Skip to main content

Log-Arithmetic, with Single and Dual Base

  • Chapter
Associative Digital Network Theory
  • 4 Accesses

Abstract

The group of units mod p k (prime p>2) is known to be cyclic for k≥1, corresponding for k=1 to Fermat’s Small Theorem: n p−1≡1 mod p (n coprime to p). If p=2 and k>2 the 2k−1 units (odd residues) require two generators, such as 3 and −1 mod 2k, since 3 is semi-primitive root of 1 mod 2k. So each residue  n≡±3i2j mod 2k with unique non-negative  i<2k−2, jk. For engineering purposes this yields efficient log-arithmetic with dual base 2 and 3.

Under European ESPRIT research project HSLA “High Speed Log-Arithmetic” (main contractor Univ.Newcastle/EECE), a 32 bit VLSI microprocessor based on the binary logarithmic number system (LNS) was developed. Following a phase-1 ESPRIT feasibility study lead by J.N.Coleman, it was designed at Philips Research Labs (Eindhoven, NL) by Chris Softley and produced at Philips Semiconductors (Nijmegen NL, in 0.18 μm CMOS, 13 mm2, 150 mW at 150 MHz).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.G. Kingsbury, P.J. Rayner: “Digital Filtering Using Logarithmic Arithmetic”, Electron. Lett. 7, 56–58 (1971)

    Article  Google Scholar 

  2. T. Kurokawa, J.A. Payne, S.C. Lee: “Error Analysis of Recursive Digital Filters Implemented with Logarithmic Number Systems”, IEEE Trans. ASSP 28, 706–715 (1980)

    Article  Google Scholar 

  3. E.E. Swartzlander, D.V. Chandra, H.T. Nagle, S.A. Starks: “Sign/Logarithm Arithmetic for FFT Implementation”, IEEE Trans. Comput. TC-32, 526–534 (1983) and comments TC-35, 482–484 (1986)

    Article  Google Scholar 

  4. E.E. Swartzlander, A.G. Alexopoulos: “The Sign/Logarithm Number System”, IEEE Trans. Comput. TC-24, 1238–1242 (1975)

    Article  MathSciNet  Google Scholar 

  5. F.J. Taylor, R. Gill, J. Joseph, J. Radke: “A 20 Bit Logarithmic Number System Processor”, IEEE Trans. Comput. TC-37, 190–200 (1988)

    Article  Google Scholar 

  6. L.K. Yu, D.M. Lewis: “A 30-b Integrated Logarithmic Number System Processor”, IEEE JSSC 26, 1433–1440 (1991)

    Google Scholar 

  7. D.M. Lewis: “Interleaved Memory Function Interpolators with Application to an Accurate LNS Arithmetic Unit”, IEEE Trans. Comput. TC-43, 974–982 (1994)

    Article  Google Scholar 

  8. D.M. Lewis: “114 MFLOPS Logarithmic Number System Arithmetic Unit for DSP Applications”, IEEE JSSC 30, 1547–1553 (1995)

    Google Scholar 

  9. M. Arnold, T. Bailey, J. Cowles, M. Winkel: “Arithmetic Co-Transformations in Real and Complex Logarithmic Number Systems”, IEEE Trans. Comput. TC-47, 777–786 (1998)

    Article  MathSciNet  Google Scholar 

  10. M.G. Arnold : “Applying Features of IEEE 754 to Sign/Logarithm Arithmetic”, IEEE Trans. Comput. TC-41, 1040–1050 (1992)

    Article  Google Scholar 

  11. J.N. Coleman: “Simplification of Table Structure in Logarithmic Arithmetic”, Electron. Lett. 31, 1905–1906 (1995) (Erratum p. 2103 (1996))

    Article  Google Scholar 

  12. M. Schulte, J. Stine: “Symmetric Bipartite Tables for Accurate Function Approximation”, Proceedings of the 13th Symposium on Computer Arithmetic, 1997

    Google Scholar 

  13. J.N. Coleman, E.I. Chester: “A 32-Bit Logarithmic Arithmetic Unit and Its Performance Compared to Floating-Point”, 14th Symposium on Computer Arithmetic (1999).

    Google Scholar 

  14. Texas Instruments: “TMS320C6711 Floating Point DSP” (1997). http://focus.ti.com/paramsearch/docs/parametricsearch.tsp?family=dsp&sectionId=2&tabId=135&familyId=327

  15. E.E. Swartzlander: “Merged Arithmetic”, IEEE Trans. Comput. TC-29, 946–950 (1980)

    Article  Google Scholar 

  16. W.H. Press: “Numerical Recipes in Pascal”, Cambridge University Press, Cambridge, 1989

    MATH  Google Scholar 

  17. J.N. Coleman, E.I. Chester, C.I. Softley, J. Kadlec: “Arithmetic on the European Logarithmic Microprocessor”, IEEE Trans. Comput. TC-49 (7), 702–715 (2000).

    Article  Google Scholar 

  18. F. Albu et al.: “The Gauss-Seidel Fast Affine Projection Algorithm”, IEEE Workshop Signal Processing, Systems Design and Implementation (SIPS), 109–114, CA, USA, 2002

    Google Scholar 

  19. J.N. Coleman et al.: “The European Logarithmic Microprocessor—a QR RLS application”, IEEE 35th Asilomar Conference on Signals, Systems and Computers, 155–159, CA, USA, 2001

    Google Scholar 

  20. J. Kadlec, A. Hermanek, Ch. Softley, R. Matousek, M. Licko: “32-bit Logarithmic ALU for Handel-C-2.1 and Celoxica DK1”, UTIA Prague: Inst. Info-Th. and Automation (dpt. Signal Proc.). http://napier.ncl.ac.uk/elm/Docs/Lns2CelRev2.pdf

  21. J. Coleman, C. Softley, J. Kadlec, R. Matousek, Z. Pohl, A. Hermanek, N. Benschop: “The European Logarithmic Microprocessor”, IEEE Trans. Comput. TC-57 (4), 532–546 (2008).

    Article  Google Scholar 

  22. N.F. Benschop: Patent US-5923888 “Multiplier for the Multiplication of at Least two Figures in an Original Format” (1999). See also http://de.arxiv.org/abs/math.GM/0105029

  23. K. Hwang: “Computer Arithmetic”, (p. 164), Wiley, New York, 1979

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico F. Benschop .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Benschop, N.F. (2009). Log-Arithmetic, with Single and Dual Base. In: Associative Digital Network Theory. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9829-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9829-1_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9828-4

  • Online ISBN: 978-1-4020-9829-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics