetic and molecular mechanisms and psychopathological phenomena by characterizing associated structural and functional anomalies on the intermediate neural systems level. This development has been of particular relevance for schizophrenia research, where neuroimaging has helped to identify core deficits of dopaminergic neurotransmis-sion, frontal lobe efficiency, and neuronal plasticity. The current chapter reviews our current knowledge on MRI neuroimaging biomarkers in schizophrenia. Special consideration is given to the neurocognitive domains most critically affected by the disorder, as well as the characterization of effects of schizophrenia susceptibility genes and therapeutic drugs.


Schizophrenia, functional magnetic resonance imaging voxel-based morphometry gray matter volume imaging genetics dopamine prefrontal cortex motor functioning working memory attention 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kraepelin E: Dementia praecox and paraphrenia. Edinburgh, Livingstone, 1919Google Scholar
  2. 2.
    Henn FA, Braus DF: Structural neuroimaging in schizophrenia. An integrative view of neuromorphology. Eur Arch Psychiat Clin Neurosci 1999; 249(Suppl 4):48–56Google Scholar
  3. 3.
    Nasrallah HA: Neuropathology of the corpus callosum in schizophrenia. Br J Psychiat 1982; 141:99–100Google Scholar
  4. 4.
    Stevens JR: Neuropathology of schizophrenia. Arch Gen Psychiat 1982; 39(10):1131–1139PubMedGoogle Scholar
  5. 5.
    Arnold SE, Ruscheinsky DD, Han LY: Further evidence of abnormal cytoarchitecture of the entorhinal cortex in schizophrenia using spatial point pattern analyses. Biol Psychiat 1997; 42(8):639–647PubMedGoogle Scholar
  6. 6.
    Jakob H, Beckmann H: Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm 1986; 65(3–4):303–326PubMedGoogle Scholar
  7. 7.
    Benes FM, McSparren J, Bird ED, SanGiovanni JP, Vincent SL: Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiat 1991; 48(11):996–1001PubMedGoogle Scholar
  8. 8.
    Benes FM, Sorensen I, Bird ED: Reduced neuronal size in posterior hippocampus of schizophrenic patients. Schizophr Bull 1991; 17(4):597–608PubMedGoogle Scholar
  9. 9.
    Rajkowska G, Selemon LD, Goldman-Rakic PS: Neuronal and glial somal size in the prefrontal cortex: a postmortem morphometric study of schizophrenia and Huntington disease. Arch Gen Psychiat 1998; 55(3):215–224PubMedGoogle Scholar
  10. 10.
    Glantz LA, Lewis DA: Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiat 2000; 57(1):65–73PubMedGoogle Scholar
  11. 11.
    Garey LJ, Ong WY, Patel TS, Kanani M, Davis A, Mortimer AM, Barnes TR, Hirsch SR: Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiat 1998; 65(4):446–453PubMedGoogle Scholar
  12. 12.
    Kreczmanski P, Heinsen H, Mantua V, Woltersdorf F, Masson T, Ulfig N, Schmidt-Kastner R, Korr H, Steinbusch HW, Hof PR, Schmitz C: Volume, neuron density and total neuron number in five subcortical regions in schizophrenia. Brain 2007; 130(Pt 3):678–692PubMedGoogle Scholar
  13. 13.
    Walker MA, Highley JR, Esiri MM, McDonald B, Roberts HC, Evans SP, Crow TJ: Estimated neuronal populations and volumes of the hippocampus and its subfields in schizophrenia. Am J Psychiat 2002; 159(5):821–828PubMedGoogle Scholar
  14. 14.
    Zaidel DW, Esiri MM, Harrison PJ: Size, shape, and orientation of neurons in the left and right hippocampus: investigation of normal asymmetries and alterations in schizophrenia. Am J Psychiat 1997; 154(6):812–818PubMedGoogle Scholar
  15. 15.
    Longson D, Deakin JF, Benes FM: Increased density of entorhinal glutamate-immunoreactive vertical fibers in schizophrenia. J Neural Transm 1996; 103(4):503–507PubMedGoogle Scholar
  16. 16.
    Benes FM: Evidence for altered trisynaptic circuitry in schizophrenic hippocampus. Biol Psychiat 1999; 46(5):589–599PubMedGoogle Scholar
  17. 17.
    Weinberger DR: Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiat 1987; 44(7):660–669PubMedGoogle Scholar
  18. 18.
    Lewis DA, Levitt P: Schizophrenia as a disorder of neurodevelopment. Ann Rev Neurosci 2002; 25:409–432PubMedGoogle Scholar
  19. 19.
    Benes FM: The relationship between structural brain imaging and histopathologic findings in schizophrenia research. Harv Rev Psychiat 1993; 1(2):100–109Google Scholar
  20. 20.
    Sei Y, Ren-Patterson R, Li Z, Tunbridge EM, Egan MF, Kolachana BS, Weinberger DR: Neuregulin1-induced cell migration is impaired in schizophrenia: association with neuregulin1 and catechol-o-methyltransferase gene polymorphisms. Mol Psychiat 2007; 12(10):946–957Google Scholar
  21. 21.
    Brandon NJ, Handford EJ, Schurov I, Rain JC, Pelling M, Duran-Jimeniz B, Camargo LM, Oliver KR, Beher D, Shearman MS, Whiting PJ: Disrupted in Schizophrenia 1 and Nudel form a neurodevelopmentally regulated protein complex: implications for schizophrenia and other major neurological disorders. Mol Cell Neurosci 2004; 25(1):42–55PubMedGoogle Scholar
  22. 22.
    Meyer U, Yee BK, Feldon J: The neurodevelopmental impact of prenatal infections at different times of pregnancy: the earlier the worse? Neuroscientist 2007; 13(3):241–256PubMedGoogle Scholar
  23. 23.
    Wright IC, Rabe-Hesketh S, Woodruff PW, David AS, Murray RM, Bullmore ET: Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiat 2000; 157(1):16–25PubMedGoogle Scholar
  24. 24.
    Honea R, Crow TJ, Passingham D, Mackay CE: Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiat 2005; 162(12):2233–2245PubMedGoogle Scholar
  25. 25.
    Johnstone EC, Crow TJ, Frith CD, Husband J, Kreel L: Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet 1976; 2(7992):924–926PubMedGoogle Scholar
  26. 26.
    Ward KE, Friedman L, Wise A, Schulz SC: Meta-analysis of brain and cranial size in schizophrenia. Schizophr Res 1996; 22(3):197–213PubMedGoogle Scholar
  27. 27.
    Gur RE, Turetsky BI, Bilker WB, Gur RC: Reduced gray matter volume in schizophrenia. Arch Gen Psychiat 1999; 56(10):905–911PubMedGoogle Scholar
  28. 28.
    Chua SE, Cheung C, Cheung V, Tsang JT, Chen EY, Wong JC, Cheung JP, Yip L, Tai KS, Suckling J, McAlonan GM: Cerebral grey, white matter and csf in never-medicated, first-episode schizophrenia. Schizophr Res 2007; 89(1–3):12–21PubMedGoogle Scholar
  29. 29.
    Keshavan MS, Rosenberg D, Sweeney JA, Pettegrew JW: Decreased caudate volume in neuroleptic-naive psychotic patients. Am J Psychiat 1998; 155(6):774–778PubMedGoogle Scholar
  30. 30.
    Lang DJ, Kopala LC, Vandorpe RA, Rui Q, Smith GN, Goghari VM, Lapointe JS, Honer WG: Reduced basal ganglia volumes after switching to olanzapine in chronically treated patients with schizophrenia. Am J Psychiat 2004; 161(10):1829–1836PubMedGoogle Scholar
  31. 31.
    Scheepers FE, de Wied CC, Hulshoff Pol HE, van de Flier W, van der Linden JA, Kahn RS: The effect of clozapine on caudate nucleus volume in schizophrenic patients previously treated with typical antipsychotics. Neuropsychopharma-cology 2001; 24(1):47–54Google Scholar
  32. 32.
    Ashburner J, Friston KJ: Voxel-based morphometry — the methods. Neuroimage 2000; 11(6 Pt 1):805–821PubMedGoogle Scholar
  33. 33.
    Valfre W, Rainero I, Bergui M, Pinessi L: Voxel-based morphometry reveals gray matter abnormalities in migraine. Headache 2008; 48(1):109–117PubMedGoogle Scholar
  34. 34.
    Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, Frith CD: Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci USA 2000; 97(8):4398–4403PubMedGoogle Scholar
  35. 35.
    Krams M, Quinton R, Ashburner J, Friston KJ, Frackowiak RS, Bouloux PM, Passingham RE: Kallmann's syndrome: mirror movements associated with bilateral corticospinal tract hypertrophy. Neurology 1999; 52(4):816–822PubMedGoogle Scholar
  36. 36.
    Meda SA, Giuliani NR, Calhoun VD, Jagannathan K, Schretlen DJ, Pulver A, Cascella N, Keshavan M, Kates W, Buchanan R, Sharma T, Pearlson GD: A large scale (N = 400) investigation of gray matter differences in schizophrenia using optimized voxel-based morphometry. Schizophr Res 2008; 101(1–3):95–105PubMedGoogle Scholar
  37. 37.
    Goldman AL, Pezawas L, Mattay VS, Fischl B, Verchinski BA, Zoltick B, Weinberger DR, Meyer-Lindenberg A: Heritability of brain morphology related to schizophrenia: a large-scale automated magnetic resonance imaging segmentation study. Biol Psychiat 2008; 63(5):475–483PubMedGoogle Scholar
  38. 38.
    Gur RE, Maany V, Mozley PD, Swanson C, Bilker W, Gur RC: Subcortical MRI volumes in neuroleptic-naive and treated patients with schizophrenia. Am J Psychiat 1998; 155(12):1711–1717PubMedGoogle Scholar
  39. 39.
    Szeszko PR, Goldberg E, Gunduz-Bruce H, Ashtari M, Robinson D, Malhotra AK, Lencz T, Bates J, Crandall DT, Kane JM, Bilder RM: Smaller anterior hippocampal formation volume in antipsychotic-naive patients with first-episode schizophrenia. Am J Psychiat 2003; 160(12):2190–2197PubMedGoogle Scholar
  40. 40.
    Molina V, Sanz J, Sarramea F, Luque R, Benito C, Palomo T: Dorsolateral prefrontal and superior temporal volume deficits in first-episode psychoses that evolve into schizophrenia. Eur Arch Psychiat Clin Neurosci 2006; 256(2):106–111Google Scholar
  41. 41.
    DeLisi LE, Sakuma M, Tew W, Kushner M, Hoff AL, Grimson R: Schizophrenia as a chronic active brain process: a study of progressive brain structural change subsequent to the onset of schizophrenia. Psychiat Res 1997; 74(3):129–140Google Scholar
  42. 42.
    Lieberman J, Chakos M, Wu H, Alvir J, Hoffman E, Robinson D, Bilder R: Longitudinal study of brain morphology in first episode schizophrenia. Biol Psychiat 2001; 49(6):487–499PubMedGoogle Scholar
  43. 43.
    Cahn W, Hulshoff Pol HE, Lems EB, van Haren NE, Schnack HG, van der Linden JA, Schothorst PF, van Engeland H, Kahn RS: Brain volume changes in first-episode schizophrenia: a 1-year follow-up study. Arch Gen Psychiat 2002; 59(11):1002–1010PubMedGoogle Scholar
  44. 44.
    Davis KL, Buchsbaum MS, Shihabuddin L, Spiegel-Cohen J, Metzger M, Frecska E, Keefe RS, Powchik P: Ventricular enlargement in poor-outcome schizophrenia. Biol Psychiat 1998; 43(11):783–793PubMedGoogle Scholar
  45. 45.
    Mathalon DH, Sullivan EV, Lim KO, Pfefferbaum A: Progressive brain volume changes and the clinical course of schizophrenia in men: a longitudinal magnetic resonance imaging study. Arch Gen Psychiat 2001; 58(2):148–157PubMedGoogle Scholar
  46. 46.
    Rapoport JL, Giedd JN, Blumenthal J, Hamburger S, Jeffries N, Fernandez T, Nicolson R, Bedwell J, Lenane M, Zijdenbos A, Paus T, Evans A: Progressive cortical change during adolescence in childhood-onset schizophrenia. A longitudinal magnetic resonance imaging study. Arch Gen Psychiat 1999; 56(7):649–654PubMedGoogle Scholar
  47. 47.
    Weinberger DR, McClure RK: Neurotoxicity, neuroplastic-ity, and magnetic resonance imaging morphometry: what is happening in the schizophrenic brain? Arch Gen Psychiat 2002; 59(6):553–558PubMedGoogle Scholar
  48. 48.
    Harrison PJ: The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 1999; 122(Pt 4):593–624PubMedGoogle Scholar
  49. 49.
    Meyer-Lindenberg A, Hariri AR, Munoz KE, Mervis CB, Mattay VS, Morris CA, Berman KF: Neural correlates of genetically abnormal social cognition in Williams syndrome. Nat Neurosci 2005; 8(8):991–993PubMedGoogle Scholar
  50. 50.
    Stein JL, Wiedholz LM, Bassett DS, Weinberger DR, Zink CF, Mattay VS, Meyer-Lindenberg A: A validated network of effective amygdala connectivity. Neuroimage 2007; 36(3): 736–745PubMedGoogle Scholar
  51. 51.
    Butler PD, Javitt DC: Early-stage visual processing deficits in schizophrenia. Curr Opin Psychiat 2005; 18(2):151–157Google Scholar
  52. 52.
    Braff DL, Saccuzzo DP: Information processing dysfunction in paranoid schizophrenia: a two-factor deficit. Am J Psychiat 1981; 138(8):1051–1056PubMedGoogle Scholar
  53. 53.
    Braff DL, Saccuzzo DP: The time course of information-processing deficits in schizophrenia. Am J Psychiat 1985; 142(2):170–174PubMedGoogle Scholar
  54. 54.
    Keri S, Antal A, Szekeres G, Benedek G, Janka Z: Visual information processing in patients with schizophrenia: evidence for the impairment of central mechanisms. Neurosci Lett 2000; 293(1):69–71PubMedGoogle Scholar
  55. 55.
    Moritz S, Ruff C, Wilke U, Andresen B, Krausz M, Naber D: Negative priming in schizophrenia: effects of masking and prime presentation time. Schizophr Res 2001; 48(2–3): 291–299PubMedGoogle Scholar
  56. 56.
    Schwartz BD, Maron BA, Evans WJ, Winstead DK: High velocity transient visual processing deficits diminish ability of patients with schizophrenia to recognize objects. Neuropsychiat Neuropsychol Behav Neurol 1999; 12(3):170–177Google Scholar
  57. 57.
    Cadenhead KS, Serper Y, Braff DL: Transient versus sustained visual channels in the visual backward masking deficits of schizophrenia patients. Biol Psychiat 1998; 43(2):132–138PubMedGoogle Scholar
  58. 58.
    O'Donnell BF, Swearer JM, Smith LT, Nestor PG, Shenton ME, McCarley RW: Selective deficits in visual perception and recognition in schizophrenia. Am J Psychiat 1996; 153(5):687–692PubMedGoogle Scholar
  59. 59.
    Ungerleider LG, Courtney SM, Haxby JV: A neural system for human visual working memory. Proc Natl Acad Sci USA 1998; 95(3):883–890PubMedGoogle Scholar
  60. 60.
    Ungerleider LG, Mishkin M: Two cortical visual systems, in Analysis of visual behavior. Edited by Ingle DJ, Goodale MA, Mansfield RJ. Cambridge, MA, MIT Press, 1982, pp. 549–586Google Scholar
  61. 61.
    Chen Y, Palafox GP, Nakayama K, Levy DL, Matthysse S, Holzman PS: Motion perception in schizophrenia. Arch Gen Psychiat 1999; 56(2):149–154PubMedGoogle Scholar
  62. 62.
    Chen Y, Levy DL, Nakayama K, Matthysse S, Palafox G, Holzman PS: Dependence of impaired eye tracking on deficient velocity discrimination in schizophrenia. Arch Gen Psychiat 1999; 56(2):155–161PubMedGoogle Scholar
  63. 63.
    Haraldsson HM, Ettinger U, Magnusdottir BB, Sigmundsson T, Sigurdsson E, Petursson H: Eye movement deficits in schizophrenia: Investigation of a genetically homogenous Icelandic sample. Eur Arch Psychiat Clin Neurosci 2008; 258(6):373–383Google Scholar
  64. 64.
    Chen Y, Bidwell LC, Norton D: Trait vs. state markers for schizophrenia: identification and characterization through visual processes. Curr Psychiat Rev 2006; 2(4):431–438Google Scholar
  65. 65.
    Braus DF, Weber-Fahr W, Tost H, Ruf M, Henn FA: Sensory information processing in neuroleptic-naive first-episode schizophrenic patients: a functional magnetic resonance imaging study. Arch Gen Psychiat 2002; 59(8):696–701PubMedGoogle Scholar
  66. 66.
    Lencer R, Nagel M, Sprenger A, Heide W, Binkofski F: Reduced neuronal activity in the V5 complex underlies smooth-pursuit deficit in schizophrenia: evidence from an fMRI study. Neuroimage 2005; 24(4):1256–1259PubMedGoogle Scholar
  67. 67.
    Tost H, Ende G, Ruf M, Henn FA, Meyer-Lindenberg A: Functional imaging research in schizophrenia. Int Rev Neurobiol 2005; 67:95–118PubMedGoogle Scholar
  68. 68.
    Levin S: Frontal lobe dysfunctions in schizophrenia — I. Eye movement impairments. J Psychiat Res 1984; 18(1):27–55PubMedGoogle Scholar
  69. 69.
    Levin S: Frontal lobe dysfunctions in schizophrenia — II. Impairments of psychological and brain functions. J Psychiat Res 1984; 18(1):57–72PubMedGoogle Scholar
  70. 70.
    Yoon JH, D'Esposito M, Carter CS: Preserved function of the fusiform face area in schizophrenia as revealed by fMRI. Psychiat Res 2006; 148(2–3):205–216Google Scholar
  71. 71.
    Gur RE, Loughead J, Kohler CG, Elliott MA, Lesko K, Ruparel K, Wolf DH, Bilker WB, Gur RC: Limbic activation associated with misidentification of fearful faces and flat affect in schizophrenia. Arch Gen Psychiat 2007; 64(12): 1356–1366PubMedGoogle Scholar
  72. 72.
    Surguladze S, Russell T, Kucharska-Pietura K, Travis MJ, Giampietro V, David AS, Phillips ML: A reversal of the normal pattern of parahippocampal response to neutral and fearful faces is associated with reality distortion in schizophrenia. Biol Psychiat 2006; 60(5):423–431PubMedGoogle Scholar
  73. 73.
    Holt DJ, Kunkel L, Weiss AP, Goff DC, Wright CI, Shin LM, Rauch SL, Hootnick J, Heckers S: Increased medial temporal lobe activation during the passive viewing of emotional and neutral facial expressions in schizophrenia. Schizophr Res 2006; 82(2–3):153–162PubMedGoogle Scholar
  74. 74.
    Butler PD, Hoptman MJ, Nierenberg J, Foxe JJ, Javitt DC, Lim KO: Visual white matter integrity in schizophrenia. Am J Psychiat 2006; 163(11):2011–2013PubMedGoogle Scholar
  75. 75.
    Ashtari M, Cottone J, Ardekani BA, Cervellione K, Szeszko PR, Wu J, Chen S, Kumra S: Disruption of white matter integrity in the inferior longitudinal fasciculus in adolescents with schizophrenia as revealed by fiber tractography. Arch Gen Psychiat 2007; 64(11):1270–1280PubMedGoogle Scholar
  76. 76.
    Onitsuka T, Niznikiewicz MA, Spencer KM, Frumin M, Kuroki N, Lucia LC, Shenton ME, McCarley RW: Functional and structural deficits in brain regions subserving face perception in schizophrenia. Am J Psychiat 2006; 163(3):455–462PubMedGoogle Scholar
  77. 77.
    David A, Cutting J (eds): The neuropsychological origin of auditory hallucinations. Hove, Sussex, Lawrence Erlbaum Associates, 1994Google Scholar
  78. 78.
    Silbersweig DA, Stern E, Frith C, Cahill C, Holmes A, Grootoonk S, Seaward J, McKenna P, Chua SE, Schnorr L: A functional neuroanatomy of hallucinations in schizophrenia. Nature 1995; 378(6553):176–179PubMedGoogle Scholar
  79. 79.
    Ffytche DH, Howard RJ, Brammer MJ, David A, Woodruff P, Williams S: The anatomy of conscious vision: an fMRI study of visual hallucinations. Nat Neurosci 1998; 1(8): 738–742PubMedGoogle Scholar
  80. 80.
    McGuire PK, Shah GM, Murray RM: Increased blood flow in Broca's area during auditory hallucinations in schizophrenia. Lancet 1993; 342(8873):703–706PubMedGoogle Scholar
  81. 81.
    Dierks T, Linden DE, Jandl M, Formisano E, Goebel R, Lanfermann H, Singer W: Activation of Heschl's gyrus during auditory hallucinations. Neuron 1999; 22(3):615–621PubMedGoogle Scholar
  82. 82.
    David AS, Woodruff PW, Howard R, Mellers JD, Brammer M, Bullmore E, Wright I, Andrew C, Williams SC: Auditory hallucinations inhibit exogenous activation of auditory association cortex. Neuroreport 1996; 7(4):932–936PubMedGoogle Scholar
  83. 83.
    Woodruff PW, Wright IC, Bullmore ET, Brammer M, Howard RJ, Williams SC, Shapleske J, Rossell S, David AS, McGuire PK, Murray RM: Auditory hallucinations and the temporal cortical response to speech in schizophrenia: a functional magnetic resonance imaging study. Am J Psychiat 1997; 154(12):1676–1682PubMedGoogle Scholar
  84. 84.
    Weinstein S, Werker JF, Vouloumanos A, Woodward TS, Ngan ET: Do you hear what I hear? Neural correlates of thought disorder during listening to speech in schizophrenia. Schizophr Res 2006; 86(1–3):130–137PubMedGoogle Scholar
  85. 85.
    Mechelli A, Allen P, Amaro E, Jr., Fu CH, Williams SC, Brammer MJ, Johns LC, McGuire PK: Misattribution of speech and impaired connectivity in patients with auditory verbal hallucinations. Hum Brain Mapp 2007; 28:1213–1222PubMedGoogle Scholar
  86. 86.
    Sumich A, Chitnis XA, Fannon DG, O'Ceallaigh S, Doku VC, Faldrowicz A, Sharma T: Unreality symptoms and volumetric measures of Heschl's gyrus and planum temporal in first-episode psychosis. Biol Psychiat 2005; 57(8):947–950PubMedGoogle Scholar
  87. 87.
    Kwon JS, McCarley RW, Hirayasu Y, Anderson JE, Fischer IA, Kikinis R, Jolesz FA, Shenton ME: Left planum tempo-rale volume reduction in schizophrenia. Arch Gen Psychiat 1999; 56(2):142–148PubMedGoogle Scholar
  88. 88.
    Shapleske J, Rossell SL, Woodruff PW, David AS: The pla-num temporale: a systematic, quantitative review of its structural, functional and clinical significance. Brain Res Brain Res Rev 1999; 29(1):26–49PubMedGoogle Scholar
  89. 89.
    Aguilar EJ, Sanjuan J, Garcia-Marti G, Lull JJ, Robles M: MR and genetics in schizophrenia: Focus on auditory hallucinations. Eur J Radiol 2008; 67(3):434–439PubMedGoogle Scholar
  90. 90.
    Cachia A, Paillere-Martinot ML, Galinowski A, Januel D, de Beaurepaire R, Bellivier F, Artiges E, Andoh J, Bartres-Faz D, Duchesnay E, Riviere D, Plaze M, Mangin JF, Martinot JL: Cortical folding abnormalities in schizophrenia patients with resistant auditory hallucinations. Neuroimage 2008; 39(3):927–935PubMedGoogle Scholar
  91. 91.
    Neckelmann G, Specht K, Lund A, Ersland L, Smievoll AI, Neckelmann D, Hugdahl K: Mr morphometry analysis of grey matter volume reduction in schizophrenia: association with hallucinations. Int J Neurosci 2006; 116(1):9–23PubMedGoogle Scholar
  92. 92.
    Gaser C, Nenadic I, Volz HP, Buchel C, Sauer H: Neuroanatomy of ‘hearing voices’: a frontotemporal brain structural abnormality associated with auditory hallucinations in schizophrenia. Cereb Cortex 2004; 14(1):91–96PubMedGoogle Scholar
  93. 93.
    Hubl D, Koenig T, Strik W, Federspiel A, Kreis R, Boesch C, Maier SE, Schroth G, Lovblad K, Dierks T: Pathways that make voices: white matter changes in auditory hallucinations. Arch Gen Psychiat 2004; 61(7):658–668PubMedGoogle Scholar
  94. 94.
    Schroeder J, Niethammer R, Geider FJ, Reitz C, Binkert M, Jauss M, Sauer H: Neurological soft signs in schizophrenia. Schizophr Res 1991; 6(1):25–30Google Scholar
  95. 95.
    Vrtunski PB, Simpson DM, Weiss KM, Davis GC: Abnormalities of fine motor control in schizophrenia. Psychiat Res 1986; 18:275–284Google Scholar
  96. 96.
    Mattay VS, Callicott JH, Bertolino A, Santha AK, Tallent KA, Goldberg TE, Frank JA, Weinberger DR: Abnormal functional lateralization of the sensorimotor cortex in patients with schizophrenia. Neuroreport 1997; 8(13):2977–2984PubMedGoogle Scholar
  97. 97.
    Braus DF, Ende G, Weber-Fahr W, Sartorius A, Krier A, Hubrich-Ungureanu P, Ruf M, Stuck S, Henn FA: Antipsychotic drug effects on motor activation measured by functional magnetic resonance imaging in schizophrenic patients. Schizophr Res 1999; 39(1):19–29PubMedGoogle Scholar
  98. 98.
    Buckley PF, Friedman L, Wu D, Lai S, Meltzer HY, Haacke EM, Miller D, Lewin JS: Functional magnetic resonance imaging in schizophrenia: Initial methodology and evaluation of the motor cortex. Psychiat Res Neuroimaging 1997; 74:13–23Google Scholar
  99. 99.
    Schröder J, Essig M, Baudendistel K, Jahn T, Gerdsen I, Stockert A, Schad LR, Knopp MV: Motor dysfunction and sensorimotor cortex activation changes in schizophrenia: A study with functional magnetic resonance imaging. Neuroimage 1999; 9(1):81–87PubMedGoogle Scholar
  100. 100.
    Schröder J, Wenz F, Schad LR, Baudendistel K, Knopp MV: Sensorimotor cortex and supplementary motor area changes in schizophrenia. A study with functional magnetic resonance imaging. Br J Psychiat 1995; 167(2): 197–201Google Scholar
  101. 101.
    Wenz F, Schad LR, Knopp MV, Baudendistel KT, Flomer F, Schroder J, van Kaick G: Functional magnetic resonance imaging at 1.5 T: activation pattern in schizophrenic patients receiving neuroleptic medication. Magn Reson Imag 1994; 12(7):975–982Google Scholar
  102. 102.
    Bertolino A, Blasi G, Caforio G, Latorre V, De Candia M, Rubino V, Callicott JH, Mattay VS, Bellomo A, Scarabino T, Weinberger DR, Nardini M: Functional lateralization of the sensorimotor cortex in patients with schizophrenia: effects of treatment with olanzapine. Biol Psychiat 2004; 56(3):190–197PubMedGoogle Scholar
  103. 103.
    Rogowska J, Gruber SA, Yurgelun-Todd DA: Functional magnetic resonance imaging in schizophrenia: cortical response to motor stimulation. Psychiat Res Neuroimaging 2004; 130:227–243Google Scholar
  104. 104.
    Hoppner J, Kunesch E, Grossmann A, Tolzin CJ, Schulz M, Schlafke D, Ernst K: Dysfunction of transcallosally mediated motor inhibition and callosal morphology in patients with schizophrenia. Acta Psychiat Scand 2001; 104(3):227–235PubMedGoogle Scholar
  105. 105.
    Tost H, Meyer-Lindenberg A, Klein S, Schmitt A, Hohn F, Tenckhoff A, Ruf M, Ende G, Rietschel M, Henn FA, Braus DF: D2 antidopaminergic modulation of frontal lobe function in healthy human subjects. Biol Psychiat 2006; 60(11):1196–1205PubMedGoogle Scholar
  106. 106.
    Vink M, Ramsey NF, Raemaekers M, Kahn RS: Striatal dysfunction in schizophrenia and unaffected relatives. Biol Psychiat 2006; 60(1):32–39PubMedGoogle Scholar
  107. 107.
    Exner C, Weniger G, Schmidt-Samoa C, Irle E: Reduced size of the pre-supplementary motor cortex and impaired motor sequence learning in first-episode schizophrenia. Schizophr Res 2006; 84(2–3):386–396PubMedGoogle Scholar
  108. 108.
    Matsui M, Yoneyama E, Sumiyoshi T, Noguchi K, Nohara S, Suzuki M, Kawasaki Y, Seto H, Kurachi M: Lack of self-control as assessed by a personality inventory is related to reduced volume of supplementary motor area. Psychiat Res 2002; 116(1–2):53–61Google Scholar
  109. 109.
    Goghari VM, Lang DJ, Flynn SW, Mackay AL, Honer WG: Smaller corpus callosum subregions containing motor fibers in schizophrenia. Schizophr Res 2005; 73(1):59–68PubMedGoogle Scholar
  110. 110.
    Williams GV, Goldman-Rakic PS: Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 1995; 376(6541):572–575PubMedGoogle Scholar
  111. 111.
    Goldman-Rakic PS: Cellular basis of working memory. Neuron 1995; 14(3):477–485PubMedGoogle Scholar
  112. 112.
    Fuster JM: Prefrontal cortex and the bridging of temporal gaps in the perception-action cycle. Ann N Y Acad Sci 1990; 608:318–329; discussion 330–336PubMedGoogle Scholar
  113. 113.
    Callicott JH, Mattay VS, Bertolino A, Finn K, Coppola R, Frank JA, Goldberg TE, Weinberger DR: Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cereb Cortex 1999; 9(1):20–26PubMedGoogle Scholar
  114. 114.
    Durstewitz D, Seamans JK, Sejnowski TJ: Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. J Neurophysiol 2000; 83(3):1733–1750PubMedGoogle Scholar
  115. 115.
    Mattay VS, Goldberg TE, Fera F, Hariri AR, Tessitore A, Egan MF, Kolachana B, Callicott JH, Weinberger DR: Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci USA 2003; 100(10):6186–6191PubMedGoogle Scholar
  116. 116.
    Meyer-Lindenberg AS, Olsen RK, Kohn PD, Brown T, Egan MF, Weinberger DR, Berman KF: Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Arch Gen Psychiat 2005; 62(4):379–386PubMedGoogle Scholar
  117. 117.
    Meyer-Lindenberg A, Poline JB, Kohn PD, Holt JL, Egan MF, Weinberger DR, Berman KF: Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. Am J Psychiat 2001; 158(11):1809–1817PubMedGoogle Scholar
  118. 118.
    Andreasen NC, O'Leary DS, Flaum M, Nopoulos P, Watkins GL, Boles Ponto LL, Hichwa RD: Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naive patients. Lancet 1997; 349(9067):1730–1734PubMedGoogle Scholar
  119. 119.
    Paulman RG, Devous MD, Sr., Gregory RR, Herman JH, Jennings L, Bonte FJ, Nasrallah HA, Raese JD: Hypofrontality and cognitive impairment in schizophrenia: dynamic single-photon tomography and neuropsychological assessment of schizophrenic brain function. Biol Psychiat 1990; 27(4):377–399PubMedGoogle Scholar
  120. 120.
    Barch DM, Carter CS, Braver TS, Sabb FW, MacDonald A, 3rd, Noll DC, Cohen JD: Selective deficits in prefrontal cortex function in medication-naive patients with schizophrenia. Arch Gen Psychiat 2001; 58(3):280–288PubMedGoogle Scholar
  121. 121.
    Weinberger DR, Berman KF, Zec RF: Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Arch Gen Psychiat 1986; 43(2):114–124PubMedGoogle Scholar
  122. 122.
    Callicott JH, Bertolino A, Mattay VS, Langheim FJ, Duyn J, Coppola R, Goldberg TE, Weinberger DR: Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb Cortex 2000; 10(11):1078–1092PubMedGoogle Scholar
  123. 123.
    Callicott J, Mattay V, Verchinski BA, Marenco S, Egan MF, Weinberger DR: Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. Am J Psychiat 2003; 160(12):2209–2215PubMedGoogle Scholar
  124. 124.
    Manoach DS: Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings. Schizophr Res 2003; 60(2–3):285–298PubMedGoogle Scholar
  125. 125.
    Tan HY, Choo WC, Fones CS, Chee MW: fMRI study of maintenance and manipulation processes within working memory in first-episode schizophrenia. Am J Psychiat 2005; 162(10):1849–1858PubMedGoogle Scholar
  126. 126.
    Tan HY, Sust S, Buckholtz JW, Mattay VS, Meyer-Lindenberg A, Egan MF, Weinberger DR, Callicott JH: Dysfunctional prefrontal regional specialization and compensation in schizophrenia. Am J Psychiat 2006; 163(11):1969–1977PubMedGoogle Scholar
  127. 127.
    Knudsen EI: Fundamental components of attention. Ann Rev Neurosci 2007; 30:57–78PubMedGoogle Scholar
  128. 128.
    Bleuler E: Dementia praecox or the group of schizophrenias (1911). New York, International Universities Press, 1950Google Scholar
  129. 129.
    MacDonald AW, 3rd, Carter CS: Event-related FMRI study of context processing in dorsolateral prefrontal cortex of patients with schizophrenia. J Abnorm Psychol 2003; 112(4):689–697PubMedGoogle Scholar
  130. 130.
    Volz H, Gaser C, Hager F, Rzanny R, Ponisch J, Mentzel H, Kaiser WA, Sauer H: Decreased frontal activation in schizophrenics during stimulation with the continuous performance test — a functional magnetic resonance imaging study. Eur Psychiat 1999; 14(1):17–24Google Scholar
  131. 131.
    Perlstein WM, Dixit NK, Carter CS, Noll DC, Cohen JD: Prefrontal cortex dysfunction mediates deficits in working memory and prepotent responding in schizophrenia. Biol Psychiat 2003; 53(1):25–38PubMedGoogle Scholar
  132. 132.
    Eyler LT, Olsen RK, Jeste DV, Brown GG: Abnormal brain response of chronic schizophrenia patients despite normal performance during a visual vigilance task. Psychiat Res 2004; 130(3):245–257Google Scholar
  133. 133.
    Carter CS, Mintun M, Nichols T, Cohen JD: Anterior cingulate gyrus dysfunction and selective attention deficits in schizophrenia: [15O]H2O PET study during single-trial Stroop task performance. Am J Psychiat 1997; 154(12): 1670–1675PubMedGoogle Scholar
  134. 134.
    Honey GD, Pomarol-Clotet E, Corlett PR, Honey RA, McKenna PJ, Bullmore ET, Fletcher PC: Functional dysconnectivity in schizophrenia associated with attentional modulation of motor function. Brain 2005; 128(Pt 11): 2597–2611PubMedGoogle Scholar
  135. 135.
    Heckers S, Weiss AP, Deckersbach T, Goff DC, Morecraft RJ, Bush G: Anterior cingulate cortex activation during cognitive interference in schizophrenia. Am J Psychiat 2004; 161(4):707–715PubMedGoogle Scholar
  136. 136.
    Salgado-Pineda P, Junque C, Vendrell P, Baeza I, Bargallo N, Falcon C, Bernardo M: Decreased cerebral activation during CPT performance: structural and functional deficits in schizophrenic patients. Neuroimage 2004; 21(3): 840–847PubMedGoogle Scholar
  137. 137.
    Yücel M, Pantelis C, Stuart GW, Wood SJ, Maruff P, Velakoulis D, Pipingas A, Crowe SF, Tochon-Danguy HJ, Egan GF: Anterior cingulate activation during Stroop task performance: a PET to MRI coregistration study of individual patients with schizophrenia. Am J Psychiat 2002; 159(2):251–254PubMedGoogle Scholar
  138. 138.
    Sun Z, Wang F, Cui L, Breeze J, Du X, Wang X, Cong Z, Zhang H, Li B, Hong N, Zhang D: Abnormal anterior cin-gulum in patients with schizophrenia: a diffusion tensor imaging study. Neuroreport 2003; 14(14):1833–1836PubMedGoogle Scholar
  139. 139.
    Kubicki M, Westin CF, Nestor PG, Wible CG, Frumin M, Maier SE, Kikinis R, Jolesz FA, McCarley RW, Shenton ME: Cingulate fasciculus integrity disruption in schizophrenia: a magnetic resonance diffusion tensor imaging study. Biol Psychiat 2003; 54(11):1171–1180PubMedGoogle Scholar
  140. 140.
    Artiges E, Martelli C, Naccache L, Bartres-Faz D, Leprovost JB, Viard A, Paillere-Martinot ML, Dehaene S, Martinot JL: Paracingulate sulcus morphology and fMRI activation detection in schizophrenia patients. Schizophr Res 2006; 82(2–3):143–151PubMedGoogle Scholar
  141. 141.
    Meyer-Lindenberg A, Weinberger DR: Intermediate phe-notypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci 2006; 7(10):818–827PubMedGoogle Scholar
  142. 142.
    Talkowski ME, Kirov G, Bamne M, Georgieva L, Torres G, Mansour H, Chowdari KV, Milanova V, Wood J, McClain L, Prasad K, Shirts B, Zhang J, O'Donovan MC, Owen MJ, Devlin B, Nimgaonkar VL: A network of dopaminergic gene variations implicated as risk factors for schizophrenia. Hum Mol Genet 2008; 17(5):747–758PubMedGoogle Scholar
  143. 143.
    Owen MJ, Williams NM, O'Donovan MC: The molecular genetics of schizophrenia: new findings promise new insights. Mol Psychiat 2004; 9(1):14–27Google Scholar
  144. 144.
    Karayiorgou M, Gogos JA: The molecular genetics of the 22q11-associated schizophrenia. Brain Res Mol Brain Res 2004; 132(2):95–104PubMedGoogle Scholar
  145. 145.
    Murphy KC: Schizophrenia and velo-cardio-facial syndrome. Lancet 2002; 359(9304):426–430PubMedGoogle Scholar
  146. 146.
    Stark KL, Xu B, Bagchi A, Lai WS, Liu H, Hsu R, Wan X, Pavlidis P, Mills AA, Karayiorgou M, Gogos JA: Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet 2008; 40(6):751–760PubMedGoogle Scholar
  147. 147.
    Lewis DA, Melchitzky DS, Sesack SR, Whitehead RE, Auh S, Sampson A: Dopamine transporter immunoreactiv-ity in monkey cerebral cortex: regional, laminar, and ultrastructural localization. J Comp Neurol 2001; 432(1): 119–136PubMedGoogle Scholar
  148. 148.
    Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S, Kolachana BS, Hyde TM, Herman MM, Apud J, Egan MF, Kleinman JE, Weinberger DR: Functional analysis of genetic variation in catechol-O-methyltrans-ferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 2004; 75(5):807–821PubMedGoogle Scholar
  149. 149.
    Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, Goldman D, Weinberger DR: Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 2001; 98(12):6917–6922PubMedGoogle Scholar
  150. 150.
    Goldberg TE, Egan MF, Gscheidle T, Coppola R, Weickert T, Kolachana BS, Goldman D, Weinberger DR: Executive subprocesses in working memory: relationship to catechol-O-methyltransferase Val158Met genotype and schizophrenia. Arch Gen Psychiat 2003; 60(9):889–896PubMedGoogle Scholar
  151. 151.
    Meyer-Lindenberg A, Kohn PD, Kolachana B, Kippenhan S, McInerney-Leo A, Nussbaum R, Weinberger DR, Berman KF: Midbrain dopamine and prefrontal function in humans: interaction and modulation by COMT genotype. Nat Neurosci 2005; 8(5):594–596PubMedGoogle Scholar
  152. 152.
    Meyer-Lindenberg A, Straub RE, Lipska BK, Verchinski BA, Goldberg T, Callicott JH, Egan MF, Huffaker SS, Mattay VS, Kolachana B, Kleinman JE, Weinberger DR: Genetic evidence implicating DARPP-32 in human fronto-striatal structure, function, and cognition. J Clin Invest 2007; 117(3):672–682PubMedGoogle Scholar
  153. 153.
    Svenningsson P, Nishi A, Fisone G, Girault JA, Nairn AC, Greengard P: DARPP-32: an integrator of neurotransmis-sion. Ann Rev Pharmacol Toxicol 2004; 44:269–296Google Scholar
  154. 154.
    Svenningsson P, Tzavara ET, Carruthers R, Rachleff I, Wattler S, Nehls M, McKinzie DL, Fienberg AA, Nomikos GG, Greengard P: Diverse psychotomimetics act through a common signaling pathway. Science 2003; 302(5649):1412–1415PubMedGoogle Scholar
  155. 155.
    Swerdlow NR, Geyer MA, Braff DL: Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology (Berl) 2001; 156(2–3):194–215Google Scholar
  156. 156.
    Tan HY, Nicodemus KK, Chen Q, Li Z, Brooke JK, Honea R, Kolachana BS, Straub RE, Meyer-Lindenberg A, Sei Y, Mattay VS, Callicott JH, Weinberger DR: Genetic variation in AKT1 is linked to dopamine-associated prefrontal cortical structure and function in humans. J Clin Invest 2008; 118(6):2200–2208PubMedGoogle Scholar
  157. 157.
    Miyamoto S, Duncan GE, Marx CE, Lieberman JA: Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiat 2005; 10(1):79–104Google Scholar
  158. 158.
    Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM: Human catechol-O-methyltrans-ferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 1996; 6(3):243–250PubMedGoogle Scholar
  159. 159.
    Bertolino A, Caforio G, Blasi G, De Candia M, Latorre V, Petruzzella V, Altamura M, Nappi G, Papa S, Callicott JH, Mattay VS, Bellomo A, Scarabino T, Weinberger DR, Nardini M: Interaction of COMT (Val(108/158)Met) genotype and olanzapine treatment on prefrontal cortical function in patients with schizophrenia. Am J Psychiat 2004; 161(10):1798–1805PubMedGoogle Scholar
  160. 160.
    Bertolino A, Caforio G, Blasi G, Rampino A, Nardini M, Weinberger DR, Dallapiccola B, Sinibaldi L, Douzgou S: COMT Val158Met polymorphism predicts negative symptoms response to treatment with olanzapine in schizophrenia. Schizophr Res 2007; 95(1–3):253–255PubMedGoogle Scholar
  161. 161.
    Stephan KE, Magnotta VA, White T, Arndt S, Flaum M, O'Leary DS, Andreasen NC: Effects of olanzapine on cerebellar functional connectivity in schizophrenia measured by fMRI during a simple motor task. Psychol Med 2001; 31(6):1065–1078PubMedGoogle Scholar
  162. 162.
    Meisenzahl EM, Scheuerecker J, Zipse M, Ufer S, Wiesmann M, Frodl T, Koutsouleris N, Zetzsche T, Schmitt G, Riedel M, Spellmann I, Dehning S, Linn J, Bruckmann H, Moller HJ: Effects of treatment with the atypical neuro-leptic quetiapine on working memory function: a functional MRI follow-up investigation. Eur Arch Psychiat Clin Neurosci 2006; 256(8):522–531Google Scholar
  163. 163.
    Jones HM, Brammer MJ, O'Toole M, Taylor T, Ohlsen RI, Brown RG, Purvis R, Williams S, Pilowsky LS: Cortical effects of quetiapine in first-episode schizophrenia: a preliminary functional magnetic resonance imaging study. Biol Psychiat 2004; 56(12):938–942PubMedGoogle Scholar
  164. 164.
    Snitz BE, MacDonald A, 3rd, Cohen JD, Cho RY, Becker T, Carter CS: Lateral and medial hypofrontality in first-episode schizophrenia: functional activity in a medication-naive state and effects of short-term atypical antipsychotic treatment. Am J Psychiat 2005; 162(12):2322–2329PubMedGoogle Scholar
  165. 165.
    Kumari V, Antonova E, Geyer MA, Ffytche D, Williams SC, Sharma T: A fMRI investigation of startle gating deficits in schizophrenia patients treated with typical or atypical antipsychotics. Int J Neuropsychopharmacol 2007; 10(4):463–477PubMedGoogle Scholar
  166. 166.
    Lieberman JA, Tollefson GD, Charles C, Zipursky R, Sharma T, Kahn RS, Keefe RS, Green AI, Gur RE, McEvoy J, Perkins D, Hamer RM, Gu H, Tohen M: Antipsychotic drug effects on brain morphology in first-episode psychosis. Arch Gen Psychiat 2005; 62(4):361–370PubMedGoogle Scholar
  167. 167.
    Bertolino A, Callicott JH, Mattay VS, Weidenhammer KM, Rakow R, Egan MF, Weinberger DR: The effect of treatment with antipsychotic drugs on brain N-acetylaspartate measures in patients with schizophrenia. Biol Psychiat 2001; 49(1):39–46PubMedGoogle Scholar
  168. 168.
    Braus DF, Ende G, Weber-Fahr W, Demirakca T, Henn FA: Favorable effect on neuronal viability in the anterior cingu-late gyrus due to long-term treatment with atypical antipsychotics: an MRSI study. Pharmacopsychiatry 2001; 34(6):251–253PubMedGoogle Scholar
  169. 169.
    Ende G, Braus DF, Walter S, Weber-Fahr W, Soher B, Maudsley AA, Henn FA: Effects of age, medication, and illness duration on the N-acetyl aspartate signal of the anterior cingulate region in schizophrenia. Schizophr Res 2000; 41(3):389–395PubMedGoogle Scholar
  170. 170.
    Szulc A, Galinska B, Tarasow E, Dzienis W, Kubas B, Konarzewska B, Walecki J, Alathiaki AS, Czernikiewicz A: The effect of risperidone on metabolite measures in the frontal lobe, temporal lobe, and thalamus in schizophrenic patients. A proton magnetic resonance spectroscopy (1H MRS). Pharmacopsychiatry 2005; 38(5):214–219PubMedGoogle Scholar
  171. 171.
    Abler B, Erk S, Walter H: Human reward system activation is modulated by a single dose of olanzapine in healthy subjects in an event-related, double-blind, placebo-controlled fMRI study. Psychopharmacology (Berl) 2007; 191(3):823–833Google Scholar
  172. 172.
    Brassen S, Tost H, Hoehn F, Weber-Fahr W, Klein S, Braus DF: Haloperidol challenge in healthy male humans: a functional magnetic resonance imaging study. Neurosci Lett 2003; 340(3):193–196PubMedGoogle Scholar
  173. ###.
    Mental Health: A Report of the Surgeon General, US Department of Health and Human Services, 1999Google Scholar
  174. 174.
    Egan MF, Straub RE, Goldberg TE, Yakub I, Callicott JH, Hariri AR, Mattay VS, Bertolino A, Hyde TM, Shannon-Weickert C, Akil M, Crook J, Vakkalanka RK, Balkissoon R, Gibbs RA, Kleinman JE, Weinberger DR: Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proc Natl Acad Sci USA 2004; 101(34):12604–12609PubMedGoogle Scholar
  175. 175.
    Cohen MX, Young J, Baek JM, Kessler C, Ranganath C: Individual differences in extraversion and dopamine genetics predict neural reward responses. Brain Res Cogn Brain Res 2005; 25(3):851–861PubMedGoogle Scholar
  176. 176.
    Meyer-Lindenberg A, Nichols T, Callicott JH, Ding J, Kolachana B, Buckholtz J, Mattay VS, Egan M, Weinberger DR: Impact of complex genetic variation in COMT on human brain function. Mol Psychiat 2006; 11(9):867–877, 797Google Scholar
  177. 177.
    Pezawas L, Meyer-Lindenberg A, Drabant EM, Verchinski BA, Munoz KE, Kolachana BS, Egan MF, Mattay VS, Hariri AR, Weinberger DR: 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci 2005; 8(6):828–834PubMedGoogle Scholar
  178. 178.
    Hariri AR, Mattay VS, Tessitore A, Kolachana B, Fera F, Goldman D, Egan MF, Weinberger DR: Serotonin transporter genetic variation and the response of the human amygdala. Science 2002; 297(5580):400–403PubMedGoogle Scholar
  179. 179.
    Meyer-Lindenberg A, Buckholtz JW, Kolachana B, A RH, Pezawas L, Blasi G, Wabnitz A, Honea R, Verchinski B, Callicott JH, Egan M, Mattay V, Weinberger DR: Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc Natl Acad Sci USA 2006; 103(16):6269–6274PubMedGoogle Scholar
  180. 180.
    Meisenzahl EM, Koutsouleris N, Gaser C, Bottlender R, Schmitt GJ, McGuire P, Decker P, Burgermeister B, Born C, Reiser M, Moller HJ: Structural brain alterations in subjects at high-risk of psychosis: A voxel-based morphometric study. Schizophr Res 2008; 102(1–3):150–162PubMedGoogle Scholar
  181. ###.
    Xu L, Groth KM, Pearlson G, Schretlen DJ, Calhoun VD: Source-based morphometry: The use of independent component analysis to identify gray matter differences with application to schizophrenia. Hum Brain Mapp 2008Google Scholar
  182. 182.
    Honea RA, Meyer-Lindenberg A, Hobbs KB, Pezawas L, Mattay VS, Egan MF, Verchinski B, Passingham RE, Weinberger DR, Callicott JH: Is gray matter volume an intermediate phenotype for schizophrenia? A voxel-based morphometry study of patients with schizophrenia and their healthy siblings. Biol Psychiat 2008; 63(5):465–474PubMedGoogle Scholar
  183. 183.
    Zinkstok J, Schmitz N, van Amelsvoort T, Moeton M, Baas F, Linszen D: Genetic variation in COMT and PRODH is associated with brain anatomy in patients with schizophrenia. Genes Brain Behav 2008; 7(1):61–69PubMedGoogle Scholar
  184. 184.
    Hazlett EA, Buchsbaum MS, Haznedar MM, Newmark R, Goldstein KE, Zelmanova Y, Glanton CF, Torosjan Y, New AS, Lo JN, Mitropoulou V, Siever LJ: Cortical gray and white matter volume in unmedicated schizotypal and schizophrenia patients. Schizophr Res 2008; 101(1–3): 111–123PubMedGoogle Scholar
  185. 185.
    Bonilha L, Molnar C, Horner MD, Anderson B, Forster L, George MS, Nahas Z: Neurocognitive deficits and prefron-tal cortical atrophy in patients with schizophrenia. Schizophr Res 2008; 101(1–3):142–151PubMedGoogle Scholar
  186. ###.
    Koutsouleris N, Gaser C, Jager M, Bottlender R, Frodl T, Holzinger S, Schmitt GJ, Zetzsche T, Burgermeister B, Scheuerecker J, Born C, Reiser M, Moller HJ, Meisenzahl EM: Structural correlates of psychopathological symptom dimensions in schizophrenia: a voxel-based morphometric study. Neuroimage 2008; 39(4):1600–1612PubMedGoogle Scholar
  187. 187.
    van Haren NE, Pol HE, Schnack HG, Cahn W, Brans R, Carati I, Rais M, Kahn RS: Progressive brain volume loss in schizophrenia over the course of the illness: evidence of maturational abnormalities in early adulthood. Biol Psychiat 2008; 63(1):106–113PubMedGoogle Scholar
  188. 188.
    Nesvag R, Lawyer G, Varnas K, Fjell AM, Walhovd KB, Frigessi A, Jonsson EG, Agartz I: Regional thinning of the cerebral cortex in schizophrenia: effects of diagnosis, age and antipsychotic medication. Schizophr Res 2008; 98(1–3):16–28PubMedGoogle Scholar
  189. 189.
    Ettinger U, Picchioni M, Landau S, Matsumoto K, van Haren NE, Marshall N, Hall MH, Schulze K, Toulopoulou T, Davies N, Ribchester T, McGuire PK, Murray RM: Magnetic resonance imaging of the thalamus and adhesio interthalamica in twins with schizophrenia. Arch Gen Psychiat 2007; 64(4):401–409PubMedGoogle Scholar
  190. 190.
    Ho BC, Andreasen NC, Dawson JD, Wassink TH: Association between brain-derived neurotrophic factor Val66Met gene polymorphism and progressive brain volume changes in schizophrenia. Am J Psychiat 2007; 164(12):1890–1899PubMedGoogle Scholar
  191. 191.
    Szeszko PR, Hodgkinson CA, Robinson DG, Derosse P, Bilder RM, Lencz T, Burdick KE, Napolitano B, Betensky JD, Kane JM, Goldman D, Malhotra AK: DISC1 is associated with prefrontal cortical gray matter and positive symptoms in schizophrenia. Biol Psychol 2008; 79(1):103–110PubMedGoogle Scholar
  192. 192.
    Harris JM, Moorhead TW, Miller P, McIntosh AM, Bonnici HM, Owens DG, Johnstone EC, Lawrie SM: Increased prefrontal gyrification in a large high-risk cohort characterizes those who develop schizophrenia and reflects abnormal prefrontal development. Biol Psychiat 2007; 62(7): 722–729PubMedGoogle Scholar
  193. 193.
    Wang L, Hosakere M, Trein JC, Miller A, Ratnanather JT, Barch DM, Thompson PA, Qiu A, Gado MH, Miller MI, Csernansky JG: Abnormalities of cingulate gyrus neuroanatomy in schizophrenia. Schizophr Res 2007; 93(1–3):66–78PubMedGoogle Scholar
  194. 194.
    Kuroki N, Shenton ME, Salisbury DF, Hirayasu Y, Onitsuka T, Ersner-Hershfield H, Yurgelun-Todd D, Kikinis R, Jolesz FA, McCarley RW: Middle and inferior temporal gyrus gray matter volume abnormalities in first-episode schizophrenia: an MRI study. Am J Psychiat 2006; 163(12):2103–2110PubMedGoogle Scholar
  195. 195.
    Hulshoff Pol HE, Schnack HG, Mandl RC, Brans RG, van Haren NE, Baare WF, van Oel CJ, Collins DL, Evans AC, Kahn RS: Gray and white matter density changes in monozygotic and same-sex dizygotic twins discordant for schizophrenia using voxel-based morphometry. Neuroimage 2006; 31(2):482–488Google Scholar
  196. 196.
    Davatzikos C, Shen D, Gur RC, Wu X, Liu D, Fan Y, Hughett P, Turetsky BI, Gur RE: Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities. Arch Gen Psychiat 2005; 62(11):1218–1227PubMedGoogle Scholar
  197. 197.
    Nierenberg J, Salisbury DF, Levitt JJ, David EA, McCarley RW, Shenton ME: Reduced left angular gyrus volume in first-episode schizophrenia. Am J Psychiat 2005; 162(8):1539–1541PubMedGoogle Scholar
  198. 198.
    Onitsuka T, Shenton ME, Salisbury DF, Dickey CC, Kasai K, Toner SK, Frumin M, Kikinis R, Jolesz FA, McCarley RW: Middle and inferior temporal gyrus gray matter volume abnormalities in chronic schizophrenia: an MRI study. Am J Psychiat 2004; 161(9):1603–1611PubMedGoogle Scholar
  199. 199.
    Narr KL, Thompson PM, Szeszko P, Robinson D, Jang S, Woods RP, Kim S, Hayashi KM, Asunction D, Toga AW, Bilder RM: Regional specificity of hippocampal volume reductions in first-episode schizophrenia. Neuroimage 2004; 21(4):1563–1575PubMedGoogle Scholar
  200. 200.
    Sporn AL, Greenstein DK, Gogtay N, Jeffries NO, Lenane M, Gochman P, Clasen LS, Blumenthal J, Giedd JN, Rapoport JL: Progressive brain volume loss during adolescence in childhood-onset schizophrenia. Am J Psychiat 2003; 160(12):2181–2189PubMedGoogle Scholar
  201. 201.
    Kaladjian A, Jeanningros R, Azorin JM, Grimault S, Anton JL, Mazzola-Pomietto P: Blunted activation in right ventrolateral prefrontal cortex during motor response inhibition in schizophrenia. Schizophr Res 2007; 97(1–3):184–193PubMedGoogle Scholar
  202. 202.
    Menon V, Anagnoson RT, Glover GH, Pfefferbaum A: Functional magnetic resonance imaging evidence for disrupted basal ganglia function in schizophrenia. Am J Psychiat 2001; 158(4):646–649PubMedGoogle Scholar
  203. 203.
    Allen P, Amaro E, Fu CH, Williams SC, Brammer MJ, Johns LC, McGuire PK: Neural correlates of the misattri-bution of speech in schizophrenia. Br J Psychiat 2007; 190:162–169Google Scholar
  204. 204.
    Kiehl KA, Stevens MC, Celone K, Kurtz M, Krystal JH: Abnormal hemodynamics in schizophrenia during an auditory oddball task. Biol Psychiat 2005; 57(9):1029–1040PubMedGoogle Scholar
  205. 205.
    Lawrie SM, Buechel C, Whalley HC, Frith CD, Friston KJ, Johnstone EC: Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations. Biol Psychiat 2002; 51(12):1008–1011PubMedGoogle Scholar
  206. 206.
    Wible CG, Kubicki M, Yoo SS, Kacher DF, Salisbury DF, Anderson MC, Shenton ME, Hirayasu Y, Kikinis R, Jolesz FA, McCarley RW: A functional magnetic resonance imaging study of auditory mismatch in schizophrenia. Am J Psychiat 2001; 158(6):938–943PubMedGoogle Scholar
  207. 207.
    Delawalla Z, Csernansky JG, Barch DM: Prefrontal cortex function in nonpsychotic siblings of individuals with schizophrenia. Biol Psychiat 2008; 63(5):490–497PubMedGoogle Scholar
  208. 208.
    Gur RE, Turetsky BI, Loughead J, Snyder W, Kohler C, Elliott M, Pratiwadi R, Ragland JD, Bilker WB, Siegel SJ, Kanes SJ, Arnold SE, Gur RC: Visual attention circuitry in schizophrenia investigated with oddball event-related functional magnetic resonance imaging. Am J Psychiat 2007; 164(3):442–449PubMedGoogle Scholar
  209. 208.
  210. 210.
    Weiss EM, Golaszewski S, Mottaghy FM, Hofer A, Hausmann A, Kemmler G, Kremser C, Brinkhoff C, Felber SR, Wolfgang Fleischhacker W: Brain activation patterns during a selective attention test — a functional MRI study in healthy volunteers and patients with schizophrenia. Psychiat Res 2003; 123(1):1–15Google Scholar
  211. 211.
    Pomarol-Clotet E, Salvador R, Sarro S, Gomar J, Vila F, Martinez A, Guerrero A, Ortiz-Gil J, Sans-Sansa B, Capdevila A, Cebamanos JM, McKenna PJ: Failure to deactivate in the prefrontal cortex in schizophrenia: dysfunction of the default mode network? Psychol Med 2008; 38(8):1185–1193PubMedGoogle Scholar
  212. 212.
    Callicott J, Egan MF, Mattay V, Bertolino A, Bone AD, Verchinski BA, Weinberger DR: Abnormal fMRI response of the dorsolateral prefrontal cortex in cognitively intact siblings of patients with schizophrenia. Am J Psychiat 2004; 160(4):709–719Google Scholar
  213. 213.
    Schlosser R, Gesierich T, Kaufmann B, Vucurevic G, Hunsche S, Gawehn J, Stoeter P: Altered effective connectivity during working memory performance in schizophrenia: a study with fMRI and structural equation modeling. Neuroimage 2003; 19(3):751–763PubMedGoogle Scholar
  214. 214.
    Manoach DS, Gollub RL, Benson ES, Searl MM, Goff DC, Halpern E, Saper CB, Rauch SL: Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biol Psychiat 2000; 48(2):99–109PubMedGoogle Scholar
  215. 215.
    Callicott JH, Ramsey NF, Tallent K, Bertolino A, Knable MB, Coppola R, Goldberg T, van Gelderen P, Mattay VS, Frank JA, Moonen CT, Weinberger DR: Functional magnetic resonance imaging brain mapping in psychiatry: methodological issues illustrated in a study of working memory in schizophrenia. Neuropsychopharmacology 1998; 18(3):186–196PubMedGoogle Scholar
  216. 216.
    Volz HP, Gaser C, Hager F, Rzanny R, Mentzel HJ, Kreitschmann-Andermahr I, Kaiser WA, Sauer H: Brain activation during cognitive stimulation with the Wisconsin Card Sorting Test — a functional MRI study on healthy volunteers and schizophrenics. Psychiat Res 1997; 75(3):145–157Google Scholar
  217. 217.
    Winterer G, Konrad A, Vucurevic G, Musso F, Stoeter P, Dahmen N: Association of 5 end neuregulin-1 (NRG1) gene variation with subcortical medial frontal microstructure in humans. Neuroimage 2008; 40(2):712–718PubMedGoogle Scholar
  218. 218.
    Straub RE, Lipska BK, Egan MF, Goldberg TE, Callicott JH, Mayhew MB, Vakkalanka RK, Kolachana BS, Kleinman JE, Weinberger DR: Allelic variation in GAD1 (GAD67) is associated with schizophrenia and influences cortical function and gene expression. Mol Psychiat 2007; 12(9):854–869Google Scholar
  219. 219.
    Takahashi T, Suzuki M, Tsunoda M, Kawamura Y, Takahashi N, Maeno N, Kawasaki Y, Zhou SY, Hagino H, Niu L, Tsuneki H, Kobayashi S, Sasaoka T, Seto H, Kurachi M, Ozaki N: The association of genotypic combination of the DRD3 and BDNF polymorphisms on the adhesio interthalamica and medial temporal lobe structures. Prog Neuropsychopharmacol Biol Psychiat 2008; 32(5): 1236–1242Google Scholar
  220. 220.
    Hall J, Whalley HC, Moorhead TW, Baig BJ, McIntosh AM, Job DE, Owens DG, Lawrie SM, Johnstone EC: Genetic variation in the DAOA (G72) gene modulates hippocampal function in subjects at high risk of schizophrenia. Biol Psychiat 2008; 64(5):428–433PubMedGoogle Scholar
  221. 221.
    McIntosh AM, Moorhead TW, Job D, Lymer GK, Munoz Maniega S, McKirdy J, Sussmann JE, Baig BJ, Bastin ME, Porteous D, Evans KL, Johnstone EC, Lawrie SM, Hall J: The effects of a neuregulin 1 variant on white matter density and integrity. Mol Psychiat 2008; 13(11):1054–1059Google Scholar
  222. 222.
    Tan H Y, Chen Q, Sust S, Buckholtz JW, Meyers JD, Egan MF, Mattay VS, Meyer-Lindenberg A, Weinberger DR, Callicott JH: Epistasis between catechol-O-methyltrans-ferase and type II metabotropic glutamate receptor 3 genes on working memory brain function. Proc Natl Acad Sci USA 2007; 104(30):12536–12541PubMedGoogle Scholar
  223. 223.
    Buckholtz JW, Meyer-Lindenberg A, Honea RA, Straub RE, Pezawas L, Egan MF, Vakkalanka R, Kolachana B, Verchinski BA, Sust S, Mattay VS, Weinberger DR, Callicott JH: Allelic variation in RGS4 impacts functional and structural connectivity in the human brain. J Neurosci 2007; 27(7):1584–1593PubMedGoogle Scholar
  224. 224.
    Blasi G, Mattay VS, Bertolino A, Elvevag B, Callicott JH, Das S, Kolachana BS, Egan MF, Goldberg TE, Weinberger DR: Effect of catechol-O-methyltransferase val158met genotype on attentional control. J Neurosci 2005; 25(20): 5038–5045PubMedGoogle Scholar
  225. 225.
    Cannon TD, Hennah W, van Erp TG, Thompson PM, Lonnqvist J, Huttunen M, Gasperoni T, Tuulio-Henriksson A, Pirkola T, Toga AW, Kaprio J, Mazziotta J, Peltonen L: Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short-and long-term memory. Arch Gen Psychiat 2005; 62(11): 1205–1213PubMedGoogle Scholar
  226. 226.
    Callicott JH, Straub RE, Pezawas L, Egan MF, Mattay VS, Hariri AR, Verchinski BA, Meyer-Lindenberg A, Balkissoon R, Kolachana B, Goldberg TE, Weinberger DR: Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc Natl Acad Sci USA 2005; 102(24):8627–8632PubMedGoogle Scholar
  227. 227.
    Egan MF, Straub RE, Goldberg TE, Yakub I, Callicott JH, Hariri AR, Mattay VS, Bertolino A, Hyde T, Shannon-Weickert C, Akil M, Crook J, Vakkalanka RK, Balkissoon R, Gibbs RA, Kleinmann JE, Weinberger DR: Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schiophrenia. PNAS 2004; 101(34):12604–12609PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Heike Tost
    • 1
  • Shabnam Hakimi
    • 1
  • Andreas Meyer-Lindenberg
    • 2
  1. 1.Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental HealthNational Institutes of HealthBethesdaUSA
  2. 2.Faculty of Clinical Medicine MannheimUniversity of HeidelbergGermany

Personalised recommendations