Skip to main content

A Multiscale Methodology to Approach Nanoscale Thermal Transport

  • Chapter
  • First Online:
Trends in Computational Nanomechanics

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 9))

Abstract

The contact resistance problem between dissimilar or bonded substrates is particularly important at the nanoscale, since the length scales associated with the structures and energy carriers become comparable. We provide a basic understanding of nanoscale thermal properties, focusing on nanoscale composition and surface structure effects on local and bulk thermal properties, and discuss how surface modifications can create novel materials and structures that have tunable thermal properties. Since nanoscale flows are typically part of larger scale systems and we are confronted with an inherently multiscale problem, a multiscale approach is required to integrate atomistic simulations with computational methods suitable for flow phenomena at larger scales. We begin by describing how nanoscale thermal transport can be investigated using molecular dynamics (MD) simulations for ideal (defect-free) materials, with defects, and with simpler (solid-solid, solid-liquid, solid-vapor, etc.) and more complex (solid-liquid-solid, solid-liquid-vapor, liquid-vapor-liquid) material contacts. Next, we describe how the mesoscale lattice Boltzmann method (LBM) can be used to model thermal transport. Then, we describe a hybrid model that couples MD with LBM. Finally, we provide examples of several problems suitable for the multiscale modeling of thermal transport

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swartz, E.T. and R.O. Pohl, Thermal-boundary resistance. Reviews of Modern Physics, 1989. 61(3): 605–668.

    Article  Google Scholar 

  2. Darabi, J., Micro- and nanoscale heat transfer: Challenges and opportunities. Heat Transfer Engineering, 2002. 23(2): 1–2.

    Article  Google Scholar 

  3. Chen, G., Particularities of heat conduction in nanostructures. Journal of Nanoparticle Research, 2000. 2(2): 199–204.

    Article  CAS  Google Scholar 

  4. Thome, J.R., The new frontier in heat transfer: Microscale and nanoscale technologies. Heat Transfer Engineering, 2006. 27(9): 1–3.

    Article  CAS  Google Scholar 

  5. Kapitza, P.L., The study of heat transfer in helium II. Journal of Physics, USSR, 1941. 4: 181.

    Google Scholar 

  6. Balasubramanian, G., S. Banerjee, and I.K. Puri, Unsteady nanoscale thermal transport across a solid-fluid interface. Journal of Applied Physics, 2008. 104(6).

    Google Scholar 

  7. Pollack, G.L., Kapitza resistance. Reviews of Modern Physics, 1969. 41(1): 48–81.

    Article  CAS  Google Scholar 

  8. Ferrell, R.A., J.K. Bhattacharjee, and S.I. Mukhin, Theory for normal state critical Kapitza resistance of He-4. Low Temperature Physics, 1998. 24(2): 76–77.

    Article  CAS  Google Scholar 

  9. Murad, S. and I.K. Puri, Thermal transport across nanoscale solid-fluid interfaces. Applied Physics Letters, 2008. 92: 133105.

    Article  Google Scholar 

  10. Murad, S. and I.K. Puri, Molecular simulation of thermal transport across hydrophilic interfaces. Chemical Physics Letters, 2008. 467(1-3): 110–113.

    Article  CAS  Google Scholar 

  11. Challis, L.J., Kapitza resistance and acoustic transmission across boundaries at high frequencies. Journal of Physics C: Solid State Physics, 1974. 7(3): 481–495.

    Article  CAS  Google Scholar 

  12. Barrat, J.L. and F. Chiaruttini, Kapitza resistance at the liquid-solid interface. Molecular Physics, 2003. 101(11): 1605–1610.

    Article  CAS  Google Scholar 

  13. Khare, R., P. Keblinski, and A. Yethiraj, Molecular dynamics simulations of heat and momentum transfer at a solid-fluid interface: Relationship between thermal and velocity slip. International Journal of Heat and Mass Transfer, 2006. 49(19-20): 3401–3407.

    Article  CAS  Google Scholar 

  14. Wang, X.W., Z.R. Zhong, and J. Xu, Noncontact thermal characterization of multiwall carbon nanotubes. Journal of Applied Physics, 2005. 97(6).

    Google Scholar 

  15. Barrat, J.-L. and F. Chiaruttini, Kapitza resistance at the liquid-solid interface. Molecular Physics, 2003. 101: 1605–1610.

    Article  CAS  Google Scholar 

  16. Oligschleger, C. and J.C. Schon, Simulation of thermal conductivity and heat transport in solids. Physical Review B, 1999. 59(6): 4125–4133.

    Article  CAS  Google Scholar 

  17. Che, J.W., et al., Thermal conductivity of diamond and related materials from molecular dynamics simulations. Journal of Chemical Physics, 2000. 113(16): 6888–6900.

    Article  CAS  Google Scholar 

  18. Schwab, K., et al., Measurement of the quantum of thermal conductance. Nature, 2000. 404(6781): 974–977.

    Article  CAS  Google Scholar 

  19. Huxtable, S.T., et al., Interfacial heat flow in carbon nanotube suspensions. Nature Materials, 2003. 2: 731–734.

    Article  CAS  Google Scholar 

  20. Koplik, J., J.R. Banavar, and J.F. Willemsen, Molecular-dynamics of fluid-flow at solid-surfaces. Physics of Fluids A-Fluid Dynamics, 1989. 1(5): 781–794.

    Article  CAS  Google Scholar 

  21. Murad, S. and I.K. Puri, Dynamics of nanoscale jet formation and impingement on flat surfaces. Physics of Fluids, 2007. 19: 128102.

    Article  Google Scholar 

  22. Xue, L., et al., Two regimes of thermal resistance at a liquid-solid interface. Journal of Chemical Physics, 2003. 118(1): 337–339.

    Article  CAS  Google Scholar 

  23. Challis, L.J., K. Dransfeld, and J. Wilks, Heat transfer between solids and liquid helium II. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1961. 260(1300): 31–46.

    Article  CAS  Google Scholar 

  24. Israelachvili, J., Intermolecular and Surface Forces, 2nd ed, 1992. London: Academic Press.

    Google Scholar 

  25. Naha, S., S. Sen, and I.K. Puri, Flame synthesis of superhydrophobic amorphous carbon surfaces. Carbon, 2007. 45(8): 1702–1706.

    Article  CAS  Google Scholar 

  26. Sen, S. and I.K. Puri, Flame synthesis of carbon nanofibres and nanofibre composites containing encapsulated metal particles. Nanotechnology, 2004. 15(3): 264–268.

    Article  CAS  Google Scholar 

  27. Arana, C.P., I.K. Puri, and S. Sen, Catalyst influence on the flame synthesis of aligned carbon nanotubes and nanofibers. Proceedings of the Combustion Institute, 2005. 30: 2553–2560.

    Article  Google Scholar 

  28. Ramadurai, K., Carbon nanostructures for thermal applications: synthesis and characterization, in Mechanical Engineering, 2007. Boulder, CO: University of Colorado.

    Google Scholar 

  29. Huhtala, M., A. Kuronen, and K. Kaski, Carbon nanotube structures: molecular dynamics simulation at realistic limit. Computer Physics Communications, 2002. 146(1): 30–37.

    Article  CAS  Google Scholar 

  30. Rafii-Tabar, H., Computational modelling of thermo-mechanical and transport properties of carbon nanotubes (vol 390, pg 235, 2004). Physics Reports-Review Section of Physics Letters, 2004. 394(6): 357.

    CAS  Google Scholar 

  31. Louchev, O.A., et al., Thermal physics in carbon nanotube growth kinetics. Journal of Chemical Physics, 2004. 121(1): 446–456.

    Article  CAS  Google Scholar 

  32. Yang, X.S., Modelling heat transfer of carbon nanotubes. Modelling and Simulation in Materials Science and Engineering, 2005. 13(6): 893–902.

    Article  Google Scholar 

  33. Kotsalis, E.M., J.H. Walther, and P. Koumoutsakos, Multiphase water flow inside carbon nanotubes. International Journal of Multiphase Flow, 2004. 30(7-8): 995–1010.

    Article  CAS  Google Scholar 

  34. Liu, Y.C., et al., Fluid structure and transport properties of water inside carbon nanotubes. Journal of Chemical Physics, 2005. 123(23).

    Google Scholar 

  35. Hanasaki, I. and A. Nakatani, Water flow through carbon nanotube junctions as molecular convergent nozzles. Nanotechnology, 2006. 17(11): 2794–2804.

    Article  CAS  Google Scholar 

  36. Banerjee, S., S. Murad, and I.K. Puri, Hydrogen storage in carbon nanostructures: Possibilities and challenges for fundamental molecular simulations. Proceedings of the IEEE, 2006. 94(10): 1806–1814.

    Article  CAS  Google Scholar 

  37. Bolton, K. and S. Gustavsson, Energy transfer mechanisms in gas-carbon nanotube collisions. Chemical Physics, 2003. 291(2): 161–170.

    Article  CAS  Google Scholar 

  38. Hu, M., et al., Thermal energy exchange between carbon nanotube and air. Applied Physics Letters, 2007. 90(23).

    Google Scholar 

  39. Zhong, H.L. and J.R. Lukes, Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling. Physical Review B, 2006. 74(12).

    Google Scholar 

  40. Shenogin, S., et al., Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. Journal of Applied Physics, 2004. 95(12): 8136–8144.

    Article  CAS  Google Scholar 

  41. Shenogin, S., et al., Effect of chemical functionalization on thermal transport of carbon nanotube composites. Applied Physics Letters, 2004. 85(12): 2229–2231.

    Article  CAS  Google Scholar 

  42. Keblinski, P., et al., Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). International Journal of Heat and Mass Transfer, 2002. 45(4): 855–863.

    Article  CAS  Google Scholar 

  43. Huxtable, S.T., et al., Interfacial heat flow in carbon nanotube suspensions. Nature Materials, 2003. 2(11): 731–734.

    Article  CAS  Google Scholar 

  44. Vladkov, M. and J.L. Barrat, Modeling transient absorption and thermal conductivity in a simple nanofluid. Nano Letters, 2006. 6(6): 1224–1228.

    Article  CAS  Google Scholar 

  45. Xue, Y.Q. and M.D. Chen, Dynamics of molecules translocating through carbon nanotubes as nanofluidic channels. Nanotechnology, 2006. 17(20): 5216–5223.

    Article  CAS  Google Scholar 

  46. Banerjee, S., S. Murad, and I.K. Puri, Preferential ion and water intake using charged carbon nanotubes. Chemical Physics Letters, 2007. 434(4-6): 292–296.

    Article  CAS  Google Scholar 

  47. Koplik, J. and J.R. Banavar, Continuum deductions from molecular hydrodynamics. Annual Review of Fluid Dynamics, 1995. 27: 257–292.

    Article  Google Scholar 

  48. Murad, S. and I.K. Puri, Nanoscale jet collision and mixing dynamics. Nano Letters, 2007. 7(3): 707–712.

    Article  CAS  Google Scholar 

  49. Choi, Y.S., S.J. Kim, and M.U. Kim, Molecular dynamics of unstable motions and capillary instability in liquid nanojets. Physical Review E, 2006. 73(1), Art. No. 016309.

    Google Scholar 

  50. Fang, T.H., W.J. Chang, and S.C. Liao, Simulated nanojet ejection process by spreading droplets on a solid surface. Journal of Physics: Condensed Matter, 2003. 15(49): 8263–8270.

    Article  CAS  Google Scholar 

  51. Moseler, M. and U. Landman, Formation, stability, and breakup of nanojets. Science, 2000. 289(5482): 1165–1169.

    Article  CAS  Google Scholar 

  52. Heyes, D.M. and N.H. March, Theoretical approaches to thermal conductivity in liquids. Physics and Chemistry of Liquids, 1996. 33(2): 65–83.

    Article  CAS  Google Scholar 

  53. Eastman, J.A., et al., Thermal transport in nanofluids. Annual Review of Materials Research, 2004. 34: 219–246.

    Article  CAS  Google Scholar 

  54. Keblinski, P., et al., Thermodynamic behavior of a model covalent material described by the environment-dependent interatomic potential. Physical Review B, 2002. 66(6).

    Google Scholar 

  55. Bodapati, A., et al., Vibrations and thermal transport in nanocrystalline silicon. Physical Review B, 2006. 74(24).

    Google Scholar 

  56. Tang, Q.H. and Y.G. Yao, The Kapitza resistance across grain boundary by molecular dynamics simulation. Nanoscale and Microscale Thermophysical Engineering, 2006. 10(4): 387–398.

    Article  CAS  Google Scholar 

  57. Schelling, P.K., S.R. Phillpot, and P. Keblinski, Kapitza conductance and phonon scattering at grain boundaries by simulation. Journal of Applied Physics, 2004. 95(11): 6082–6091.

    Article  CAS  Google Scholar 

  58. Stevens, R.J., L.V. Zhigilei, and P.M. Norris, Effects of temperature and disorder on thermal boundary conductance at solid-solid interfaces: Nonequilibrium molecular dynamics simulations. International Journal of Heat and Mass Transfer, 2007. 50(19-20): 3977–3989.

    Article  Google Scholar 

  59. Patel, H.A., S. Garde, and P. Keblinski, Thermal resistance of nanoscopic liquid-liquid interfaces: Dependence on chemistry and molecular architecture. Nano Letters, 2005. 5(11): 2225–2231.

    Article  CAS  Google Scholar 

  60. Twu, C.J. and J.R. Ho, Molecular-dynamics study of energy flow and the Kapitza conductance across an interface with imperfection formed by two dielectric thin films. Physical Review B, 2003. 67(20).

    Google Scholar 

  61. Angadi, M.A., et al., Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films. Journal of Applied Physics, 2006. 99(11).

    Google Scholar 

  62. Hegedus, P.J. and A.R. Abramson, A molecular dynamics study of interfacial thermal transport in heterogeneous systems. International Journal of Heat and Mass Transfer, 2006. 49(25-26): 4921–4931.

    Article  CAS  Google Scholar 

  63. Chiritescu, C., et al., Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science, 2007. 315(5810): 351–353.

    Article  CAS  Google Scholar 

  64. Dupuis, A., E.M. Kotsalis, and P. Koumoutsakos, Coupling lattice Boltzmann and molecular dynamics models for dense fluids. Physical Review E, 2007. 75(4).

    Google Scholar 

  65. Xiao, S.P. and T. Belytschko, A bridging domain method for coupling continua with molecular dynamics. Computer Methods in Applied Mechanics and Engineering, 2004. 193(17-20): 1645–1669.

    Article  Google Scholar 

  66. Xu, J.L. and Y.X. Li, Boundary conditions at the solid-liquid surface over the multiscale channel size from nanometer to micron. International Journal of Heat and Mass Transfer, 2007. 50(13–14): 2571–2581.

    Article  CAS  Google Scholar 

  67. Nie, X.B., S.Y. Chen, and M.O. Robbins, Hybrid continuum-atomistic simulation of singular corner flow. Physics of Fluids, 2004. 16(10): 3579–3591.

    Article  CAS  Google Scholar 

  68. Werder, T., J.H. Walther, and P. Koumoutsakos, Hybrid atomistic-continuum method for the simulation of dense fluid flows. Journal of Computational Physics, 2005. 205(1): 373–390.

    Article  CAS  Google Scholar 

  69. Cahill, D.G., et al., Nanoscale thermal transport. Journal of Applied Physics, 2003. 93(2): 793–818.

    Article  CAS  Google Scholar 

  70. Khater, A.F., The Kapitza resistance and phonon scattering at solid-liquid He interfaces. Le Journal de Physique Colloques, 1978. 39(C6).

    Google Scholar 

  71. Chen, S. and G.D. Doolen, Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 1998. 30: 329–364.

    Article  Google Scholar 

  72. Succi, S., Lattice Boltzmann equation: Failure or success?. Physica A, 1997. 240(1–2): 221–228.

    Article  Google Scholar 

  73. De, A.K., A. Mukhopadhyay, and I.K. Puri, Lattice Boltzmann method simulation of electroosmotic stirring in a microscale cavity. Microfluidics and Nanofluidics, 2008. 4(5): 463–470.

    Article  Google Scholar 

  74. Succi, S., The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, 2001. New York: Oxford.

    Google Scholar 

  75. Nourgaliev, R.R., et al., The lattice Boltzmann equation method: theoretical interpretation, numerics and implications. International Journal of Multiphase Flow, 2003. 29(1): 117–169.

    Article  CAS  Google Scholar 

  76. Bhatnagar, P.L., E.P. Gross, and M. Krook, A model for collisional processes in gases I: Small amplitude processes in charged and neutral one-component system. Physical Review, 1954. 94: 511.

    Article  CAS  Google Scholar 

  77. He, X., S. Chen, and G.D. Doolen, A novel thermal model for the lattice Boltzmann method in incompressible limit. Journal of Computational Physics, 1998. 146(1): 282–300.

    Article  Google Scholar 

  78. Zou, Q.S. and X.Y. He, On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Physics of Fluids, 1997. 9(6): 1591–1598.

    Article  CAS  Google Scholar 

  79. O‘Connell, S.T. and P.A. Thompson, Molecular dynamics-continuum hybrid computations: A tool for studying complex fluid flows. Physical Review E, 1995. 52(6): R5792–R5795.

    Article  Google Scholar 

  80. Sun, Q.H., I.D. Boyd, and G.V. Candler, A hybrid continuum/particle approach for modeling subsonic, rarefield gas flow. Journal of Computational Physics, 2004. 194(1): 256–277.

    Article  Google Scholar 

  81. Flekkoy, E.G., G. Wagner, and J. Feder, Hybrid model for combined particle and continuum dynamics. Europhysics Letters, 2000. 52(3): 271–276.

    Article  CAS  Google Scholar 

  82. Delgado-Buscalioni, R. and P.V. Coveney, USHER: An algorithm for particle insertion in dense fluids. Journal of Chemical Physics, 2003. 119(2): 978–987.

    Article  CAS  Google Scholar 

  83. Hadjiconstantinou, N.G. and A.T. Patera, Heterogeneous atomistic-continuum representations for dense fluid systems. International Journal of Modern Physics C, 1997. 8(4): 967–976.

    Article  Google Scholar 

  84. Hadjiconstantinou, N.G., Hybrid atomistic-continuum formulations and the moving contact-line problem. Journal of Computational Physics, 1999. 154(2): 245–265.

    Article  Google Scholar 

  85. Matteoli, E. and G.A. Mansoori, A simple expression for radial-distribution functions of pure fluids and mixtures. Journal of Chemical Physics, 1995. 103(11): 4672–4677.

    Article  CAS  Google Scholar 

  86. J.-L. Barrat and F. Chiaruttini, Kapitza resistance at the liquid-solid interface. Molecular Physics, 2003. 101: 1605–1610.

    Article  CAS  Google Scholar 

  87. S. Maruyama and T. Kimura, A study on thermal resistance over a solid-liquid interface by the molecular dynamics method. Thermal Science Engineering, 1999. 7: 63–68.

    CAS  Google Scholar 

  88. L. Xue, et al., Two regimes of thermal resistance at a liquid-solid interface. Journal of Chemical Physics, 2003. 118: 337–339.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for helpful discussions with Dr. Anindya De of GE Research, Bangalore, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishwar K. Puri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Puri, I.K., Murad, S. (2010). A Multiscale Methodology to Approach Nanoscale Thermal Transport. In: Dumitrica, T. (eds) Trends in Computational Nanomechanics. Challenges and Advances in Computational Chemistry and Physics, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9785-0_5

Download citation

Publish with us

Policies and ethics