Skip to main content

Additive Structure of Units Group mod p k, with Carry Extension for a Proof of Fermat’s Last Theorem

  • Chapter
Associative Digital Network Theory
  • 4 Accesses

Abstract

The additive structure of multiplicative semigroup \(Z_{p^{k}}=Z(.)\) mod p k is analysed for prime p>2. Order (p−1)p k−1 of cyclic group G k of units mod p k implies product G k A k B k , with cyclic ‘core’ A k of order p−1 so n pn for core elements, and ‘extension subgroup’ B k of order p k−1 consisting of all units n≡1 mod p, generated by p+1. The p-th power residues n p mod p k in G k form an order |G k |/p subgroup F k , with |F k |/|A k |=p k−2, so F k properly contains core A k for k≥3. The additive structure of subgroups A k , F k and G k is derived by successor function S(n)=n+1, and by considering the two arithmetic symmetries C(n)=−n and I(n)=n −1 as functions, with commuting IC=CI, where S does not commute with I nor C. The four distinct compositions SCI,CIS,CSI,ISC all have period 3 upon iteration. This yields a triplet structure in G k of three inverse pairs (n i ,n −1 i ) with n i +1≡−(n i+1)−1 for i=0,1,2 where n 0.n 1.n 2≡1 mod p k, generalizing the cubic root solution n+1≡−n −1≡−n 2 mod p k (p≡1 mod 6). Any solution in core: (x+y)px+yx p+y p mod p k>1 has exponent p distributing over a sum, shown to imply the known FLT inequality for integers. In such equivalence mod p k (FLT case 1) the three terms can be interpreted as naturals n<p k, so n p<p kp, and the (p−1)k produced carries cause FLT inequality. Inequivalence mod p 3k+1 is shown for the cubic roots of 1mod p k (p≡1mod 6).

(c) 2005 Bratislava University Press, with permission taken from [10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Apostol: “Introduction to Analytical Number Theory”, Springer, Berlin, 1976 (Theorem 10.4-6)

    Google Scholar 

  2. N. Benschop: “The Semigroup of Multiplication mod p k, an Extension of Fermat’s Small Theorem, and Its Additive Structure”, International Conference on Semigroups and Their Applications, Prague, July 1996

    Google Scholar 

  3. A. Clifford, G. Preston: “The Algebraic Theory of Semigroups”, AMS Surv. #7 1, 130–135 (1961)

    Google Scholar 

  4. S. Schwarz: “The Role of Semigroups in the Elementary Theory of Numbers”, Math. Slovaca 31(4), 369–395 (1981)

    MATH  MathSciNet  Google Scholar 

  5. G. Hardy, E. Wright: “An Introduction to the Theory of Numbers”, Oxford University Press, Oxford, 1979 (Chap. 8.3, Theorem 123)

    MATH  Google Scholar 

  6. A. Wieferich: “Zum letzten Fermat’schen Theorem”, J. Reine Angew. Math. 136, 293–302 (1909)

    MATH  Google Scholar 

  7. S. Mohit, M. Ram Murty: “Wieferich Primes and Hall’s Conjecture”, C. R. Acad. Sci. (Can.) 20(1), 29–32 (1998)

    MATH  Google Scholar 

  8. N. Benschop: “Powersums Representing Residues mod p k, from Fermat to Waring”, Comput. Math. Appl. 39(7–8), 253–261 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. N. Benschop: US-5923888 (13 July 1999) on a Logarithmic Binary Multiplier, with Dual Bases 2 and 3 (Using 3 as Semi-Primitive Root of 1mod 2k)

    Google Scholar 

  10. N. Benschop: “Additive Structure of Z(.) mod p k, with Core and Carry Concepts for Extension to Integers”, Acta Mathematica Univ. Bratislava (Nov. 2005). http://pc2.iam.fmph.uniba.sk/amuc/_vol74n2.html (pp. 169–184)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico F. Benschop .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Benschop, N.F. (2009). Additive Structure of Units Group mod p k, with Carry Extension for a Proof of Fermat’s Last Theorem. In: Associative Digital Network Theory. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9829-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9829-1_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9828-4

  • Online ISBN: 978-1-4020-9829-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics